Abstract

We have evaluated the influence of growth media and washing on the laser-induced fluorescence spectra of bacteria. Three different bacterial simulants were cultured in three types of growth media. Three kinds of samples were generated from each culture: the culture itself, the growth medium alone, and a triple-washed sample. The materials were injected as aerosols in a lab-sized lidar aerosol chamber to obtain their spectra. Using two different analysis approaches, signature variations were observed between the three kinds of samples for most combinations of growth media/bacteria. This study concludes that the culture media used influences the spectral signatures.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. G. Kortepeter and G. W. Parker, “Potential biological weapons threats,” Emerg. Infect. Dis. 5, 523-527 (1999).
    [CrossRef]
  2. D. V. Lim, J. M. Simpson, E. A. Kearns, and M. F. Kramer, “Current and developing technologies for monitoring agents of bioterrorism and biowarfare,” Clin. Microbiol. Rev. 18, 583-607 (2005).
    [CrossRef]
  3. J. Ho, “Real time detection of biological aerosols with aerodynamic particle sizer (FLAPS),” J. Aerosol Sci. 27, S581-S582 (1996).
    [CrossRef]
  4. J. Ho, “Future of biological aerosol detection,” Anal. Chim. Acta 457, 125-148 (2002).
    [CrossRef]
  5. C. B. Smith, J. E. Anderson, and S. R. Webb, “Detection of Bacillus endospores using total luminescence spectroscopy,” Spectrochim. Acta Part A 60, 2517-2521 (2004).
    [CrossRef]
  6. L. M. Brosseau, D. Vesley, N. Rice, J. Goodell, M. Nellis, and P. Hairston, “Differences in detected fluorescence among several bacterial species measured with a direct-reading particle sizer and fluorescence detector,” Aerosol Sci. Technol. 32, 545-558 (2000).
    [CrossRef]
  7. C. Swim, R. G. Vanderbeek, D. Emge, and A. Wong, “Overview of chem-bio sensing,” Proc. SPIE 6218, 621802 (2006).
    [CrossRef]
  8. C.Weikamp, ed., Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, Springer Series in Optical Sciences (Springer, 2005).
  9. J. R. Simard, G. Roy, P. Mathieu, V. Larochelle, J. McFee, and J. Ho, “Standoff sensing of bioaerosols using intensified range-gated spectral analysis of laser-induced fluorescence,” IEEE Trans. Geosci. Remote Sensing 42, 865-874 (2004).
    [CrossRef]
  10. Committee on Test and Evaluation of Biological Standoff Systems, Test and Evaluation of Biological Standoff Detection System (National Academies, 2008).
  11. K. Baxter, M. Castle, S. Barrington, P. Withers, V. Foot, A. Pickering, and N. Felton, “UK small scale UVLIF lidar for standoff BW detection,” Proc. SPIE 6739, 67390Z (2007).
    [CrossRef]
  12. P. Jonsson, M. Elmqvist, O. Gustafsson, F. Kullander, R. Persson, G. Olofsson, T. Tjärnhage, Ø. Farsund, T. Haavardsholm, and G. Rustad, “Evaluation of biological aerosol stand-off detection at a field trial,” Proc. SPIE 7484, 74840I (2009).
    [CrossRef]
  13. S. Frey, H. Wille, and F. Wilsenack, “Mobile demonstrator for biological aerosol standoff detection,” Proc. SPIE 7484, 748407 (2009).
    [CrossRef]
  14. L. Reinisch, J. Tribble, J. A. Werkhaven, and R. H. Ossoff, “Non-invasive optical diagnosis of bacteria causing otitis media,” Laryngoscope 104, 264-268 (1994).
    [CrossRef]
  15. J. T. Coburn, F. E. Lytle, and D. M. Huber, “Identification of bacterial pathogens by laser excited fluorescence,” Anal. Chem. 57, 1669-1673 (1985).
    [CrossRef]
  16. M. Monici, “Cell and tissue autofluorescence research and diagnostic applications,” Biotechnol. Ann. Rev. 11, 227-256(2005).
    [CrossRef]
  17. B. Chance, P. Cohen, F. Jobsis, and B. Schoener, “Intracellular oxidation-reduction states in vivo: the microfluorimetry of pyridine nucleotide gives continuous measurement of the oxidation state,” Science 137, 499-508 (1962).
    [CrossRef]
  18. A. Mayevsky and G. G. Rogatsky, “Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies,” Am. J. Physiol. Cell. Physiol. 292, C615-C640 (2007).
    [CrossRef]
  19. S. Buteau, J. R. Simard, P. Lahaie, G. Roy, P. Mathieu, B. Dery, J. Ho, and J. McFee, “Bioaerosol standoff monitoring using intensified range-gated laser-induced fluorescence spectroscopy,” in Advanced Environmental Monitoring, Y.J.Kim, and U.Platt, eds. (Springer, 2008), pp. 203-216.
  20. J. Eversole, A. Sanchez, and D. Sickenberger, “Optical detection capabilities for biological and chemical agent aerosols,” presented at the Biodetection Technologies Workshop, Alexandria, Va., 1 May 2002.
  21. Committee on Testing and Evaluation of Standoff Chemical Agent Detectors, Testing and Evaluation of Standoff Chemical Agent Detectors (National Academies, 2003).
  22. B. Déry, J. R. Simard, R. Vallée, G. Roy, H. Lavoie, and S. Buteau, “Compact chamber for the spectroscopic analysis of fluorescent aerosols,” Proc. SPIE 6554, 65540O (2007).
    [CrossRef]
  23. B. Déry, S. Buteau, J. R. Simard, J. P. Bouchard, and R. Vallée, “Spectroscopic calibration correlation of field and lab-sized fluorescence LIDAR systems,” IEEE Trans. Geosci. Remote Sensing 48, 3580-3586 (2009).
    [CrossRef]
  24. B. V. Bronk and L. Reinisch, “Variability of steady-state bacterial fluorescence with respect to growth conditions,” Appl. Spectrosc. 47, 436-440 (1993).
    [CrossRef]
  25. S. D. Campbell, D. P. Tremblay, F. Daver, and D. Cousins, “Wavelength comparison study for bioaerosol detection,” Proc. SPIE 5778, 130-138 (2005).
    [CrossRef]
  26. S. Chaskes and R. L. Tyndall, “Pigmentation and autofluorescence of Cryptococcus species after growth on tryptophan and anthranilic acid media,” Mycopathologia 64, 105-112(1978).
    [CrossRef]
  27. H. I. Heaton, “Principal-component analysis of fluorescence cross-section spectra from pathogenic and stimulant bacteria,” Appl. Opt. 44, 6486-6495 (2005).
    [CrossRef]
  28. J. D. Hybl, G. A. Lithgow, and S. G. Buckley, “Laser-induced breakdown spectroscopy detection and classification of biological aerosols,” Appl. Spectrosc. 57, 1207-1215 (2003).
    [CrossRef]
  29. E. Jhala, C. Galilee, and L. Reinisch, “Principal component analysis of fluorescence changes upon growth conditions and washing of Pseudomonas aeruginosa,” Appl. Opt. 46, 5522-5528 (2007).
    [CrossRef]
  30. A. C. Samuel, A. B. David, D. Wong, D. St.-Amant, L. Carey, V. Kalasinsky, and G. Meyer, “Infrared spectra of Bacillus subtilis spores: the effect of growth media,” internal report ADM001523 of the Edgewood Chemical and Biological Center, Aberdeen Proving Ground, Md. (2003).
  31. S. A. Burke, J. D. Wright, M. K. Robinson, B. V. Bronk, and R. L. Warren, “Detection of molecular diversity in Bacillus atrophaeus by amplified fragment length polymorphism analysis,” Appl. Environ. Microbiol. 70, 2786-2790 (2004).
    [CrossRef]
  32. H. K. Chan, “Dry powder aerosol delivery systems: current and future research directions,” J. Aerosol Med. 19, 21-27(2006).
    [CrossRef]
  33. S. K. Jenson and F. A. Walty, “Principal-component analysis and canonical analysis in remote analysis in remote sensing,” Photogramm. Eng. Remote Sens. 45, 783-784 (1979).
  34. K. Y. Yeung and W. L. Ruzzo, “Principal-component analysis for clustering gene expression data,” Bioinformatics 17, 763-774 (2001).
    [CrossRef]
  35. D. C. Shelly, J. M. Quarles, and I. M. Warner, “Identification of fluorescent Pseudomonas species,” Clin. Chem. 26, 1127-1132(1980).
  36. S. A. Robrish, C. W. Kemp, D. C. Adderly, and W. H. Bowen, “The flavin mononucleotide content of oral bacteria related to the dry weight of the dental plaque obtained from monkeys,” Curr. Microbiol. 2, 131-134 (1979).
    [CrossRef]
  37. M. Mack, A. P. G. M. van Loon, and H.-P. Hohmann, “Regulation of riboflavin biosynthesis in Bacillus subtilis is affected by the activity of the flavokinase/flavin adenine dinucleotide synthetase encoded by ribC,” J. Bacteriol. 180, 950-955 (1998).
  38. A. Bermingham and J. P. Derrick, “The folic acid biosynthesis pathway in bacteria: evaluation of potential for antibacterial drug discovery,” BioEssays 24, 637-648 (2002).
    [CrossRef]
  39. T. Tjärnhage, M. Strömqvist, G. Olofsson, D. Squirrell, J. Burke, J. Ho, and M. Spence, “Multivariate data analysis of fluorescence signals from biological aerosols,” Field Anal. Chem. Technol. 5, 171-176 (2001).
    [CrossRef]
  40. K. Gaus, P. Rösch, R. Petry, K.-D. Peschke, O. Ronneberger, H. Burkhardt, K. Baumann, and J. Popp, “Classification of lactic acid bacteria with UV-resonance Raman spectroscopy,” Biopolymers 82, 286-290 (2006).
    [CrossRef]
  41. R. D. Holland, J. G. Wilkes, F. Rafii, J. B. Sutherland, C. C. Persons, K. J. Voorhees, and J. O. Lay, “Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry,” Rapid Com. Mass. Spectrom. 10, 1227-1232 (1996).
    [CrossRef]
  42. J. Kunnil, S. Sarasanandarajah, E. Chacko, and L. Reinisch, “Effect of washing on identification of Bacillus spores by principal-component analysis of fluorescence data,” Appl. Opt. 45, 3659-3664 (2006).
    [CrossRef]
  43. E. Yee and J. Ho, “Neural network recognition and classification of aerosol particle distribution measured with two-spot laser velocimeter,” Appl. Opt. 29, 2929-2938 (1990).
    [CrossRef]
  44. D. L. Rosen and J. B. Gillespie, “Fluorescence lidar with shot noise and sky radiance,” Appl. Opt. 31, 4214-4223 (1992).
    [CrossRef]
  45. M. S. Srivastava, Methods of Multivariate Statistics(Wiley, 2002).
  46. Y. S. Cheng, E. B. Barr, B. J. Fan, P. J. Hargis, D. J. Rader, T. J. O'Hern, J. R. Torczynski, G. C. Tisone, B. L. Preppernau, S. A. Young, and R. J. Radloff, “Detection of bioaerosols using multiwavelength UV fluorescence spectroscopy,” Aerosol Sci. Technol. 30, 186-201 (1999).
    [CrossRef]
  47. J. C. Harsanyi and C. I. Chang, “Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach,” IEEE Trans. Geosci. Remote Sensing 32, 779-785 (1994).
    [CrossRef]
  48. J. E. Jackson, A User's Guide to Principal Components(Wiley, 1991).

2009 (3)

P. Jonsson, M. Elmqvist, O. Gustafsson, F. Kullander, R. Persson, G. Olofsson, T. Tjärnhage, Ø. Farsund, T. Haavardsholm, and G. Rustad, “Evaluation of biological aerosol stand-off detection at a field trial,” Proc. SPIE 7484, 74840I (2009).
[CrossRef]

S. Frey, H. Wille, and F. Wilsenack, “Mobile demonstrator for biological aerosol standoff detection,” Proc. SPIE 7484, 748407 (2009).
[CrossRef]

B. Déry, S. Buteau, J. R. Simard, J. P. Bouchard, and R. Vallée, “Spectroscopic calibration correlation of field and lab-sized fluorescence LIDAR systems,” IEEE Trans. Geosci. Remote Sensing 48, 3580-3586 (2009).
[CrossRef]

2007 (4)

E. Jhala, C. Galilee, and L. Reinisch, “Principal component analysis of fluorescence changes upon growth conditions and washing of Pseudomonas aeruginosa,” Appl. Opt. 46, 5522-5528 (2007).
[CrossRef]

K. Baxter, M. Castle, S. Barrington, P. Withers, V. Foot, A. Pickering, and N. Felton, “UK small scale UVLIF lidar for standoff BW detection,” Proc. SPIE 6739, 67390Z (2007).
[CrossRef]

A. Mayevsky and G. G. Rogatsky, “Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies,” Am. J. Physiol. Cell. Physiol. 292, C615-C640 (2007).
[CrossRef]

B. Déry, J. R. Simard, R. Vallée, G. Roy, H. Lavoie, and S. Buteau, “Compact chamber for the spectroscopic analysis of fluorescent aerosols,” Proc. SPIE 6554, 65540O (2007).
[CrossRef]

2006 (4)

C. Swim, R. G. Vanderbeek, D. Emge, and A. Wong, “Overview of chem-bio sensing,” Proc. SPIE 6218, 621802 (2006).
[CrossRef]

H. K. Chan, “Dry powder aerosol delivery systems: current and future research directions,” J. Aerosol Med. 19, 21-27(2006).
[CrossRef]

K. Gaus, P. Rösch, R. Petry, K.-D. Peschke, O. Ronneberger, H. Burkhardt, K. Baumann, and J. Popp, “Classification of lactic acid bacteria with UV-resonance Raman spectroscopy,” Biopolymers 82, 286-290 (2006).
[CrossRef]

J. Kunnil, S. Sarasanandarajah, E. Chacko, and L. Reinisch, “Effect of washing on identification of Bacillus spores by principal-component analysis of fluorescence data,” Appl. Opt. 45, 3659-3664 (2006).
[CrossRef]

2005 (4)

H. I. Heaton, “Principal-component analysis of fluorescence cross-section spectra from pathogenic and stimulant bacteria,” Appl. Opt. 44, 6486-6495 (2005).
[CrossRef]

S. D. Campbell, D. P. Tremblay, F. Daver, and D. Cousins, “Wavelength comparison study for bioaerosol detection,” Proc. SPIE 5778, 130-138 (2005).
[CrossRef]

D. V. Lim, J. M. Simpson, E. A. Kearns, and M. F. Kramer, “Current and developing technologies for monitoring agents of bioterrorism and biowarfare,” Clin. Microbiol. Rev. 18, 583-607 (2005).
[CrossRef]

M. Monici, “Cell and tissue autofluorescence research and diagnostic applications,” Biotechnol. Ann. Rev. 11, 227-256(2005).
[CrossRef]

2004 (3)

J. R. Simard, G. Roy, P. Mathieu, V. Larochelle, J. McFee, and J. Ho, “Standoff sensing of bioaerosols using intensified range-gated spectral analysis of laser-induced fluorescence,” IEEE Trans. Geosci. Remote Sensing 42, 865-874 (2004).
[CrossRef]

C. B. Smith, J. E. Anderson, and S. R. Webb, “Detection of Bacillus endospores using total luminescence spectroscopy,” Spectrochim. Acta Part A 60, 2517-2521 (2004).
[CrossRef]

S. A. Burke, J. D. Wright, M. K. Robinson, B. V. Bronk, and R. L. Warren, “Detection of molecular diversity in Bacillus atrophaeus by amplified fragment length polymorphism analysis,” Appl. Environ. Microbiol. 70, 2786-2790 (2004).
[CrossRef]

2003 (1)

2002 (2)

A. Bermingham and J. P. Derrick, “The folic acid biosynthesis pathway in bacteria: evaluation of potential for antibacterial drug discovery,” BioEssays 24, 637-648 (2002).
[CrossRef]

J. Ho, “Future of biological aerosol detection,” Anal. Chim. Acta 457, 125-148 (2002).
[CrossRef]

2001 (2)

T. Tjärnhage, M. Strömqvist, G. Olofsson, D. Squirrell, J. Burke, J. Ho, and M. Spence, “Multivariate data analysis of fluorescence signals from biological aerosols,” Field Anal. Chem. Technol. 5, 171-176 (2001).
[CrossRef]

K. Y. Yeung and W. L. Ruzzo, “Principal-component analysis for clustering gene expression data,” Bioinformatics 17, 763-774 (2001).
[CrossRef]

2000 (1)

L. M. Brosseau, D. Vesley, N. Rice, J. Goodell, M. Nellis, and P. Hairston, “Differences in detected fluorescence among several bacterial species measured with a direct-reading particle sizer and fluorescence detector,” Aerosol Sci. Technol. 32, 545-558 (2000).
[CrossRef]

1999 (2)

M. G. Kortepeter and G. W. Parker, “Potential biological weapons threats,” Emerg. Infect. Dis. 5, 523-527 (1999).
[CrossRef]

Y. S. Cheng, E. B. Barr, B. J. Fan, P. J. Hargis, D. J. Rader, T. J. O'Hern, J. R. Torczynski, G. C. Tisone, B. L. Preppernau, S. A. Young, and R. J. Radloff, “Detection of bioaerosols using multiwavelength UV fluorescence spectroscopy,” Aerosol Sci. Technol. 30, 186-201 (1999).
[CrossRef]

1998 (1)

M. Mack, A. P. G. M. van Loon, and H.-P. Hohmann, “Regulation of riboflavin biosynthesis in Bacillus subtilis is affected by the activity of the flavokinase/flavin adenine dinucleotide synthetase encoded by ribC,” J. Bacteriol. 180, 950-955 (1998).

1996 (2)

J. Ho, “Real time detection of biological aerosols with aerodynamic particle sizer (FLAPS),” J. Aerosol Sci. 27, S581-S582 (1996).
[CrossRef]

R. D. Holland, J. G. Wilkes, F. Rafii, J. B. Sutherland, C. C. Persons, K. J. Voorhees, and J. O. Lay, “Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry,” Rapid Com. Mass. Spectrom. 10, 1227-1232 (1996).
[CrossRef]

1994 (2)

J. C. Harsanyi and C. I. Chang, “Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach,” IEEE Trans. Geosci. Remote Sensing 32, 779-785 (1994).
[CrossRef]

L. Reinisch, J. Tribble, J. A. Werkhaven, and R. H. Ossoff, “Non-invasive optical diagnosis of bacteria causing otitis media,” Laryngoscope 104, 264-268 (1994).
[CrossRef]

1993 (1)

1992 (1)

1990 (1)

1985 (1)

J. T. Coburn, F. E. Lytle, and D. M. Huber, “Identification of bacterial pathogens by laser excited fluorescence,” Anal. Chem. 57, 1669-1673 (1985).
[CrossRef]

1980 (1)

D. C. Shelly, J. M. Quarles, and I. M. Warner, “Identification of fluorescent Pseudomonas species,” Clin. Chem. 26, 1127-1132(1980).

1979 (2)

S. A. Robrish, C. W. Kemp, D. C. Adderly, and W. H. Bowen, “The flavin mononucleotide content of oral bacteria related to the dry weight of the dental plaque obtained from monkeys,” Curr. Microbiol. 2, 131-134 (1979).
[CrossRef]

S. K. Jenson and F. A. Walty, “Principal-component analysis and canonical analysis in remote analysis in remote sensing,” Photogramm. Eng. Remote Sens. 45, 783-784 (1979).

1978 (1)

S. Chaskes and R. L. Tyndall, “Pigmentation and autofluorescence of Cryptococcus species after growth on tryptophan and anthranilic acid media,” Mycopathologia 64, 105-112(1978).
[CrossRef]

1962 (1)

B. Chance, P. Cohen, F. Jobsis, and B. Schoener, “Intracellular oxidation-reduction states in vivo: the microfluorimetry of pyridine nucleotide gives continuous measurement of the oxidation state,” Science 137, 499-508 (1962).
[CrossRef]

Adderly, D. C.

S. A. Robrish, C. W. Kemp, D. C. Adderly, and W. H. Bowen, “The flavin mononucleotide content of oral bacteria related to the dry weight of the dental plaque obtained from monkeys,” Curr. Microbiol. 2, 131-134 (1979).
[CrossRef]

Anderson, J. E.

C. B. Smith, J. E. Anderson, and S. R. Webb, “Detection of Bacillus endospores using total luminescence spectroscopy,” Spectrochim. Acta Part A 60, 2517-2521 (2004).
[CrossRef]

Barr, E. B.

Y. S. Cheng, E. B. Barr, B. J. Fan, P. J. Hargis, D. J. Rader, T. J. O'Hern, J. R. Torczynski, G. C. Tisone, B. L. Preppernau, S. A. Young, and R. J. Radloff, “Detection of bioaerosols using multiwavelength UV fluorescence spectroscopy,” Aerosol Sci. Technol. 30, 186-201 (1999).
[CrossRef]

Barrington, S.

K. Baxter, M. Castle, S. Barrington, P. Withers, V. Foot, A. Pickering, and N. Felton, “UK small scale UVLIF lidar for standoff BW detection,” Proc. SPIE 6739, 67390Z (2007).
[CrossRef]

Baumann, K.

K. Gaus, P. Rösch, R. Petry, K.-D. Peschke, O. Ronneberger, H. Burkhardt, K. Baumann, and J. Popp, “Classification of lactic acid bacteria with UV-resonance Raman spectroscopy,” Biopolymers 82, 286-290 (2006).
[CrossRef]

Baxter, K.

K. Baxter, M. Castle, S. Barrington, P. Withers, V. Foot, A. Pickering, and N. Felton, “UK small scale UVLIF lidar for standoff BW detection,” Proc. SPIE 6739, 67390Z (2007).
[CrossRef]

Bermingham, A.

A. Bermingham and J. P. Derrick, “The folic acid biosynthesis pathway in bacteria: evaluation of potential for antibacterial drug discovery,” BioEssays 24, 637-648 (2002).
[CrossRef]

Bouchard, J. P.

B. Déry, S. Buteau, J. R. Simard, J. P. Bouchard, and R. Vallée, “Spectroscopic calibration correlation of field and lab-sized fluorescence LIDAR systems,” IEEE Trans. Geosci. Remote Sensing 48, 3580-3586 (2009).
[CrossRef]

Bowen, W. H.

S. A. Robrish, C. W. Kemp, D. C. Adderly, and W. H. Bowen, “The flavin mononucleotide content of oral bacteria related to the dry weight of the dental plaque obtained from monkeys,” Curr. Microbiol. 2, 131-134 (1979).
[CrossRef]

Bronk, B. V.

S. A. Burke, J. D. Wright, M. K. Robinson, B. V. Bronk, and R. L. Warren, “Detection of molecular diversity in Bacillus atrophaeus by amplified fragment length polymorphism analysis,” Appl. Environ. Microbiol. 70, 2786-2790 (2004).
[CrossRef]

B. V. Bronk and L. Reinisch, “Variability of steady-state bacterial fluorescence with respect to growth conditions,” Appl. Spectrosc. 47, 436-440 (1993).
[CrossRef]

Brosseau, L. M.

L. M. Brosseau, D. Vesley, N. Rice, J. Goodell, M. Nellis, and P. Hairston, “Differences in detected fluorescence among several bacterial species measured with a direct-reading particle sizer and fluorescence detector,” Aerosol Sci. Technol. 32, 545-558 (2000).
[CrossRef]

Buckley, S. G.

Burke, J.

T. Tjärnhage, M. Strömqvist, G. Olofsson, D. Squirrell, J. Burke, J. Ho, and M. Spence, “Multivariate data analysis of fluorescence signals from biological aerosols,” Field Anal. Chem. Technol. 5, 171-176 (2001).
[CrossRef]

Burke, S. A.

S. A. Burke, J. D. Wright, M. K. Robinson, B. V. Bronk, and R. L. Warren, “Detection of molecular diversity in Bacillus atrophaeus by amplified fragment length polymorphism analysis,” Appl. Environ. Microbiol. 70, 2786-2790 (2004).
[CrossRef]

Burkhardt, H.

K. Gaus, P. Rösch, R. Petry, K.-D. Peschke, O. Ronneberger, H. Burkhardt, K. Baumann, and J. Popp, “Classification of lactic acid bacteria with UV-resonance Raman spectroscopy,” Biopolymers 82, 286-290 (2006).
[CrossRef]

Buteau, S.

B. Déry, S. Buteau, J. R. Simard, J. P. Bouchard, and R. Vallée, “Spectroscopic calibration correlation of field and lab-sized fluorescence LIDAR systems,” IEEE Trans. Geosci. Remote Sensing 48, 3580-3586 (2009).
[CrossRef]

B. Déry, J. R. Simard, R. Vallée, G. Roy, H. Lavoie, and S. Buteau, “Compact chamber for the spectroscopic analysis of fluorescent aerosols,” Proc. SPIE 6554, 65540O (2007).
[CrossRef]

S. Buteau, J. R. Simard, P. Lahaie, G. Roy, P. Mathieu, B. Dery, J. Ho, and J. McFee, “Bioaerosol standoff monitoring using intensified range-gated laser-induced fluorescence spectroscopy,” in Advanced Environmental Monitoring, Y.J.Kim, and U.Platt, eds. (Springer, 2008), pp. 203-216.

Campbell, S. D.

S. D. Campbell, D. P. Tremblay, F. Daver, and D. Cousins, “Wavelength comparison study for bioaerosol detection,” Proc. SPIE 5778, 130-138 (2005).
[CrossRef]

Carey, L.

A. C. Samuel, A. B. David, D. Wong, D. St.-Amant, L. Carey, V. Kalasinsky, and G. Meyer, “Infrared spectra of Bacillus subtilis spores: the effect of growth media,” internal report ADM001523 of the Edgewood Chemical and Biological Center, Aberdeen Proving Ground, Md. (2003).

Castle, M.

K. Baxter, M. Castle, S. Barrington, P. Withers, V. Foot, A. Pickering, and N. Felton, “UK small scale UVLIF lidar for standoff BW detection,” Proc. SPIE 6739, 67390Z (2007).
[CrossRef]

Chacko, E.

Chan, H. K.

H. K. Chan, “Dry powder aerosol delivery systems: current and future research directions,” J. Aerosol Med. 19, 21-27(2006).
[CrossRef]

Chance, B.

B. Chance, P. Cohen, F. Jobsis, and B. Schoener, “Intracellular oxidation-reduction states in vivo: the microfluorimetry of pyridine nucleotide gives continuous measurement of the oxidation state,” Science 137, 499-508 (1962).
[CrossRef]

Chang, C. I.

J. C. Harsanyi and C. I. Chang, “Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach,” IEEE Trans. Geosci. Remote Sensing 32, 779-785 (1994).
[CrossRef]

Chaskes, S.

S. Chaskes and R. L. Tyndall, “Pigmentation and autofluorescence of Cryptococcus species after growth on tryptophan and anthranilic acid media,” Mycopathologia 64, 105-112(1978).
[CrossRef]

Cheng, Y. S.

Y. S. Cheng, E. B. Barr, B. J. Fan, P. J. Hargis, D. J. Rader, T. J. O'Hern, J. R. Torczynski, G. C. Tisone, B. L. Preppernau, S. A. Young, and R. J. Radloff, “Detection of bioaerosols using multiwavelength UV fluorescence spectroscopy,” Aerosol Sci. Technol. 30, 186-201 (1999).
[CrossRef]

Coburn, J. T.

J. T. Coburn, F. E. Lytle, and D. M. Huber, “Identification of bacterial pathogens by laser excited fluorescence,” Anal. Chem. 57, 1669-1673 (1985).
[CrossRef]

Cohen, P.

B. Chance, P. Cohen, F. Jobsis, and B. Schoener, “Intracellular oxidation-reduction states in vivo: the microfluorimetry of pyridine nucleotide gives continuous measurement of the oxidation state,” Science 137, 499-508 (1962).
[CrossRef]

Cousins, D.

S. D. Campbell, D. P. Tremblay, F. Daver, and D. Cousins, “Wavelength comparison study for bioaerosol detection,” Proc. SPIE 5778, 130-138 (2005).
[CrossRef]

Daver, F.

S. D. Campbell, D. P. Tremblay, F. Daver, and D. Cousins, “Wavelength comparison study for bioaerosol detection,” Proc. SPIE 5778, 130-138 (2005).
[CrossRef]

David, A. B.

A. C. Samuel, A. B. David, D. Wong, D. St.-Amant, L. Carey, V. Kalasinsky, and G. Meyer, “Infrared spectra of Bacillus subtilis spores: the effect of growth media,” internal report ADM001523 of the Edgewood Chemical and Biological Center, Aberdeen Proving Ground, Md. (2003).

Derrick, J. P.

A. Bermingham and J. P. Derrick, “The folic acid biosynthesis pathway in bacteria: evaluation of potential for antibacterial drug discovery,” BioEssays 24, 637-648 (2002).
[CrossRef]

Dery, B.

S. Buteau, J. R. Simard, P. Lahaie, G. Roy, P. Mathieu, B. Dery, J. Ho, and J. McFee, “Bioaerosol standoff monitoring using intensified range-gated laser-induced fluorescence spectroscopy,” in Advanced Environmental Monitoring, Y.J.Kim, and U.Platt, eds. (Springer, 2008), pp. 203-216.

Déry, B.

B. Déry, S. Buteau, J. R. Simard, J. P. Bouchard, and R. Vallée, “Spectroscopic calibration correlation of field and lab-sized fluorescence LIDAR systems,” IEEE Trans. Geosci. Remote Sensing 48, 3580-3586 (2009).
[CrossRef]

B. Déry, J. R. Simard, R. Vallée, G. Roy, H. Lavoie, and S. Buteau, “Compact chamber for the spectroscopic analysis of fluorescent aerosols,” Proc. SPIE 6554, 65540O (2007).
[CrossRef]

Elmqvist, M.

P. Jonsson, M. Elmqvist, O. Gustafsson, F. Kullander, R. Persson, G. Olofsson, T. Tjärnhage, Ø. Farsund, T. Haavardsholm, and G. Rustad, “Evaluation of biological aerosol stand-off detection at a field trial,” Proc. SPIE 7484, 74840I (2009).
[CrossRef]

Emge, D.

C. Swim, R. G. Vanderbeek, D. Emge, and A. Wong, “Overview of chem-bio sensing,” Proc. SPIE 6218, 621802 (2006).
[CrossRef]

Eversole, J.

J. Eversole, A. Sanchez, and D. Sickenberger, “Optical detection capabilities for biological and chemical agent aerosols,” presented at the Biodetection Technologies Workshop, Alexandria, Va., 1 May 2002.

Fan, B. J.

Y. S. Cheng, E. B. Barr, B. J. Fan, P. J. Hargis, D. J. Rader, T. J. O'Hern, J. R. Torczynski, G. C. Tisone, B. L. Preppernau, S. A. Young, and R. J. Radloff, “Detection of bioaerosols using multiwavelength UV fluorescence spectroscopy,” Aerosol Sci. Technol. 30, 186-201 (1999).
[CrossRef]

Farsund, Ø.

P. Jonsson, M. Elmqvist, O. Gustafsson, F. Kullander, R. Persson, G. Olofsson, T. Tjärnhage, Ø. Farsund, T. Haavardsholm, and G. Rustad, “Evaluation of biological aerosol stand-off detection at a field trial,” Proc. SPIE 7484, 74840I (2009).
[CrossRef]

Felton, N.

K. Baxter, M. Castle, S. Barrington, P. Withers, V. Foot, A. Pickering, and N. Felton, “UK small scale UVLIF lidar for standoff BW detection,” Proc. SPIE 6739, 67390Z (2007).
[CrossRef]

Foot, V.

K. Baxter, M. Castle, S. Barrington, P. Withers, V. Foot, A. Pickering, and N. Felton, “UK small scale UVLIF lidar for standoff BW detection,” Proc. SPIE 6739, 67390Z (2007).
[CrossRef]

Frey, S.

S. Frey, H. Wille, and F. Wilsenack, “Mobile demonstrator for biological aerosol standoff detection,” Proc. SPIE 7484, 748407 (2009).
[CrossRef]

Galilee, C.

Gaus, K.

K. Gaus, P. Rösch, R. Petry, K.-D. Peschke, O. Ronneberger, H. Burkhardt, K. Baumann, and J. Popp, “Classification of lactic acid bacteria with UV-resonance Raman spectroscopy,” Biopolymers 82, 286-290 (2006).
[CrossRef]

Gillespie, J. B.

Goodell, J.

L. M. Brosseau, D. Vesley, N. Rice, J. Goodell, M. Nellis, and P. Hairston, “Differences in detected fluorescence among several bacterial species measured with a direct-reading particle sizer and fluorescence detector,” Aerosol Sci. Technol. 32, 545-558 (2000).
[CrossRef]

Gustafsson, O.

P. Jonsson, M. Elmqvist, O. Gustafsson, F. Kullander, R. Persson, G. Olofsson, T. Tjärnhage, Ø. Farsund, T. Haavardsholm, and G. Rustad, “Evaluation of biological aerosol stand-off detection at a field trial,” Proc. SPIE 7484, 74840I (2009).
[CrossRef]

Haavardsholm, T.

P. Jonsson, M. Elmqvist, O. Gustafsson, F. Kullander, R. Persson, G. Olofsson, T. Tjärnhage, Ø. Farsund, T. Haavardsholm, and G. Rustad, “Evaluation of biological aerosol stand-off detection at a field trial,” Proc. SPIE 7484, 74840I (2009).
[CrossRef]

Hairston, P.

L. M. Brosseau, D. Vesley, N. Rice, J. Goodell, M. Nellis, and P. Hairston, “Differences in detected fluorescence among several bacterial species measured with a direct-reading particle sizer and fluorescence detector,” Aerosol Sci. Technol. 32, 545-558 (2000).
[CrossRef]

Hargis, P. J.

Y. S. Cheng, E. B. Barr, B. J. Fan, P. J. Hargis, D. J. Rader, T. J. O'Hern, J. R. Torczynski, G. C. Tisone, B. L. Preppernau, S. A. Young, and R. J. Radloff, “Detection of bioaerosols using multiwavelength UV fluorescence spectroscopy,” Aerosol Sci. Technol. 30, 186-201 (1999).
[CrossRef]

Harsanyi, J. C.

J. C. Harsanyi and C. I. Chang, “Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach,” IEEE Trans. Geosci. Remote Sensing 32, 779-785 (1994).
[CrossRef]

Heaton, H. I.

Ho, J.

J. R. Simard, G. Roy, P. Mathieu, V. Larochelle, J. McFee, and J. Ho, “Standoff sensing of bioaerosols using intensified range-gated spectral analysis of laser-induced fluorescence,” IEEE Trans. Geosci. Remote Sensing 42, 865-874 (2004).
[CrossRef]

J. Ho, “Future of biological aerosol detection,” Anal. Chim. Acta 457, 125-148 (2002).
[CrossRef]

T. Tjärnhage, M. Strömqvist, G. Olofsson, D. Squirrell, J. Burke, J. Ho, and M. Spence, “Multivariate data analysis of fluorescence signals from biological aerosols,” Field Anal. Chem. Technol. 5, 171-176 (2001).
[CrossRef]

J. Ho, “Real time detection of biological aerosols with aerodynamic particle sizer (FLAPS),” J. Aerosol Sci. 27, S581-S582 (1996).
[CrossRef]

E. Yee and J. Ho, “Neural network recognition and classification of aerosol particle distribution measured with two-spot laser velocimeter,” Appl. Opt. 29, 2929-2938 (1990).
[CrossRef]

S. Buteau, J. R. Simard, P. Lahaie, G. Roy, P. Mathieu, B. Dery, J. Ho, and J. McFee, “Bioaerosol standoff monitoring using intensified range-gated laser-induced fluorescence spectroscopy,” in Advanced Environmental Monitoring, Y.J.Kim, and U.Platt, eds. (Springer, 2008), pp. 203-216.

Hohmann, H.-P.

M. Mack, A. P. G. M. van Loon, and H.-P. Hohmann, “Regulation of riboflavin biosynthesis in Bacillus subtilis is affected by the activity of the flavokinase/flavin adenine dinucleotide synthetase encoded by ribC,” J. Bacteriol. 180, 950-955 (1998).

Holland, R. D.

R. D. Holland, J. G. Wilkes, F. Rafii, J. B. Sutherland, C. C. Persons, K. J. Voorhees, and J. O. Lay, “Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry,” Rapid Com. Mass. Spectrom. 10, 1227-1232 (1996).
[CrossRef]

Huber, D. M.

J. T. Coburn, F. E. Lytle, and D. M. Huber, “Identification of bacterial pathogens by laser excited fluorescence,” Anal. Chem. 57, 1669-1673 (1985).
[CrossRef]

Hybl, J. D.

Jackson, J. E.

J. E. Jackson, A User's Guide to Principal Components(Wiley, 1991).

Jenson, S. K.

S. K. Jenson and F. A. Walty, “Principal-component analysis and canonical analysis in remote analysis in remote sensing,” Photogramm. Eng. Remote Sens. 45, 783-784 (1979).

Jhala, E.

Jobsis, F.

B. Chance, P. Cohen, F. Jobsis, and B. Schoener, “Intracellular oxidation-reduction states in vivo: the microfluorimetry of pyridine nucleotide gives continuous measurement of the oxidation state,” Science 137, 499-508 (1962).
[CrossRef]

Jonsson, P.

P. Jonsson, M. Elmqvist, O. Gustafsson, F. Kullander, R. Persson, G. Olofsson, T. Tjärnhage, Ø. Farsund, T. Haavardsholm, and G. Rustad, “Evaluation of biological aerosol stand-off detection at a field trial,” Proc. SPIE 7484, 74840I (2009).
[CrossRef]

Kalasinsky, V.

A. C. Samuel, A. B. David, D. Wong, D. St.-Amant, L. Carey, V. Kalasinsky, and G. Meyer, “Infrared spectra of Bacillus subtilis spores: the effect of growth media,” internal report ADM001523 of the Edgewood Chemical and Biological Center, Aberdeen Proving Ground, Md. (2003).

Kearns, E. A.

D. V. Lim, J. M. Simpson, E. A. Kearns, and M. F. Kramer, “Current and developing technologies for monitoring agents of bioterrorism and biowarfare,” Clin. Microbiol. Rev. 18, 583-607 (2005).
[CrossRef]

Kemp, C. W.

S. A. Robrish, C. W. Kemp, D. C. Adderly, and W. H. Bowen, “The flavin mononucleotide content of oral bacteria related to the dry weight of the dental plaque obtained from monkeys,” Curr. Microbiol. 2, 131-134 (1979).
[CrossRef]

Kortepeter, M. G.

M. G. Kortepeter and G. W. Parker, “Potential biological weapons threats,” Emerg. Infect. Dis. 5, 523-527 (1999).
[CrossRef]

Kramer, M. F.

D. V. Lim, J. M. Simpson, E. A. Kearns, and M. F. Kramer, “Current and developing technologies for monitoring agents of bioterrorism and biowarfare,” Clin. Microbiol. Rev. 18, 583-607 (2005).
[CrossRef]

Kullander, F.

P. Jonsson, M. Elmqvist, O. Gustafsson, F. Kullander, R. Persson, G. Olofsson, T. Tjärnhage, Ø. Farsund, T. Haavardsholm, and G. Rustad, “Evaluation of biological aerosol stand-off detection at a field trial,” Proc. SPIE 7484, 74840I (2009).
[CrossRef]

Kunnil, J.

Lahaie, P.

S. Buteau, J. R. Simard, P. Lahaie, G. Roy, P. Mathieu, B. Dery, J. Ho, and J. McFee, “Bioaerosol standoff monitoring using intensified range-gated laser-induced fluorescence spectroscopy,” in Advanced Environmental Monitoring, Y.J.Kim, and U.Platt, eds. (Springer, 2008), pp. 203-216.

Larochelle, V.

J. R. Simard, G. Roy, P. Mathieu, V. Larochelle, J. McFee, and J. Ho, “Standoff sensing of bioaerosols using intensified range-gated spectral analysis of laser-induced fluorescence,” IEEE Trans. Geosci. Remote Sensing 42, 865-874 (2004).
[CrossRef]

Lavoie, H.

B. Déry, J. R. Simard, R. Vallée, G. Roy, H. Lavoie, and S. Buteau, “Compact chamber for the spectroscopic analysis of fluorescent aerosols,” Proc. SPIE 6554, 65540O (2007).
[CrossRef]

Lay, J. O.

R. D. Holland, J. G. Wilkes, F. Rafii, J. B. Sutherland, C. C. Persons, K. J. Voorhees, and J. O. Lay, “Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry,” Rapid Com. Mass. Spectrom. 10, 1227-1232 (1996).
[CrossRef]

Lim, D. V.

D. V. Lim, J. M. Simpson, E. A. Kearns, and M. F. Kramer, “Current and developing technologies for monitoring agents of bioterrorism and biowarfare,” Clin. Microbiol. Rev. 18, 583-607 (2005).
[CrossRef]

Lithgow, G. A.

Lytle, F. E.

J. T. Coburn, F. E. Lytle, and D. M. Huber, “Identification of bacterial pathogens by laser excited fluorescence,” Anal. Chem. 57, 1669-1673 (1985).
[CrossRef]

Mack, M.

M. Mack, A. P. G. M. van Loon, and H.-P. Hohmann, “Regulation of riboflavin biosynthesis in Bacillus subtilis is affected by the activity of the flavokinase/flavin adenine dinucleotide synthetase encoded by ribC,” J. Bacteriol. 180, 950-955 (1998).

Mathieu, P.

J. R. Simard, G. Roy, P. Mathieu, V. Larochelle, J. McFee, and J. Ho, “Standoff sensing of bioaerosols using intensified range-gated spectral analysis of laser-induced fluorescence,” IEEE Trans. Geosci. Remote Sensing 42, 865-874 (2004).
[CrossRef]

S. Buteau, J. R. Simard, P. Lahaie, G. Roy, P. Mathieu, B. Dery, J. Ho, and J. McFee, “Bioaerosol standoff monitoring using intensified range-gated laser-induced fluorescence spectroscopy,” in Advanced Environmental Monitoring, Y.J.Kim, and U.Platt, eds. (Springer, 2008), pp. 203-216.

Mayevsky, A.

A. Mayevsky and G. G. Rogatsky, “Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies,” Am. J. Physiol. Cell. Physiol. 292, C615-C640 (2007).
[CrossRef]

McFee, J.

J. R. Simard, G. Roy, P. Mathieu, V. Larochelle, J. McFee, and J. Ho, “Standoff sensing of bioaerosols using intensified range-gated spectral analysis of laser-induced fluorescence,” IEEE Trans. Geosci. Remote Sensing 42, 865-874 (2004).
[CrossRef]

S. Buteau, J. R. Simard, P. Lahaie, G. Roy, P. Mathieu, B. Dery, J. Ho, and J. McFee, “Bioaerosol standoff monitoring using intensified range-gated laser-induced fluorescence spectroscopy,” in Advanced Environmental Monitoring, Y.J.Kim, and U.Platt, eds. (Springer, 2008), pp. 203-216.

Meyer, G.

A. C. Samuel, A. B. David, D. Wong, D. St.-Amant, L. Carey, V. Kalasinsky, and G. Meyer, “Infrared spectra of Bacillus subtilis spores: the effect of growth media,” internal report ADM001523 of the Edgewood Chemical and Biological Center, Aberdeen Proving Ground, Md. (2003).

Monici, M.

M. Monici, “Cell and tissue autofluorescence research and diagnostic applications,” Biotechnol. Ann. Rev. 11, 227-256(2005).
[CrossRef]

Nellis, M.

L. M. Brosseau, D. Vesley, N. Rice, J. Goodell, M. Nellis, and P. Hairston, “Differences in detected fluorescence among several bacterial species measured with a direct-reading particle sizer and fluorescence detector,” Aerosol Sci. Technol. 32, 545-558 (2000).
[CrossRef]

O'Hern, T. J.

Y. S. Cheng, E. B. Barr, B. J. Fan, P. J. Hargis, D. J. Rader, T. J. O'Hern, J. R. Torczynski, G. C. Tisone, B. L. Preppernau, S. A. Young, and R. J. Radloff, “Detection of bioaerosols using multiwavelength UV fluorescence spectroscopy,” Aerosol Sci. Technol. 30, 186-201 (1999).
[CrossRef]

Olofsson, G.

P. Jonsson, M. Elmqvist, O. Gustafsson, F. Kullander, R. Persson, G. Olofsson, T. Tjärnhage, Ø. Farsund, T. Haavardsholm, and G. Rustad, “Evaluation of biological aerosol stand-off detection at a field trial,” Proc. SPIE 7484, 74840I (2009).
[CrossRef]

T. Tjärnhage, M. Strömqvist, G. Olofsson, D. Squirrell, J. Burke, J. Ho, and M. Spence, “Multivariate data analysis of fluorescence signals from biological aerosols,” Field Anal. Chem. Technol. 5, 171-176 (2001).
[CrossRef]

Ossoff, R. H.

L. Reinisch, J. Tribble, J. A. Werkhaven, and R. H. Ossoff, “Non-invasive optical diagnosis of bacteria causing otitis media,” Laryngoscope 104, 264-268 (1994).
[CrossRef]

Parker, G. W.

M. G. Kortepeter and G. W. Parker, “Potential biological weapons threats,” Emerg. Infect. Dis. 5, 523-527 (1999).
[CrossRef]

Persons, C. C.

R. D. Holland, J. G. Wilkes, F. Rafii, J. B. Sutherland, C. C. Persons, K. J. Voorhees, and J. O. Lay, “Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry,” Rapid Com. Mass. Spectrom. 10, 1227-1232 (1996).
[CrossRef]

Persson, R.

P. Jonsson, M. Elmqvist, O. Gustafsson, F. Kullander, R. Persson, G. Olofsson, T. Tjärnhage, Ø. Farsund, T. Haavardsholm, and G. Rustad, “Evaluation of biological aerosol stand-off detection at a field trial,” Proc. SPIE 7484, 74840I (2009).
[CrossRef]

Peschke, K.-D.

K. Gaus, P. Rösch, R. Petry, K.-D. Peschke, O. Ronneberger, H. Burkhardt, K. Baumann, and J. Popp, “Classification of lactic acid bacteria with UV-resonance Raman spectroscopy,” Biopolymers 82, 286-290 (2006).
[CrossRef]

Petry, R.

K. Gaus, P. Rösch, R. Petry, K.-D. Peschke, O. Ronneberger, H. Burkhardt, K. Baumann, and J. Popp, “Classification of lactic acid bacteria with UV-resonance Raman spectroscopy,” Biopolymers 82, 286-290 (2006).
[CrossRef]

Pickering, A.

K. Baxter, M. Castle, S. Barrington, P. Withers, V. Foot, A. Pickering, and N. Felton, “UK small scale UVLIF lidar for standoff BW detection,” Proc. SPIE 6739, 67390Z (2007).
[CrossRef]

Popp, J.

K. Gaus, P. Rösch, R. Petry, K.-D. Peschke, O. Ronneberger, H. Burkhardt, K. Baumann, and J. Popp, “Classification of lactic acid bacteria with UV-resonance Raman spectroscopy,” Biopolymers 82, 286-290 (2006).
[CrossRef]

Preppernau, B. L.

Y. S. Cheng, E. B. Barr, B. J. Fan, P. J. Hargis, D. J. Rader, T. J. O'Hern, J. R. Torczynski, G. C. Tisone, B. L. Preppernau, S. A. Young, and R. J. Radloff, “Detection of bioaerosols using multiwavelength UV fluorescence spectroscopy,” Aerosol Sci. Technol. 30, 186-201 (1999).
[CrossRef]

Quarles, J. M.

D. C. Shelly, J. M. Quarles, and I. M. Warner, “Identification of fluorescent Pseudomonas species,” Clin. Chem. 26, 1127-1132(1980).

Rader, D. J.

Y. S. Cheng, E. B. Barr, B. J. Fan, P. J. Hargis, D. J. Rader, T. J. O'Hern, J. R. Torczynski, G. C. Tisone, B. L. Preppernau, S. A. Young, and R. J. Radloff, “Detection of bioaerosols using multiwavelength UV fluorescence spectroscopy,” Aerosol Sci. Technol. 30, 186-201 (1999).
[CrossRef]

Radloff, R. J.

Y. S. Cheng, E. B. Barr, B. J. Fan, P. J. Hargis, D. J. Rader, T. J. O'Hern, J. R. Torczynski, G. C. Tisone, B. L. Preppernau, S. A. Young, and R. J. Radloff, “Detection of bioaerosols using multiwavelength UV fluorescence spectroscopy,” Aerosol Sci. Technol. 30, 186-201 (1999).
[CrossRef]

Rafii, F.

R. D. Holland, J. G. Wilkes, F. Rafii, J. B. Sutherland, C. C. Persons, K. J. Voorhees, and J. O. Lay, “Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry,” Rapid Com. Mass. Spectrom. 10, 1227-1232 (1996).
[CrossRef]

Reinisch, L.

Rice, N.

L. M. Brosseau, D. Vesley, N. Rice, J. Goodell, M. Nellis, and P. Hairston, “Differences in detected fluorescence among several bacterial species measured with a direct-reading particle sizer and fluorescence detector,” Aerosol Sci. Technol. 32, 545-558 (2000).
[CrossRef]

Robinson, M. K.

S. A. Burke, J. D. Wright, M. K. Robinson, B. V. Bronk, and R. L. Warren, “Detection of molecular diversity in Bacillus atrophaeus by amplified fragment length polymorphism analysis,” Appl. Environ. Microbiol. 70, 2786-2790 (2004).
[CrossRef]

Robrish, S. A.

S. A. Robrish, C. W. Kemp, D. C. Adderly, and W. H. Bowen, “The flavin mononucleotide content of oral bacteria related to the dry weight of the dental plaque obtained from monkeys,” Curr. Microbiol. 2, 131-134 (1979).
[CrossRef]

Rogatsky, G. G.

A. Mayevsky and G. G. Rogatsky, “Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies,” Am. J. Physiol. Cell. Physiol. 292, C615-C640 (2007).
[CrossRef]

Ronneberger, O.

K. Gaus, P. Rösch, R. Petry, K.-D. Peschke, O. Ronneberger, H. Burkhardt, K. Baumann, and J. Popp, “Classification of lactic acid bacteria with UV-resonance Raman spectroscopy,” Biopolymers 82, 286-290 (2006).
[CrossRef]

Rösch, P.

K. Gaus, P. Rösch, R. Petry, K.-D. Peschke, O. Ronneberger, H. Burkhardt, K. Baumann, and J. Popp, “Classification of lactic acid bacteria with UV-resonance Raman spectroscopy,” Biopolymers 82, 286-290 (2006).
[CrossRef]

Rosen, D. L.

Roy, G.

B. Déry, J. R. Simard, R. Vallée, G. Roy, H. Lavoie, and S. Buteau, “Compact chamber for the spectroscopic analysis of fluorescent aerosols,” Proc. SPIE 6554, 65540O (2007).
[CrossRef]

J. R. Simard, G. Roy, P. Mathieu, V. Larochelle, J. McFee, and J. Ho, “Standoff sensing of bioaerosols using intensified range-gated spectral analysis of laser-induced fluorescence,” IEEE Trans. Geosci. Remote Sensing 42, 865-874 (2004).
[CrossRef]

S. Buteau, J. R. Simard, P. Lahaie, G. Roy, P. Mathieu, B. Dery, J. Ho, and J. McFee, “Bioaerosol standoff monitoring using intensified range-gated laser-induced fluorescence spectroscopy,” in Advanced Environmental Monitoring, Y.J.Kim, and U.Platt, eds. (Springer, 2008), pp. 203-216.

Rustad, G.

P. Jonsson, M. Elmqvist, O. Gustafsson, F. Kullander, R. Persson, G. Olofsson, T. Tjärnhage, Ø. Farsund, T. Haavardsholm, and G. Rustad, “Evaluation of biological aerosol stand-off detection at a field trial,” Proc. SPIE 7484, 74840I (2009).
[CrossRef]

Ruzzo, W. L.

K. Y. Yeung and W. L. Ruzzo, “Principal-component analysis for clustering gene expression data,” Bioinformatics 17, 763-774 (2001).
[CrossRef]

Samuel, A. C.

A. C. Samuel, A. B. David, D. Wong, D. St.-Amant, L. Carey, V. Kalasinsky, and G. Meyer, “Infrared spectra of Bacillus subtilis spores: the effect of growth media,” internal report ADM001523 of the Edgewood Chemical and Biological Center, Aberdeen Proving Ground, Md. (2003).

Sanchez, A.

J. Eversole, A. Sanchez, and D. Sickenberger, “Optical detection capabilities for biological and chemical agent aerosols,” presented at the Biodetection Technologies Workshop, Alexandria, Va., 1 May 2002.

Sarasanandarajah, S.

Schoener, B.

B. Chance, P. Cohen, F. Jobsis, and B. Schoener, “Intracellular oxidation-reduction states in vivo: the microfluorimetry of pyridine nucleotide gives continuous measurement of the oxidation state,” Science 137, 499-508 (1962).
[CrossRef]

Shelly, D. C.

D. C. Shelly, J. M. Quarles, and I. M. Warner, “Identification of fluorescent Pseudomonas species,” Clin. Chem. 26, 1127-1132(1980).

Sickenberger, D.

J. Eversole, A. Sanchez, and D. Sickenberger, “Optical detection capabilities for biological and chemical agent aerosols,” presented at the Biodetection Technologies Workshop, Alexandria, Va., 1 May 2002.

Simard, J. R.

B. Déry, S. Buteau, J. R. Simard, J. P. Bouchard, and R. Vallée, “Spectroscopic calibration correlation of field and lab-sized fluorescence LIDAR systems,” IEEE Trans. Geosci. Remote Sensing 48, 3580-3586 (2009).
[CrossRef]

B. Déry, J. R. Simard, R. Vallée, G. Roy, H. Lavoie, and S. Buteau, “Compact chamber for the spectroscopic analysis of fluorescent aerosols,” Proc. SPIE 6554, 65540O (2007).
[CrossRef]

J. R. Simard, G. Roy, P. Mathieu, V. Larochelle, J. McFee, and J. Ho, “Standoff sensing of bioaerosols using intensified range-gated spectral analysis of laser-induced fluorescence,” IEEE Trans. Geosci. Remote Sensing 42, 865-874 (2004).
[CrossRef]

S. Buteau, J. R. Simard, P. Lahaie, G. Roy, P. Mathieu, B. Dery, J. Ho, and J. McFee, “Bioaerosol standoff monitoring using intensified range-gated laser-induced fluorescence spectroscopy,” in Advanced Environmental Monitoring, Y.J.Kim, and U.Platt, eds. (Springer, 2008), pp. 203-216.

Simpson, J. M.

D. V. Lim, J. M. Simpson, E. A. Kearns, and M. F. Kramer, “Current and developing technologies for monitoring agents of bioterrorism and biowarfare,” Clin. Microbiol. Rev. 18, 583-607 (2005).
[CrossRef]

Smith, C. B.

C. B. Smith, J. E. Anderson, and S. R. Webb, “Detection of Bacillus endospores using total luminescence spectroscopy,” Spectrochim. Acta Part A 60, 2517-2521 (2004).
[CrossRef]

Spence, M.

T. Tjärnhage, M. Strömqvist, G. Olofsson, D. Squirrell, J. Burke, J. Ho, and M. Spence, “Multivariate data analysis of fluorescence signals from biological aerosols,” Field Anal. Chem. Technol. 5, 171-176 (2001).
[CrossRef]

Squirrell, D.

T. Tjärnhage, M. Strömqvist, G. Olofsson, D. Squirrell, J. Burke, J. Ho, and M. Spence, “Multivariate data analysis of fluorescence signals from biological aerosols,” Field Anal. Chem. Technol. 5, 171-176 (2001).
[CrossRef]

Srivastava, M. S.

M. S. Srivastava, Methods of Multivariate Statistics(Wiley, 2002).

St.-Amant, D.

A. C. Samuel, A. B. David, D. Wong, D. St.-Amant, L. Carey, V. Kalasinsky, and G. Meyer, “Infrared spectra of Bacillus subtilis spores: the effect of growth media,” internal report ADM001523 of the Edgewood Chemical and Biological Center, Aberdeen Proving Ground, Md. (2003).

Strömqvist, M.

T. Tjärnhage, M. Strömqvist, G. Olofsson, D. Squirrell, J. Burke, J. Ho, and M. Spence, “Multivariate data analysis of fluorescence signals from biological aerosols,” Field Anal. Chem. Technol. 5, 171-176 (2001).
[CrossRef]

Sutherland, J. B.

R. D. Holland, J. G. Wilkes, F. Rafii, J. B. Sutherland, C. C. Persons, K. J. Voorhees, and J. O. Lay, “Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry,” Rapid Com. Mass. Spectrom. 10, 1227-1232 (1996).
[CrossRef]

Swim, C.

C. Swim, R. G. Vanderbeek, D. Emge, and A. Wong, “Overview of chem-bio sensing,” Proc. SPIE 6218, 621802 (2006).
[CrossRef]

Tisone, G. C.

Y. S. Cheng, E. B. Barr, B. J. Fan, P. J. Hargis, D. J. Rader, T. J. O'Hern, J. R. Torczynski, G. C. Tisone, B. L. Preppernau, S. A. Young, and R. J. Radloff, “Detection of bioaerosols using multiwavelength UV fluorescence spectroscopy,” Aerosol Sci. Technol. 30, 186-201 (1999).
[CrossRef]

Tjärnhage, T.

P. Jonsson, M. Elmqvist, O. Gustafsson, F. Kullander, R. Persson, G. Olofsson, T. Tjärnhage, Ø. Farsund, T. Haavardsholm, and G. Rustad, “Evaluation of biological aerosol stand-off detection at a field trial,” Proc. SPIE 7484, 74840I (2009).
[CrossRef]

T. Tjärnhage, M. Strömqvist, G. Olofsson, D. Squirrell, J. Burke, J. Ho, and M. Spence, “Multivariate data analysis of fluorescence signals from biological aerosols,” Field Anal. Chem. Technol. 5, 171-176 (2001).
[CrossRef]

Torczynski, J. R.

Y. S. Cheng, E. B. Barr, B. J. Fan, P. J. Hargis, D. J. Rader, T. J. O'Hern, J. R. Torczynski, G. C. Tisone, B. L. Preppernau, S. A. Young, and R. J. Radloff, “Detection of bioaerosols using multiwavelength UV fluorescence spectroscopy,” Aerosol Sci. Technol. 30, 186-201 (1999).
[CrossRef]

Tremblay, D. P.

S. D. Campbell, D. P. Tremblay, F. Daver, and D. Cousins, “Wavelength comparison study for bioaerosol detection,” Proc. SPIE 5778, 130-138 (2005).
[CrossRef]

Tribble, J.

L. Reinisch, J. Tribble, J. A. Werkhaven, and R. H. Ossoff, “Non-invasive optical diagnosis of bacteria causing otitis media,” Laryngoscope 104, 264-268 (1994).
[CrossRef]

Tyndall, R. L.

S. Chaskes and R. L. Tyndall, “Pigmentation and autofluorescence of Cryptococcus species after growth on tryptophan and anthranilic acid media,” Mycopathologia 64, 105-112(1978).
[CrossRef]

Vallée, R.

B. Déry, S. Buteau, J. R. Simard, J. P. Bouchard, and R. Vallée, “Spectroscopic calibration correlation of field and lab-sized fluorescence LIDAR systems,” IEEE Trans. Geosci. Remote Sensing 48, 3580-3586 (2009).
[CrossRef]

B. Déry, J. R. Simard, R. Vallée, G. Roy, H. Lavoie, and S. Buteau, “Compact chamber for the spectroscopic analysis of fluorescent aerosols,” Proc. SPIE 6554, 65540O (2007).
[CrossRef]

van Loon, A. P. G. M.

M. Mack, A. P. G. M. van Loon, and H.-P. Hohmann, “Regulation of riboflavin biosynthesis in Bacillus subtilis is affected by the activity of the flavokinase/flavin adenine dinucleotide synthetase encoded by ribC,” J. Bacteriol. 180, 950-955 (1998).

Vanderbeek, R. G.

C. Swim, R. G. Vanderbeek, D. Emge, and A. Wong, “Overview of chem-bio sensing,” Proc. SPIE 6218, 621802 (2006).
[CrossRef]

Vesley, D.

L. M. Brosseau, D. Vesley, N. Rice, J. Goodell, M. Nellis, and P. Hairston, “Differences in detected fluorescence among several bacterial species measured with a direct-reading particle sizer and fluorescence detector,” Aerosol Sci. Technol. 32, 545-558 (2000).
[CrossRef]

Voorhees, K. J.

R. D. Holland, J. G. Wilkes, F. Rafii, J. B. Sutherland, C. C. Persons, K. J. Voorhees, and J. O. Lay, “Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry,” Rapid Com. Mass. Spectrom. 10, 1227-1232 (1996).
[CrossRef]

Walty, F. A.

S. K. Jenson and F. A. Walty, “Principal-component analysis and canonical analysis in remote analysis in remote sensing,” Photogramm. Eng. Remote Sens. 45, 783-784 (1979).

Warner, I. M.

D. C. Shelly, J. M. Quarles, and I. M. Warner, “Identification of fluorescent Pseudomonas species,” Clin. Chem. 26, 1127-1132(1980).

Warren, R. L.

S. A. Burke, J. D. Wright, M. K. Robinson, B. V. Bronk, and R. L. Warren, “Detection of molecular diversity in Bacillus atrophaeus by amplified fragment length polymorphism analysis,” Appl. Environ. Microbiol. 70, 2786-2790 (2004).
[CrossRef]

Webb, S. R.

C. B. Smith, J. E. Anderson, and S. R. Webb, “Detection of Bacillus endospores using total luminescence spectroscopy,” Spectrochim. Acta Part A 60, 2517-2521 (2004).
[CrossRef]

Werkhaven, J. A.

L. Reinisch, J. Tribble, J. A. Werkhaven, and R. H. Ossoff, “Non-invasive optical diagnosis of bacteria causing otitis media,” Laryngoscope 104, 264-268 (1994).
[CrossRef]

Wilkes, J. G.

R. D. Holland, J. G. Wilkes, F. Rafii, J. B. Sutherland, C. C. Persons, K. J. Voorhees, and J. O. Lay, “Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry,” Rapid Com. Mass. Spectrom. 10, 1227-1232 (1996).
[CrossRef]

Wille, H.

S. Frey, H. Wille, and F. Wilsenack, “Mobile demonstrator for biological aerosol standoff detection,” Proc. SPIE 7484, 748407 (2009).
[CrossRef]

Wilsenack, F.

S. Frey, H. Wille, and F. Wilsenack, “Mobile demonstrator for biological aerosol standoff detection,” Proc. SPIE 7484, 748407 (2009).
[CrossRef]

Withers, P.

K. Baxter, M. Castle, S. Barrington, P. Withers, V. Foot, A. Pickering, and N. Felton, “UK small scale UVLIF lidar for standoff BW detection,” Proc. SPIE 6739, 67390Z (2007).
[CrossRef]

Wong, A.

C. Swim, R. G. Vanderbeek, D. Emge, and A. Wong, “Overview of chem-bio sensing,” Proc. SPIE 6218, 621802 (2006).
[CrossRef]

Wong, D.

A. C. Samuel, A. B. David, D. Wong, D. St.-Amant, L. Carey, V. Kalasinsky, and G. Meyer, “Infrared spectra of Bacillus subtilis spores: the effect of growth media,” internal report ADM001523 of the Edgewood Chemical and Biological Center, Aberdeen Proving Ground, Md. (2003).

Wright, J. D.

S. A. Burke, J. D. Wright, M. K. Robinson, B. V. Bronk, and R. L. Warren, “Detection of molecular diversity in Bacillus atrophaeus by amplified fragment length polymorphism analysis,” Appl. Environ. Microbiol. 70, 2786-2790 (2004).
[CrossRef]

Yee, E.

Yeung, K. Y.

K. Y. Yeung and W. L. Ruzzo, “Principal-component analysis for clustering gene expression data,” Bioinformatics 17, 763-774 (2001).
[CrossRef]

Young, S. A.

Y. S. Cheng, E. B. Barr, B. J. Fan, P. J. Hargis, D. J. Rader, T. J. O'Hern, J. R. Torczynski, G. C. Tisone, B. L. Preppernau, S. A. Young, and R. J. Radloff, “Detection of bioaerosols using multiwavelength UV fluorescence spectroscopy,” Aerosol Sci. Technol. 30, 186-201 (1999).
[CrossRef]

Aerosol Sci. Technol. (2)

L. M. Brosseau, D. Vesley, N. Rice, J. Goodell, M. Nellis, and P. Hairston, “Differences in detected fluorescence among several bacterial species measured with a direct-reading particle sizer and fluorescence detector,” Aerosol Sci. Technol. 32, 545-558 (2000).
[CrossRef]

Y. S. Cheng, E. B. Barr, B. J. Fan, P. J. Hargis, D. J. Rader, T. J. O'Hern, J. R. Torczynski, G. C. Tisone, B. L. Preppernau, S. A. Young, and R. J. Radloff, “Detection of bioaerosols using multiwavelength UV fluorescence spectroscopy,” Aerosol Sci. Technol. 30, 186-201 (1999).
[CrossRef]

Am. J. Physiol. Cell. Physiol. (1)

A. Mayevsky and G. G. Rogatsky, “Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies,” Am. J. Physiol. Cell. Physiol. 292, C615-C640 (2007).
[CrossRef]

Anal. Chem. (1)

J. T. Coburn, F. E. Lytle, and D. M. Huber, “Identification of bacterial pathogens by laser excited fluorescence,” Anal. Chem. 57, 1669-1673 (1985).
[CrossRef]

Anal. Chim. Acta (1)

J. Ho, “Future of biological aerosol detection,” Anal. Chim. Acta 457, 125-148 (2002).
[CrossRef]

Appl. Environ. Microbiol. (1)

S. A. Burke, J. D. Wright, M. K. Robinson, B. V. Bronk, and R. L. Warren, “Detection of molecular diversity in Bacillus atrophaeus by amplified fragment length polymorphism analysis,” Appl. Environ. Microbiol. 70, 2786-2790 (2004).
[CrossRef]

Appl. Opt. (5)

Appl. Spectrosc. (2)

BioEssays (1)

A. Bermingham and J. P. Derrick, “The folic acid biosynthesis pathway in bacteria: evaluation of potential for antibacterial drug discovery,” BioEssays 24, 637-648 (2002).
[CrossRef]

Bioinformatics (1)

K. Y. Yeung and W. L. Ruzzo, “Principal-component analysis for clustering gene expression data,” Bioinformatics 17, 763-774 (2001).
[CrossRef]

Biopolymers (1)

K. Gaus, P. Rösch, R. Petry, K.-D. Peschke, O. Ronneberger, H. Burkhardt, K. Baumann, and J. Popp, “Classification of lactic acid bacteria with UV-resonance Raman spectroscopy,” Biopolymers 82, 286-290 (2006).
[CrossRef]

Biotechnol. Ann. Rev. (1)

M. Monici, “Cell and tissue autofluorescence research and diagnostic applications,” Biotechnol. Ann. Rev. 11, 227-256(2005).
[CrossRef]

Clin. Chem. (1)

D. C. Shelly, J. M. Quarles, and I. M. Warner, “Identification of fluorescent Pseudomonas species,” Clin. Chem. 26, 1127-1132(1980).

Clin. Microbiol. Rev. (1)

D. V. Lim, J. M. Simpson, E. A. Kearns, and M. F. Kramer, “Current and developing technologies for monitoring agents of bioterrorism and biowarfare,” Clin. Microbiol. Rev. 18, 583-607 (2005).
[CrossRef]

Curr. Microbiol. (1)

S. A. Robrish, C. W. Kemp, D. C. Adderly, and W. H. Bowen, “The flavin mononucleotide content of oral bacteria related to the dry weight of the dental plaque obtained from monkeys,” Curr. Microbiol. 2, 131-134 (1979).
[CrossRef]

Emerg. Infect. Dis. (1)

M. G. Kortepeter and G. W. Parker, “Potential biological weapons threats,” Emerg. Infect. Dis. 5, 523-527 (1999).
[CrossRef]

Field Anal. Chem. Technol. (1)

T. Tjärnhage, M. Strömqvist, G. Olofsson, D. Squirrell, J. Burke, J. Ho, and M. Spence, “Multivariate data analysis of fluorescence signals from biological aerosols,” Field Anal. Chem. Technol. 5, 171-176 (2001).
[CrossRef]

IEEE Trans. Geosci. Remote Sensing (3)

J. C. Harsanyi and C. I. Chang, “Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach,” IEEE Trans. Geosci. Remote Sensing 32, 779-785 (1994).
[CrossRef]

J. R. Simard, G. Roy, P. Mathieu, V. Larochelle, J. McFee, and J. Ho, “Standoff sensing of bioaerosols using intensified range-gated spectral analysis of laser-induced fluorescence,” IEEE Trans. Geosci. Remote Sensing 42, 865-874 (2004).
[CrossRef]

B. Déry, S. Buteau, J. R. Simard, J. P. Bouchard, and R. Vallée, “Spectroscopic calibration correlation of field and lab-sized fluorescence LIDAR systems,” IEEE Trans. Geosci. Remote Sensing 48, 3580-3586 (2009).
[CrossRef]

J. Aerosol Med. (1)

H. K. Chan, “Dry powder aerosol delivery systems: current and future research directions,” J. Aerosol Med. 19, 21-27(2006).
[CrossRef]

J. Aerosol Sci. (1)

J. Ho, “Real time detection of biological aerosols with aerodynamic particle sizer (FLAPS),” J. Aerosol Sci. 27, S581-S582 (1996).
[CrossRef]

J. Bacteriol. (1)

M. Mack, A. P. G. M. van Loon, and H.-P. Hohmann, “Regulation of riboflavin biosynthesis in Bacillus subtilis is affected by the activity of the flavokinase/flavin adenine dinucleotide synthetase encoded by ribC,” J. Bacteriol. 180, 950-955 (1998).

Laryngoscope (1)

L. Reinisch, J. Tribble, J. A. Werkhaven, and R. H. Ossoff, “Non-invasive optical diagnosis of bacteria causing otitis media,” Laryngoscope 104, 264-268 (1994).
[CrossRef]

Mycopathologia (1)

S. Chaskes and R. L. Tyndall, “Pigmentation and autofluorescence of Cryptococcus species after growth on tryptophan and anthranilic acid media,” Mycopathologia 64, 105-112(1978).
[CrossRef]

Photogramm. Eng. Remote Sens. (1)

S. K. Jenson and F. A. Walty, “Principal-component analysis and canonical analysis in remote analysis in remote sensing,” Photogramm. Eng. Remote Sens. 45, 783-784 (1979).

Proc. SPIE (6)

B. Déry, J. R. Simard, R. Vallée, G. Roy, H. Lavoie, and S. Buteau, “Compact chamber for the spectroscopic analysis of fluorescent aerosols,” Proc. SPIE 6554, 65540O (2007).
[CrossRef]

S. D. Campbell, D. P. Tremblay, F. Daver, and D. Cousins, “Wavelength comparison study for bioaerosol detection,” Proc. SPIE 5778, 130-138 (2005).
[CrossRef]

K. Baxter, M. Castle, S. Barrington, P. Withers, V. Foot, A. Pickering, and N. Felton, “UK small scale UVLIF lidar for standoff BW detection,” Proc. SPIE 6739, 67390Z (2007).
[CrossRef]

P. Jonsson, M. Elmqvist, O. Gustafsson, F. Kullander, R. Persson, G. Olofsson, T. Tjärnhage, Ø. Farsund, T. Haavardsholm, and G. Rustad, “Evaluation of biological aerosol stand-off detection at a field trial,” Proc. SPIE 7484, 74840I (2009).
[CrossRef]

S. Frey, H. Wille, and F. Wilsenack, “Mobile demonstrator for biological aerosol standoff detection,” Proc. SPIE 7484, 748407 (2009).
[CrossRef]

C. Swim, R. G. Vanderbeek, D. Emge, and A. Wong, “Overview of chem-bio sensing,” Proc. SPIE 6218, 621802 (2006).
[CrossRef]

Rapid Com. Mass. Spectrom. (1)

R. D. Holland, J. G. Wilkes, F. Rafii, J. B. Sutherland, C. C. Persons, K. J. Voorhees, and J. O. Lay, “Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry,” Rapid Com. Mass. Spectrom. 10, 1227-1232 (1996).
[CrossRef]

Science (1)

B. Chance, P. Cohen, F. Jobsis, and B. Schoener, “Intracellular oxidation-reduction states in vivo: the microfluorimetry of pyridine nucleotide gives continuous measurement of the oxidation state,” Science 137, 499-508 (1962).
[CrossRef]

Spectrochim. Acta Part A (1)

C. B. Smith, J. E. Anderson, and S. R. Webb, “Detection of Bacillus endospores using total luminescence spectroscopy,” Spectrochim. Acta Part A 60, 2517-2521 (2004).
[CrossRef]

Other (8)

C.Weikamp, ed., Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, Springer Series in Optical Sciences (Springer, 2005).

Committee on Test and Evaluation of Biological Standoff Systems, Test and Evaluation of Biological Standoff Detection System (National Academies, 2008).

S. Buteau, J. R. Simard, P. Lahaie, G. Roy, P. Mathieu, B. Dery, J. Ho, and J. McFee, “Bioaerosol standoff monitoring using intensified range-gated laser-induced fluorescence spectroscopy,” in Advanced Environmental Monitoring, Y.J.Kim, and U.Platt, eds. (Springer, 2008), pp. 203-216.

J. Eversole, A. Sanchez, and D. Sickenberger, “Optical detection capabilities for biological and chemical agent aerosols,” presented at the Biodetection Technologies Workshop, Alexandria, Va., 1 May 2002.

Committee on Testing and Evaluation of Standoff Chemical Agent Detectors, Testing and Evaluation of Standoff Chemical Agent Detectors (National Academies, 2003).

A. C. Samuel, A. B. David, D. Wong, D. St.-Amant, L. Carey, V. Kalasinsky, and G. Meyer, “Infrared spectra of Bacillus subtilis spores: the effect of growth media,” internal report ADM001523 of the Edgewood Chemical and Biological Center, Aberdeen Proving Ground, Md. (2003).

M. S. Srivastava, Methods of Multivariate Statistics(Wiley, 2002).

J. E. Jackson, A User's Guide to Principal Components(Wiley, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic representation of the system (lidar and lab-sized aerosol chamber).

Fig. 2
Fig. 2

Time evolution of the integrated fluorescence measured during a typical run of acquisitions (one acquisition = 20   sec ).

Fig. 3
Fig. 3

Representative result of a spectral signature extraction from 44 acquisitions. The fluorescence signal originating from the material, background subtracted and normalized (area under the curve = 1 ) (in red), averaged (in green), and smoothed (in black).

Fig. 4
Fig. 4

Robustness and specificity assessment obtained using the lab-sized lidar aerosol chamber for different samples of BHI ( n = 10 ), TSB ( n = 6 ), and NB ( n = 4 ).

Fig. 5
Fig. 5

Effects of growth media (TSB, NB, and BHI) and washing on spectral signatures of BG, BT, and EH. The bacteria in the growth medium are represented in blue, the growth mediums alone are in red, and the triple-washed bacteria/growth medium mixtures are in green.

Fig. 6
Fig. 6

Effect of growth media (TSB, NB, and BHI) and washing on spectral signatures of BG, BT, and EH; discrimination using PCA analysis showing the data points in a 2D graphic using as an axis the two eigenvectors having the highest eigenvalues. The bacteria in the growth medium are represented in blue, the growth mediums alone are in red, and the triple-washed bacteria/growth medium mixtures are in green. Each point represents an individual sample.

Tables (1)

Tables Icon

Table 1 Main Specifications of the Experimental System

Metrics