Abstract

We propose a method of designing a freeform lens array for off-axis illumination (OAI) in optical lithography to produce desired OAI patterns and improve efficiency. Based on the Snell law and the conservation law of energy, a set of first-order partial differential equations are derived and the coordinate relations for each OAI pattern are established. The contours of the freeform lens unit are calculated numerically by solving the partial differential equations, and the freeform lens array is obtained by arraying the lens units. Moreover, the optical performance for each OAI pattern is simulated and analyzed by software. Simulation results show that the irradiance distribution of each OAI pattern can be well controlled with a maximum uniformity of 92.45% and a maximum efficiency of 99.35%. Also, analysis indicates that this method has the advantages of reducing the complexity of the exposure system and having good tolerance to the input intensity variations of the laser beam.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Levinson, Principles of Lithography, 2nd ed. (SPIE, 2005).
    [CrossRef]
  2. J. L. Burn, “Optical lithography—present and future challenges,” C. R. Phys. 7, 858–874 (2006).
    [CrossRef]
  3. F. M. Schellenberg, “Resolution enhancement technology: the past, the present, and extensions for the future,” Proc. SPIE 5377, 1–20 (2004).
    [CrossRef]
  4. M. Ling, G. Chua, Q. Lin, C. J. Tay, and C. Quan, “Customized illumination shapes for 193 nm immersion lithography,” Proc. SPIE 6924, 692435 (2008).
    [CrossRef]
  5. T. Gau, R. Liu, C. Chen, C. Lai, F. Liang, and C. C. Hsia, “Customized illumination aperture filter for low k1 photolithography process,” Proc. SPIE 4000, 271–282 (2000).
    [CrossRef]
  6. M. D. Himel, R. E. Hutchins, and J. C. Colvin, “Design and fabrication of customized illumination patterns for low k1 lithography: a diffractive approach,” Proc. SPIE 4346, 1436–1442 (2001).
    [CrossRef]
  7. J. Leonard, J. Carriere, J. Stack, R. Jones, M. Himel, J. Childers, and K. Welch, “An improved process for manufacturing diffractive optical elements (DOEs) for off-axis illumination systems,” Proc. SPIE 6924, 69242O (2008).
    [CrossRef]
  8. M. Mulder, A. Engelen, O. Noordman, R. Kazinczi, G. Streutker, and B. V. Drieenhuizen, “Performance of a programmable illuminator for generation of freeform sources on high NA immersion systems,” Proc. SPIE 7520, 75200Y(2009).
    [CrossRef]
  9. M. Mulder, A. Engelen, O. Noordman, G. Streutker, B. V. Drieenhuizen, C. V. Nuenen, W. Endendijk, J. Verbeeck, W. Bouman, A. Bouma, R. Kazinczi, and R. Socha, “Performance of FlexRay, a fully programmable illumination system for generation of freeform sources on high NA immersion systems,” Proc. SPIE 7640, 76401P (2010).
    [CrossRef]
  10. H. Ganser, M. Darscht, Y. Miklyave, D. Hauschild, and L. Aschke, “High-throughput homogenizers for hyper-NA illumination systems,” Proc. SPIE 6154, 61542N(2006).
    [CrossRef]
  11. H. Ganser, M. Darscht, Y. Miklyave, D. Hauschild, and L. Aschke, “How refractive microoptics enable lossless hyper-NA illumination systems for immersion lithography,” Proc. SPIE 6281, 62810P (2006).
    [CrossRef]
  12. T. Bizjak, O. Homburg, A. Bayer, T. Mitra, and L. Aschke, “Free form micro-optics enable uniform off-axis illumination and superposition of high power laser devices,” Proc. SPIE 7062, 70620T (2008).
    [CrossRef]
  13. V. Oliker, “Optical design of freeform two-mirror beam-shaping systems,” J. Opt. Soc. Am. A 24, 3741–3752 (2007).
    [CrossRef]
  14. V. Oliker, “On design of free-form refractive beam shapers, sensitivity to figure error, and convexity of lenses,” J. Opt. Soc. Am. A 25, 3067–3076 (2008).
    [CrossRef]
  15. H. Ries and J. Muschaweck, “Tailored freeform optical surfaces,” J. Opt. Soc. Am. A 19, 590–595 (2002).
    [CrossRef]
  16. Y. Ding, X. Liu, Z. R. Zheng, and P. F. Gu, “Freeform LED lens for uniform illumination,” Opt. Express 16, 12958–12966(2008).
    [CrossRef] [PubMed]
  17. J. S. Chitode, Numerical Methods (Technical Publications, 2010).
  18. W. A. Parkyn, “The design of illumination lenses via extrinsic differential geometry,” Proc. SPIE 3428, 154–162 (1998).
    [CrossRef]
  19. B. Parkyn and D. Pelka, “Free-form illumination lenses designed by a pseudo-rectangular lawnmower algorithm,” Proc. SPIE 6338, 633808 (2006).
    [CrossRef]
  20. X. Liu and H. F. Li, Modern Projection Display Technology (Zhejiang University, 2009).
  21. K. Suzuki and B. W. Smith, Microlithography: Science and Technology, 2nd ed. (CRC, 2007).
    [CrossRef]
  22. Y. Li, “Light beams with flat-topped profiles,” Opt. Lett. 27, 1007–1009 (2002).
    [CrossRef]

2010 (1)

M. Mulder, A. Engelen, O. Noordman, G. Streutker, B. V. Drieenhuizen, C. V. Nuenen, W. Endendijk, J. Verbeeck, W. Bouman, A. Bouma, R. Kazinczi, and R. Socha, “Performance of FlexRay, a fully programmable illumination system for generation of freeform sources on high NA immersion systems,” Proc. SPIE 7640, 76401P (2010).
[CrossRef]

2009 (1)

M. Mulder, A. Engelen, O. Noordman, R. Kazinczi, G. Streutker, and B. V. Drieenhuizen, “Performance of a programmable illuminator for generation of freeform sources on high NA immersion systems,” Proc. SPIE 7520, 75200Y(2009).
[CrossRef]

2008 (5)

J. Leonard, J. Carriere, J. Stack, R. Jones, M. Himel, J. Childers, and K. Welch, “An improved process for manufacturing diffractive optical elements (DOEs) for off-axis illumination systems,” Proc. SPIE 6924, 69242O (2008).
[CrossRef]

M. Ling, G. Chua, Q. Lin, C. J. Tay, and C. Quan, “Customized illumination shapes for 193 nm immersion lithography,” Proc. SPIE 6924, 692435 (2008).
[CrossRef]

T. Bizjak, O. Homburg, A. Bayer, T. Mitra, and L. Aschke, “Free form micro-optics enable uniform off-axis illumination and superposition of high power laser devices,” Proc. SPIE 7062, 70620T (2008).
[CrossRef]

V. Oliker, “On design of free-form refractive beam shapers, sensitivity to figure error, and convexity of lenses,” J. Opt. Soc. Am. A 25, 3067–3076 (2008).
[CrossRef]

Y. Ding, X. Liu, Z. R. Zheng, and P. F. Gu, “Freeform LED lens for uniform illumination,” Opt. Express 16, 12958–12966(2008).
[CrossRef] [PubMed]

2007 (1)

2006 (4)

B. Parkyn and D. Pelka, “Free-form illumination lenses designed by a pseudo-rectangular lawnmower algorithm,” Proc. SPIE 6338, 633808 (2006).
[CrossRef]

J. L. Burn, “Optical lithography—present and future challenges,” C. R. Phys. 7, 858–874 (2006).
[CrossRef]

H. Ganser, M. Darscht, Y. Miklyave, D. Hauschild, and L. Aschke, “High-throughput homogenizers for hyper-NA illumination systems,” Proc. SPIE 6154, 61542N(2006).
[CrossRef]

H. Ganser, M. Darscht, Y. Miklyave, D. Hauschild, and L. Aschke, “How refractive microoptics enable lossless hyper-NA illumination systems for immersion lithography,” Proc. SPIE 6281, 62810P (2006).
[CrossRef]

2004 (1)

F. M. Schellenberg, “Resolution enhancement technology: the past, the present, and extensions for the future,” Proc. SPIE 5377, 1–20 (2004).
[CrossRef]

2002 (2)

2001 (1)

M. D. Himel, R. E. Hutchins, and J. C. Colvin, “Design and fabrication of customized illumination patterns for low k1 lithography: a diffractive approach,” Proc. SPIE 4346, 1436–1442 (2001).
[CrossRef]

2000 (1)

T. Gau, R. Liu, C. Chen, C. Lai, F. Liang, and C. C. Hsia, “Customized illumination aperture filter for low k1 photolithography process,” Proc. SPIE 4000, 271–282 (2000).
[CrossRef]

1998 (1)

W. A. Parkyn, “The design of illumination lenses via extrinsic differential geometry,” Proc. SPIE 3428, 154–162 (1998).
[CrossRef]

Aschke, L.

T. Bizjak, O. Homburg, A. Bayer, T. Mitra, and L. Aschke, “Free form micro-optics enable uniform off-axis illumination and superposition of high power laser devices,” Proc. SPIE 7062, 70620T (2008).
[CrossRef]

H. Ganser, M. Darscht, Y. Miklyave, D. Hauschild, and L. Aschke, “High-throughput homogenizers for hyper-NA illumination systems,” Proc. SPIE 6154, 61542N(2006).
[CrossRef]

H. Ganser, M. Darscht, Y. Miklyave, D. Hauschild, and L. Aschke, “How refractive microoptics enable lossless hyper-NA illumination systems for immersion lithography,” Proc. SPIE 6281, 62810P (2006).
[CrossRef]

Bayer, A.

T. Bizjak, O. Homburg, A. Bayer, T. Mitra, and L. Aschke, “Free form micro-optics enable uniform off-axis illumination and superposition of high power laser devices,” Proc. SPIE 7062, 70620T (2008).
[CrossRef]

Bizjak, T.

T. Bizjak, O. Homburg, A. Bayer, T. Mitra, and L. Aschke, “Free form micro-optics enable uniform off-axis illumination and superposition of high power laser devices,” Proc. SPIE 7062, 70620T (2008).
[CrossRef]

Bouma, A.

M. Mulder, A. Engelen, O. Noordman, G. Streutker, B. V. Drieenhuizen, C. V. Nuenen, W. Endendijk, J. Verbeeck, W. Bouman, A. Bouma, R. Kazinczi, and R. Socha, “Performance of FlexRay, a fully programmable illumination system for generation of freeform sources on high NA immersion systems,” Proc. SPIE 7640, 76401P (2010).
[CrossRef]

Bouman, W.

M. Mulder, A. Engelen, O. Noordman, G. Streutker, B. V. Drieenhuizen, C. V. Nuenen, W. Endendijk, J. Verbeeck, W. Bouman, A. Bouma, R. Kazinczi, and R. Socha, “Performance of FlexRay, a fully programmable illumination system for generation of freeform sources on high NA immersion systems,” Proc. SPIE 7640, 76401P (2010).
[CrossRef]

Burn, J. L.

J. L. Burn, “Optical lithography—present and future challenges,” C. R. Phys. 7, 858–874 (2006).
[CrossRef]

Carriere, J.

J. Leonard, J. Carriere, J. Stack, R. Jones, M. Himel, J. Childers, and K. Welch, “An improved process for manufacturing diffractive optical elements (DOEs) for off-axis illumination systems,” Proc. SPIE 6924, 69242O (2008).
[CrossRef]

Chen, C.

T. Gau, R. Liu, C. Chen, C. Lai, F. Liang, and C. C. Hsia, “Customized illumination aperture filter for low k1 photolithography process,” Proc. SPIE 4000, 271–282 (2000).
[CrossRef]

Childers, J.

J. Leonard, J. Carriere, J. Stack, R. Jones, M. Himel, J. Childers, and K. Welch, “An improved process for manufacturing diffractive optical elements (DOEs) for off-axis illumination systems,” Proc. SPIE 6924, 69242O (2008).
[CrossRef]

Chitode, J. S.

J. S. Chitode, Numerical Methods (Technical Publications, 2010).

Chua, G.

M. Ling, G. Chua, Q. Lin, C. J. Tay, and C. Quan, “Customized illumination shapes for 193 nm immersion lithography,” Proc. SPIE 6924, 692435 (2008).
[CrossRef]

Colvin, J. C.

M. D. Himel, R. E. Hutchins, and J. C. Colvin, “Design and fabrication of customized illumination patterns for low k1 lithography: a diffractive approach,” Proc. SPIE 4346, 1436–1442 (2001).
[CrossRef]

Darscht, M.

H. Ganser, M. Darscht, Y. Miklyave, D. Hauschild, and L. Aschke, “High-throughput homogenizers for hyper-NA illumination systems,” Proc. SPIE 6154, 61542N(2006).
[CrossRef]

H. Ganser, M. Darscht, Y. Miklyave, D. Hauschild, and L. Aschke, “How refractive microoptics enable lossless hyper-NA illumination systems for immersion lithography,” Proc. SPIE 6281, 62810P (2006).
[CrossRef]

Ding, Y.

Drieenhuizen, B. V.

M. Mulder, A. Engelen, O. Noordman, G. Streutker, B. V. Drieenhuizen, C. V. Nuenen, W. Endendijk, J. Verbeeck, W. Bouman, A. Bouma, R. Kazinczi, and R. Socha, “Performance of FlexRay, a fully programmable illumination system for generation of freeform sources on high NA immersion systems,” Proc. SPIE 7640, 76401P (2010).
[CrossRef]

M. Mulder, A. Engelen, O. Noordman, R. Kazinczi, G. Streutker, and B. V. Drieenhuizen, “Performance of a programmable illuminator for generation of freeform sources on high NA immersion systems,” Proc. SPIE 7520, 75200Y(2009).
[CrossRef]

Endendijk, W.

M. Mulder, A. Engelen, O. Noordman, G. Streutker, B. V. Drieenhuizen, C. V. Nuenen, W. Endendijk, J. Verbeeck, W. Bouman, A. Bouma, R. Kazinczi, and R. Socha, “Performance of FlexRay, a fully programmable illumination system for generation of freeform sources on high NA immersion systems,” Proc. SPIE 7640, 76401P (2010).
[CrossRef]

Engelen, A.

M. Mulder, A. Engelen, O. Noordman, G. Streutker, B. V. Drieenhuizen, C. V. Nuenen, W. Endendijk, J. Verbeeck, W. Bouman, A. Bouma, R. Kazinczi, and R. Socha, “Performance of FlexRay, a fully programmable illumination system for generation of freeform sources on high NA immersion systems,” Proc. SPIE 7640, 76401P (2010).
[CrossRef]

M. Mulder, A. Engelen, O. Noordman, R. Kazinczi, G. Streutker, and B. V. Drieenhuizen, “Performance of a programmable illuminator for generation of freeform sources on high NA immersion systems,” Proc. SPIE 7520, 75200Y(2009).
[CrossRef]

Ganser, H.

H. Ganser, M. Darscht, Y. Miklyave, D. Hauschild, and L. Aschke, “How refractive microoptics enable lossless hyper-NA illumination systems for immersion lithography,” Proc. SPIE 6281, 62810P (2006).
[CrossRef]

H. Ganser, M. Darscht, Y. Miklyave, D. Hauschild, and L. Aschke, “High-throughput homogenizers for hyper-NA illumination systems,” Proc. SPIE 6154, 61542N(2006).
[CrossRef]

Gau, T.

T. Gau, R. Liu, C. Chen, C. Lai, F. Liang, and C. C. Hsia, “Customized illumination aperture filter for low k1 photolithography process,” Proc. SPIE 4000, 271–282 (2000).
[CrossRef]

Gu, P. F.

Hauschild, D.

H. Ganser, M. Darscht, Y. Miklyave, D. Hauschild, and L. Aschke, “How refractive microoptics enable lossless hyper-NA illumination systems for immersion lithography,” Proc. SPIE 6281, 62810P (2006).
[CrossRef]

H. Ganser, M. Darscht, Y. Miklyave, D. Hauschild, and L. Aschke, “High-throughput homogenizers for hyper-NA illumination systems,” Proc. SPIE 6154, 61542N(2006).
[CrossRef]

Himel, M.

J. Leonard, J. Carriere, J. Stack, R. Jones, M. Himel, J. Childers, and K. Welch, “An improved process for manufacturing diffractive optical elements (DOEs) for off-axis illumination systems,” Proc. SPIE 6924, 69242O (2008).
[CrossRef]

Himel, M. D.

M. D. Himel, R. E. Hutchins, and J. C. Colvin, “Design and fabrication of customized illumination patterns for low k1 lithography: a diffractive approach,” Proc. SPIE 4346, 1436–1442 (2001).
[CrossRef]

Homburg, O.

T. Bizjak, O. Homburg, A. Bayer, T. Mitra, and L. Aschke, “Free form micro-optics enable uniform off-axis illumination and superposition of high power laser devices,” Proc. SPIE 7062, 70620T (2008).
[CrossRef]

Hsia, C. C.

T. Gau, R. Liu, C. Chen, C. Lai, F. Liang, and C. C. Hsia, “Customized illumination aperture filter for low k1 photolithography process,” Proc. SPIE 4000, 271–282 (2000).
[CrossRef]

Hutchins, R. E.

M. D. Himel, R. E. Hutchins, and J. C. Colvin, “Design and fabrication of customized illumination patterns for low k1 lithography: a diffractive approach,” Proc. SPIE 4346, 1436–1442 (2001).
[CrossRef]

Jones, R.

J. Leonard, J. Carriere, J. Stack, R. Jones, M. Himel, J. Childers, and K. Welch, “An improved process for manufacturing diffractive optical elements (DOEs) for off-axis illumination systems,” Proc. SPIE 6924, 69242O (2008).
[CrossRef]

Kazinczi, R.

M. Mulder, A. Engelen, O. Noordman, G. Streutker, B. V. Drieenhuizen, C. V. Nuenen, W. Endendijk, J. Verbeeck, W. Bouman, A. Bouma, R. Kazinczi, and R. Socha, “Performance of FlexRay, a fully programmable illumination system for generation of freeform sources on high NA immersion systems,” Proc. SPIE 7640, 76401P (2010).
[CrossRef]

M. Mulder, A. Engelen, O. Noordman, R. Kazinczi, G. Streutker, and B. V. Drieenhuizen, “Performance of a programmable illuminator for generation of freeform sources on high NA immersion systems,” Proc. SPIE 7520, 75200Y(2009).
[CrossRef]

Lai, C.

T. Gau, R. Liu, C. Chen, C. Lai, F. Liang, and C. C. Hsia, “Customized illumination aperture filter for low k1 photolithography process,” Proc. SPIE 4000, 271–282 (2000).
[CrossRef]

Leonard, J.

J. Leonard, J. Carriere, J. Stack, R. Jones, M. Himel, J. Childers, and K. Welch, “An improved process for manufacturing diffractive optical elements (DOEs) for off-axis illumination systems,” Proc. SPIE 6924, 69242O (2008).
[CrossRef]

Levinson, H. J.

H. J. Levinson, Principles of Lithography, 2nd ed. (SPIE, 2005).
[CrossRef]

Li, H. F.

X. Liu and H. F. Li, Modern Projection Display Technology (Zhejiang University, 2009).

Li, Y.

Liang, F.

T. Gau, R. Liu, C. Chen, C. Lai, F. Liang, and C. C. Hsia, “Customized illumination aperture filter for low k1 photolithography process,” Proc. SPIE 4000, 271–282 (2000).
[CrossRef]

Lin, Q.

M. Ling, G. Chua, Q. Lin, C. J. Tay, and C. Quan, “Customized illumination shapes for 193 nm immersion lithography,” Proc. SPIE 6924, 692435 (2008).
[CrossRef]

Ling, M.

M. Ling, G. Chua, Q. Lin, C. J. Tay, and C. Quan, “Customized illumination shapes for 193 nm immersion lithography,” Proc. SPIE 6924, 692435 (2008).
[CrossRef]

Liu, R.

T. Gau, R. Liu, C. Chen, C. Lai, F. Liang, and C. C. Hsia, “Customized illumination aperture filter for low k1 photolithography process,” Proc. SPIE 4000, 271–282 (2000).
[CrossRef]

Liu, X.

Miklyave, Y.

H. Ganser, M. Darscht, Y. Miklyave, D. Hauschild, and L. Aschke, “High-throughput homogenizers for hyper-NA illumination systems,” Proc. SPIE 6154, 61542N(2006).
[CrossRef]

H. Ganser, M. Darscht, Y. Miklyave, D. Hauschild, and L. Aschke, “How refractive microoptics enable lossless hyper-NA illumination systems for immersion lithography,” Proc. SPIE 6281, 62810P (2006).
[CrossRef]

Mitra, T.

T. Bizjak, O. Homburg, A. Bayer, T. Mitra, and L. Aschke, “Free form micro-optics enable uniform off-axis illumination and superposition of high power laser devices,” Proc. SPIE 7062, 70620T (2008).
[CrossRef]

Mulder, M.

M. Mulder, A. Engelen, O. Noordman, G. Streutker, B. V. Drieenhuizen, C. V. Nuenen, W. Endendijk, J. Verbeeck, W. Bouman, A. Bouma, R. Kazinczi, and R. Socha, “Performance of FlexRay, a fully programmable illumination system for generation of freeform sources on high NA immersion systems,” Proc. SPIE 7640, 76401P (2010).
[CrossRef]

M. Mulder, A. Engelen, O. Noordman, R. Kazinczi, G. Streutker, and B. V. Drieenhuizen, “Performance of a programmable illuminator for generation of freeform sources on high NA immersion systems,” Proc. SPIE 7520, 75200Y(2009).
[CrossRef]

Muschaweck, J.

Noordman, O.

M. Mulder, A. Engelen, O. Noordman, G. Streutker, B. V. Drieenhuizen, C. V. Nuenen, W. Endendijk, J. Verbeeck, W. Bouman, A. Bouma, R. Kazinczi, and R. Socha, “Performance of FlexRay, a fully programmable illumination system for generation of freeform sources on high NA immersion systems,” Proc. SPIE 7640, 76401P (2010).
[CrossRef]

M. Mulder, A. Engelen, O. Noordman, R. Kazinczi, G. Streutker, and B. V. Drieenhuizen, “Performance of a programmable illuminator for generation of freeform sources on high NA immersion systems,” Proc. SPIE 7520, 75200Y(2009).
[CrossRef]

Nuenen, C. V.

M. Mulder, A. Engelen, O. Noordman, G. Streutker, B. V. Drieenhuizen, C. V. Nuenen, W. Endendijk, J. Verbeeck, W. Bouman, A. Bouma, R. Kazinczi, and R. Socha, “Performance of FlexRay, a fully programmable illumination system for generation of freeform sources on high NA immersion systems,” Proc. SPIE 7640, 76401P (2010).
[CrossRef]

Oliker, V.

Parkyn, B.

B. Parkyn and D. Pelka, “Free-form illumination lenses designed by a pseudo-rectangular lawnmower algorithm,” Proc. SPIE 6338, 633808 (2006).
[CrossRef]

Parkyn, W. A.

W. A. Parkyn, “The design of illumination lenses via extrinsic differential geometry,” Proc. SPIE 3428, 154–162 (1998).
[CrossRef]

Pelka, D.

B. Parkyn and D. Pelka, “Free-form illumination lenses designed by a pseudo-rectangular lawnmower algorithm,” Proc. SPIE 6338, 633808 (2006).
[CrossRef]

Quan, C.

M. Ling, G. Chua, Q. Lin, C. J. Tay, and C. Quan, “Customized illumination shapes for 193 nm immersion lithography,” Proc. SPIE 6924, 692435 (2008).
[CrossRef]

Ries, H.

Schellenberg, F. M.

F. M. Schellenberg, “Resolution enhancement technology: the past, the present, and extensions for the future,” Proc. SPIE 5377, 1–20 (2004).
[CrossRef]

Smith, B. W.

K. Suzuki and B. W. Smith, Microlithography: Science and Technology, 2nd ed. (CRC, 2007).
[CrossRef]

Socha, R.

M. Mulder, A. Engelen, O. Noordman, G. Streutker, B. V. Drieenhuizen, C. V. Nuenen, W. Endendijk, J. Verbeeck, W. Bouman, A. Bouma, R. Kazinczi, and R. Socha, “Performance of FlexRay, a fully programmable illumination system for generation of freeform sources on high NA immersion systems,” Proc. SPIE 7640, 76401P (2010).
[CrossRef]

Stack, J.

J. Leonard, J. Carriere, J. Stack, R. Jones, M. Himel, J. Childers, and K. Welch, “An improved process for manufacturing diffractive optical elements (DOEs) for off-axis illumination systems,” Proc. SPIE 6924, 69242O (2008).
[CrossRef]

Streutker, G.

M. Mulder, A. Engelen, O. Noordman, G. Streutker, B. V. Drieenhuizen, C. V. Nuenen, W. Endendijk, J. Verbeeck, W. Bouman, A. Bouma, R. Kazinczi, and R. Socha, “Performance of FlexRay, a fully programmable illumination system for generation of freeform sources on high NA immersion systems,” Proc. SPIE 7640, 76401P (2010).
[CrossRef]

M. Mulder, A. Engelen, O. Noordman, R. Kazinczi, G. Streutker, and B. V. Drieenhuizen, “Performance of a programmable illuminator for generation of freeform sources on high NA immersion systems,” Proc. SPIE 7520, 75200Y(2009).
[CrossRef]

Suzuki, K.

K. Suzuki and B. W. Smith, Microlithography: Science and Technology, 2nd ed. (CRC, 2007).
[CrossRef]

Tay, C. J.

M. Ling, G. Chua, Q. Lin, C. J. Tay, and C. Quan, “Customized illumination shapes for 193 nm immersion lithography,” Proc. SPIE 6924, 692435 (2008).
[CrossRef]

Verbeeck, J.

M. Mulder, A. Engelen, O. Noordman, G. Streutker, B. V. Drieenhuizen, C. V. Nuenen, W. Endendijk, J. Verbeeck, W. Bouman, A. Bouma, R. Kazinczi, and R. Socha, “Performance of FlexRay, a fully programmable illumination system for generation of freeform sources on high NA immersion systems,” Proc. SPIE 7640, 76401P (2010).
[CrossRef]

Welch, K.

J. Leonard, J. Carriere, J. Stack, R. Jones, M. Himel, J. Childers, and K. Welch, “An improved process for manufacturing diffractive optical elements (DOEs) for off-axis illumination systems,” Proc. SPIE 6924, 69242O (2008).
[CrossRef]

Zheng, Z. R.

C. R. Phys. (1)

J. L. Burn, “Optical lithography—present and future challenges,” C. R. Phys. 7, 858–874 (2006).
[CrossRef]

J. Opt. Soc. Am. A (3)

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (12)

W. A. Parkyn, “The design of illumination lenses via extrinsic differential geometry,” Proc. SPIE 3428, 154–162 (1998).
[CrossRef]

B. Parkyn and D. Pelka, “Free-form illumination lenses designed by a pseudo-rectangular lawnmower algorithm,” Proc. SPIE 6338, 633808 (2006).
[CrossRef]

F. M. Schellenberg, “Resolution enhancement technology: the past, the present, and extensions for the future,” Proc. SPIE 5377, 1–20 (2004).
[CrossRef]

M. Ling, G. Chua, Q. Lin, C. J. Tay, and C. Quan, “Customized illumination shapes for 193 nm immersion lithography,” Proc. SPIE 6924, 692435 (2008).
[CrossRef]

T. Gau, R. Liu, C. Chen, C. Lai, F. Liang, and C. C. Hsia, “Customized illumination aperture filter for low k1 photolithography process,” Proc. SPIE 4000, 271–282 (2000).
[CrossRef]

M. D. Himel, R. E. Hutchins, and J. C. Colvin, “Design and fabrication of customized illumination patterns for low k1 lithography: a diffractive approach,” Proc. SPIE 4346, 1436–1442 (2001).
[CrossRef]

J. Leonard, J. Carriere, J. Stack, R. Jones, M. Himel, J. Childers, and K. Welch, “An improved process for manufacturing diffractive optical elements (DOEs) for off-axis illumination systems,” Proc. SPIE 6924, 69242O (2008).
[CrossRef]

M. Mulder, A. Engelen, O. Noordman, R. Kazinczi, G. Streutker, and B. V. Drieenhuizen, “Performance of a programmable illuminator for generation of freeform sources on high NA immersion systems,” Proc. SPIE 7520, 75200Y(2009).
[CrossRef]

M. Mulder, A. Engelen, O. Noordman, G. Streutker, B. V. Drieenhuizen, C. V. Nuenen, W. Endendijk, J. Verbeeck, W. Bouman, A. Bouma, R. Kazinczi, and R. Socha, “Performance of FlexRay, a fully programmable illumination system for generation of freeform sources on high NA immersion systems,” Proc. SPIE 7640, 76401P (2010).
[CrossRef]

H. Ganser, M. Darscht, Y. Miklyave, D. Hauschild, and L. Aschke, “High-throughput homogenizers for hyper-NA illumination systems,” Proc. SPIE 6154, 61542N(2006).
[CrossRef]

H. Ganser, M. Darscht, Y. Miklyave, D. Hauschild, and L. Aschke, “How refractive microoptics enable lossless hyper-NA illumination systems for immersion lithography,” Proc. SPIE 6281, 62810P (2006).
[CrossRef]

T. Bizjak, O. Homburg, A. Bayer, T. Mitra, and L. Aschke, “Free form micro-optics enable uniform off-axis illumination and superposition of high power laser devices,” Proc. SPIE 7062, 70620T (2008).
[CrossRef]

Other (4)

X. Liu and H. F. Li, Modern Projection Display Technology (Zhejiang University, 2009).

K. Suzuki and B. W. Smith, Microlithography: Science and Technology, 2nd ed. (CRC, 2007).
[CrossRef]

J. S. Chitode, Numerical Methods (Technical Publications, 2010).

H. J. Levinson, Principles of Lithography, 2nd ed. (SPIE, 2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic representation of an optical lithography system including the freeform lens array.

Fig. 2
Fig. 2

Optical principle of the freeform lens array system.

Fig. 3
Fig. 3

Geometric relationship of the freeform surface and the rays.

Fig. 4
Fig. 4

(a) Back surface of the freeform lens unit. (b) Desired illumination pattern of the Y-dipole mode on the target plane.

Fig. 5
Fig. 5

Three quasar modes: (a) 1, (b) 2, and (c) 3.

Fig. 6
Fig. 6

(a) Correspondences between the freeform surface and the illumination zone. (b) Representation of the angular relationships of the emergent rays.

Fig. 7
Fig. 7

Focal length—z-coordinate difference curves for D x / L x D y / L y and D x / L x = D y / L y . The blue solid curve was obtained when L x = 1 mm , L y = 0.5 , D x = 20 mm and D y = 30 mm for the Y-dipole mode. The red dashed curve was obtained when D x / L x = D y / L y , L y = 0.5 , D x = 20 mm and D y = 30 mm for the same Y-dipole mode.

Fig. 8
Fig. 8

Representation of the freeform lens array: (a) for the Y dipole and for quasar modes (b) 1, (c) 2, and (d) 3.

Fig. 9
Fig. 9

Illumination spots on the target plane: (a) the dipole and quasar modes (b) 1, (c) 2, and (d) 3.

Tables (4)

Tables Icon

Table 1 Design Parameters for Each Illumination Mode (mm)

Tables Icon

Table 2 Efficiency and Irradiance Uniformity of the Illumination Patterns

Tables Icon

Table 3 Uniformity of the Illumination Area and the Efficiency of the Freeform Lens Array for Each Situation

Tables Icon

Table 4 Uniformity of the Illumination Area and the Efficiency of the Lens Array for Each Situation

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

N = 1 z x 2 + z y 2 + 1 ( z x , z y , 1 ) ,
n o O n I I = [ n o 2 + n I 2 2 n o n I ( O · I ) ] 1 / 2 N ,
{ z x = n o O x / ( n o O z n I ) z y = n o O y / ( n o O z n I ) ,
E = I L x L y / ( D x D y ) ,
I x L y = E D y [ f tan θ ( X D x / 2 ) ] ,
tan θ = [ D x x / L x + ( X D x / 2 ) ] / f .
tan φ = [ D y y / L y + ( Y D y / 2 ) ] / f ,
O = 1 tan 2 θ + tan 2 φ + 1 ( tan θ , tan φ , 1 ) .
2 z x y = 2 z y x .
2 z y x = n o n I O x O y O z ( n o O z n I ) 2 ( D x f L x ) , 2 z x y = n o n I O x O y O z ( n o O z n I ) 2 ( D y f L y ) .
I = exp [ 2 ( x 2 + y 2 ) / w 0 2 ] ,
U = [ 1 ( E max E ave ) / E ave ] × 100 % ,
A = 1 { 1 exp [ ( x 2 + y 2 ) / 3 2 ] } 4 .

Metrics