Abstract

We present a powerful spectral photoluminescence measurement method for thin films that utilizes the enhanced absorption of the fluorescent thin films on metal thin films with attenuated total reflection (ATR). The photoluminescence measurement has the advantageous effects of avoiding transmitted light and preventing the loss of luminescence through waveguiding in the film substrates. The ATR modes excited by low-power incident light provide fluorescence intensities that are considerably larger than that of conventional photoluminescence measurements and preserve the spectral profile of the photoluminescence.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51, 913–915 (1987).
    [CrossRef]
  2. J. Kido, H. Shionoya, and K. Nagai, “Single-layer white-emitting organic electroluminescent devices based on dye-dispersed poly (N-vinylcarbazole),” Appl. Phys. Lett. 67, 2281–2283 (1995).
    [CrossRef]
  3. C. F. Madigan, M.-H. Lu, and J. C. Sturm, “Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification,” Appl. Phys. Lett. 76, 1650–1652 (2000).
    [CrossRef]
  4. V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58, 3730–3740 (1998).
    [CrossRef]
  5. G. Gu, D. Z. Garbuzov, P. E. Burrows, S. Venkatesh, S. R. Forrest, and M. E. Thompson, “High-external-quantum-efficiency organic light-emitting devices,” Opt. Lett. 22, 396–398 (1997).
    [CrossRef] [PubMed]
  6. M. Berggren, A. Dodabalapur, and R. E. Slusher, “Stimulation emission and lasing in dye-doped organic thin films with Forster transfer,” Appl. Phys. Lett. 71, 2230–2232 (1997).
    [CrossRef]
  7. H. Raether, Excitation of Plasmons and Interband Transitions by Electrons, Vol.  80 of Springer Tracts in Modern Physics (Springer-Verlag, 1980).
  8. T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A 171, 115–130(2000).
    [CrossRef]
  9. S. Roy, J.-H. Kim, J. T. Kellis, Jr., A. J. Poulose, C. R. Robertson, and A. P. Gast, “Surface plasmon resonance/surface plasmon enhanced fluorescence: an optical technique for the detection of multicomponent macromolecular adsorption at the solid/liquid interface,” Langmuir 18, 6319–6323 (2002).
    [CrossRef]
  10. S. Ekgasit, F. Yu, and W. Knoll, “Fluorescence intensity in surface-plasmon field-enhanced fluorescence spectroscopy,” Sens. Actuators B 104, 294–301 (2005).
    [CrossRef]
  11. T. Wakamatsu and K. Saito, “Interpretation of attenuated-total-reflection dips observed in surface plasmon resonance,” J. Opt. Soc. Am. B 24, 2307–2313 (2007).
    [CrossRef]
  12. B. Rothenhäussler and W. Knoll, “Surface-plasmon microscopy,” Nature 332, 615–617 (1988).
    [CrossRef]
  13. P. S. Vukusic and J. R. Sambles, “Cobalt phthalocyanine as a basis for the optical sensing of nitrogen dioxide using surface plasmon resonance,” Thin Solid Films 221, 311–317 (1992).
    [CrossRef]
  14. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
    [CrossRef]
  15. P. K. Tien, R. Ulrich, and R. J. Martin, “Modes of propagating light waves in thin deposited semiconductor films,” Appl. Phys. Lett. 14, 291–294 (1969).
    [CrossRef]
  16. R. Ulrich and R. Torge, “Measurement of thin film parameters with a prism coupler,” Appl. Opt. 12, 2901–2908(1973).
    [CrossRef] [PubMed]
  17. T. Wakamatsu, K. Watanabe, and K. Saito, “Low-refractive-index dye-aggregate films with small absorption based on anomalous dispersion,” Appl. Opt. 44, 906–911 (2005).
    [CrossRef] [PubMed]
  18. W. H. Weber and C. F. Eagen, “Energy transfer from an excited dye molecule to the surface plasmons of an adjacent metal,” Opt. Lett. 4, 236–238 (1979).
    [CrossRef] [PubMed]

2007

2005

S. Ekgasit, F. Yu, and W. Knoll, “Fluorescence intensity in surface-plasmon field-enhanced fluorescence spectroscopy,” Sens. Actuators B 104, 294–301 (2005).
[CrossRef]

T. Wakamatsu, K. Watanabe, and K. Saito, “Low-refractive-index dye-aggregate films with small absorption based on anomalous dispersion,” Appl. Opt. 44, 906–911 (2005).
[CrossRef] [PubMed]

2002

S. Roy, J.-H. Kim, J. T. Kellis, Jr., A. J. Poulose, C. R. Robertson, and A. P. Gast, “Surface plasmon resonance/surface plasmon enhanced fluorescence: an optical technique for the detection of multicomponent macromolecular adsorption at the solid/liquid interface,” Langmuir 18, 6319–6323 (2002).
[CrossRef]

2000

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A 171, 115–130(2000).
[CrossRef]

C. F. Madigan, M.-H. Lu, and J. C. Sturm, “Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification,” Appl. Phys. Lett. 76, 1650–1652 (2000).
[CrossRef]

1999

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

1998

V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58, 3730–3740 (1998).
[CrossRef]

1997

G. Gu, D. Z. Garbuzov, P. E. Burrows, S. Venkatesh, S. R. Forrest, and M. E. Thompson, “High-external-quantum-efficiency organic light-emitting devices,” Opt. Lett. 22, 396–398 (1997).
[CrossRef] [PubMed]

M. Berggren, A. Dodabalapur, and R. E. Slusher, “Stimulation emission and lasing in dye-doped organic thin films with Forster transfer,” Appl. Phys. Lett. 71, 2230–2232 (1997).
[CrossRef]

1995

J. Kido, H. Shionoya, and K. Nagai, “Single-layer white-emitting organic electroluminescent devices based on dye-dispersed poly (N-vinylcarbazole),” Appl. Phys. Lett. 67, 2281–2283 (1995).
[CrossRef]

1992

P. S. Vukusic and J. R. Sambles, “Cobalt phthalocyanine as a basis for the optical sensing of nitrogen dioxide using surface plasmon resonance,” Thin Solid Films 221, 311–317 (1992).
[CrossRef]

1988

B. Rothenhäussler and W. Knoll, “Surface-plasmon microscopy,” Nature 332, 615–617 (1988).
[CrossRef]

1987

C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51, 913–915 (1987).
[CrossRef]

1979

1973

1969

P. K. Tien, R. Ulrich, and R. J. Martin, “Modes of propagating light waves in thin deposited semiconductor films,” Appl. Phys. Lett. 14, 291–294 (1969).
[CrossRef]

Berggren, M.

M. Berggren, A. Dodabalapur, and R. E. Slusher, “Stimulation emission and lasing in dye-doped organic thin films with Forster transfer,” Appl. Phys. Lett. 71, 2230–2232 (1997).
[CrossRef]

Bulovic, V.

V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58, 3730–3740 (1998).
[CrossRef]

Burrows, P. E.

V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58, 3730–3740 (1998).
[CrossRef]

G. Gu, D. Z. Garbuzov, P. E. Burrows, S. Venkatesh, S. R. Forrest, and M. E. Thompson, “High-external-quantum-efficiency organic light-emitting devices,” Opt. Lett. 22, 396–398 (1997).
[CrossRef] [PubMed]

Dodabalapur, A.

M. Berggren, A. Dodabalapur, and R. E. Slusher, “Stimulation emission and lasing in dye-doped organic thin films with Forster transfer,” Appl. Phys. Lett. 71, 2230–2232 (1997).
[CrossRef]

Eagen, C. F.

Ekgasit, S.

S. Ekgasit, F. Yu, and W. Knoll, “Fluorescence intensity in surface-plasmon field-enhanced fluorescence spectroscopy,” Sens. Actuators B 104, 294–301 (2005).
[CrossRef]

Forrest, S. R.

V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58, 3730–3740 (1998).
[CrossRef]

G. Gu, D. Z. Garbuzov, P. E. Burrows, S. Venkatesh, S. R. Forrest, and M. E. Thompson, “High-external-quantum-efficiency organic light-emitting devices,” Opt. Lett. 22, 396–398 (1997).
[CrossRef] [PubMed]

Garbuzov, D. Z.

V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58, 3730–3740 (1998).
[CrossRef]

G. Gu, D. Z. Garbuzov, P. E. Burrows, S. Venkatesh, S. R. Forrest, and M. E. Thompson, “High-external-quantum-efficiency organic light-emitting devices,” Opt. Lett. 22, 396–398 (1997).
[CrossRef] [PubMed]

Gast, A. P.

S. Roy, J.-H. Kim, J. T. Kellis, Jr., A. J. Poulose, C. R. Robertson, and A. P. Gast, “Surface plasmon resonance/surface plasmon enhanced fluorescence: an optical technique for the detection of multicomponent macromolecular adsorption at the solid/liquid interface,” Langmuir 18, 6319–6323 (2002).
[CrossRef]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

Gu, G.

V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58, 3730–3740 (1998).
[CrossRef]

G. Gu, D. Z. Garbuzov, P. E. Burrows, S. Venkatesh, S. R. Forrest, and M. E. Thompson, “High-external-quantum-efficiency organic light-emitting devices,” Opt. Lett. 22, 396–398 (1997).
[CrossRef] [PubMed]

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

Kellis, J. T.

S. Roy, J.-H. Kim, J. T. Kellis, Jr., A. J. Poulose, C. R. Robertson, and A. P. Gast, “Surface plasmon resonance/surface plasmon enhanced fluorescence: an optical technique for the detection of multicomponent macromolecular adsorption at the solid/liquid interface,” Langmuir 18, 6319–6323 (2002).
[CrossRef]

Khalfin, V. B.

V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58, 3730–3740 (1998).
[CrossRef]

Kido, J.

J. Kido, H. Shionoya, and K. Nagai, “Single-layer white-emitting organic electroluminescent devices based on dye-dispersed poly (N-vinylcarbazole),” Appl. Phys. Lett. 67, 2281–2283 (1995).
[CrossRef]

Kim, J.-H.

S. Roy, J.-H. Kim, J. T. Kellis, Jr., A. J. Poulose, C. R. Robertson, and A. P. Gast, “Surface plasmon resonance/surface plasmon enhanced fluorescence: an optical technique for the detection of multicomponent macromolecular adsorption at the solid/liquid interface,” Langmuir 18, 6319–6323 (2002).
[CrossRef]

Knoll, W.

S. Ekgasit, F. Yu, and W. Knoll, “Fluorescence intensity in surface-plasmon field-enhanced fluorescence spectroscopy,” Sens. Actuators B 104, 294–301 (2005).
[CrossRef]

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A 171, 115–130(2000).
[CrossRef]

B. Rothenhäussler and W. Knoll, “Surface-plasmon microscopy,” Nature 332, 615–617 (1988).
[CrossRef]

Liebermann, T.

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A 171, 115–130(2000).
[CrossRef]

Lu, M.-H.

C. F. Madigan, M.-H. Lu, and J. C. Sturm, “Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification,” Appl. Phys. Lett. 76, 1650–1652 (2000).
[CrossRef]

Madigan, C. F.

C. F. Madigan, M.-H. Lu, and J. C. Sturm, “Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification,” Appl. Phys. Lett. 76, 1650–1652 (2000).
[CrossRef]

Martin, R. J.

P. K. Tien, R. Ulrich, and R. J. Martin, “Modes of propagating light waves in thin deposited semiconductor films,” Appl. Phys. Lett. 14, 291–294 (1969).
[CrossRef]

Nagai, K.

J. Kido, H. Shionoya, and K. Nagai, “Single-layer white-emitting organic electroluminescent devices based on dye-dispersed poly (N-vinylcarbazole),” Appl. Phys. Lett. 67, 2281–2283 (1995).
[CrossRef]

Poulose, A. J.

S. Roy, J.-H. Kim, J. T. Kellis, Jr., A. J. Poulose, C. R. Robertson, and A. P. Gast, “Surface plasmon resonance/surface plasmon enhanced fluorescence: an optical technique for the detection of multicomponent macromolecular adsorption at the solid/liquid interface,” Langmuir 18, 6319–6323 (2002).
[CrossRef]

Raether, H.

H. Raether, Excitation of Plasmons and Interband Transitions by Electrons, Vol.  80 of Springer Tracts in Modern Physics (Springer-Verlag, 1980).

Robertson, C. R.

S. Roy, J.-H. Kim, J. T. Kellis, Jr., A. J. Poulose, C. R. Robertson, and A. P. Gast, “Surface plasmon resonance/surface plasmon enhanced fluorescence: an optical technique for the detection of multicomponent macromolecular adsorption at the solid/liquid interface,” Langmuir 18, 6319–6323 (2002).
[CrossRef]

Rothenhäussler, B.

B. Rothenhäussler and W. Knoll, “Surface-plasmon microscopy,” Nature 332, 615–617 (1988).
[CrossRef]

Roy, S.

S. Roy, J.-H. Kim, J. T. Kellis, Jr., A. J. Poulose, C. R. Robertson, and A. P. Gast, “Surface plasmon resonance/surface plasmon enhanced fluorescence: an optical technique for the detection of multicomponent macromolecular adsorption at the solid/liquid interface,” Langmuir 18, 6319–6323 (2002).
[CrossRef]

Saito, K.

Sambles, J. R.

P. S. Vukusic and J. R. Sambles, “Cobalt phthalocyanine as a basis for the optical sensing of nitrogen dioxide using surface plasmon resonance,” Thin Solid Films 221, 311–317 (1992).
[CrossRef]

Shionoya, H.

J. Kido, H. Shionoya, and K. Nagai, “Single-layer white-emitting organic electroluminescent devices based on dye-dispersed poly (N-vinylcarbazole),” Appl. Phys. Lett. 67, 2281–2283 (1995).
[CrossRef]

Slusher, R. E.

M. Berggren, A. Dodabalapur, and R. E. Slusher, “Stimulation emission and lasing in dye-doped organic thin films with Forster transfer,” Appl. Phys. Lett. 71, 2230–2232 (1997).
[CrossRef]

Sturm, J. C.

C. F. Madigan, M.-H. Lu, and J. C. Sturm, “Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification,” Appl. Phys. Lett. 76, 1650–1652 (2000).
[CrossRef]

Tang, C. W.

C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51, 913–915 (1987).
[CrossRef]

Thompson, M. E.

Tien, P. K.

P. K. Tien, R. Ulrich, and R. J. Martin, “Modes of propagating light waves in thin deposited semiconductor films,” Appl. Phys. Lett. 14, 291–294 (1969).
[CrossRef]

Torge, R.

Ulrich, R.

R. Ulrich and R. Torge, “Measurement of thin film parameters with a prism coupler,” Appl. Opt. 12, 2901–2908(1973).
[CrossRef] [PubMed]

P. K. Tien, R. Ulrich, and R. J. Martin, “Modes of propagating light waves in thin deposited semiconductor films,” Appl. Phys. Lett. 14, 291–294 (1969).
[CrossRef]

VanSlyke, S. A.

C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51, 913–915 (1987).
[CrossRef]

Venkatesh, S.

Vukusic, P. S.

P. S. Vukusic and J. R. Sambles, “Cobalt phthalocyanine as a basis for the optical sensing of nitrogen dioxide using surface plasmon resonance,” Thin Solid Films 221, 311–317 (1992).
[CrossRef]

Wakamatsu, T.

Watanabe, K.

Weber, W. H.

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

Yu, F.

S. Ekgasit, F. Yu, and W. Knoll, “Fluorescence intensity in surface-plasmon field-enhanced fluorescence spectroscopy,” Sens. Actuators B 104, 294–301 (2005).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

P. K. Tien, R. Ulrich, and R. J. Martin, “Modes of propagating light waves in thin deposited semiconductor films,” Appl. Phys. Lett. 14, 291–294 (1969).
[CrossRef]

C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51, 913–915 (1987).
[CrossRef]

J. Kido, H. Shionoya, and K. Nagai, “Single-layer white-emitting organic electroluminescent devices based on dye-dispersed poly (N-vinylcarbazole),” Appl. Phys. Lett. 67, 2281–2283 (1995).
[CrossRef]

C. F. Madigan, M.-H. Lu, and J. C. Sturm, “Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification,” Appl. Phys. Lett. 76, 1650–1652 (2000).
[CrossRef]

M. Berggren, A. Dodabalapur, and R. E. Slusher, “Stimulation emission and lasing in dye-doped organic thin films with Forster transfer,” Appl. Phys. Lett. 71, 2230–2232 (1997).
[CrossRef]

Colloids Surf. A

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A 171, 115–130(2000).
[CrossRef]

J. Opt. Soc. Am. B

Langmuir

S. Roy, J.-H. Kim, J. T. Kellis, Jr., A. J. Poulose, C. R. Robertson, and A. P. Gast, “Surface plasmon resonance/surface plasmon enhanced fluorescence: an optical technique for the detection of multicomponent macromolecular adsorption at the solid/liquid interface,” Langmuir 18, 6319–6323 (2002).
[CrossRef]

Nature

B. Rothenhäussler and W. Knoll, “Surface-plasmon microscopy,” Nature 332, 615–617 (1988).
[CrossRef]

Opt. Lett.

Phys. Rev. B

V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58, 3730–3740 (1998).
[CrossRef]

Sens. Actuators B

S. Ekgasit, F. Yu, and W. Knoll, “Fluorescence intensity in surface-plasmon field-enhanced fluorescence spectroscopy,” Sens. Actuators B 104, 294–301 (2005).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

Thin Solid Films

P. S. Vukusic and J. R. Sambles, “Cobalt phthalocyanine as a basis for the optical sensing of nitrogen dioxide using surface plasmon resonance,” Thin Solid Films 221, 311–317 (1992).
[CrossRef]

Other

H. Raether, Excitation of Plasmons and Interband Transitions by Electrons, Vol.  80 of Springer Tracts in Modern Physics (Springer-Verlag, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the layered sample structure for the ATR and luminescence spectral measurements.

Fig. 2
Fig. 2

Measured polarized reflectance: (a) p polarized and (b) s polarized.

Fig. 3
Fig. 3

Fluorescence spectra of the ATR mode excited by the s-polarized light. Inset, measured absorption spectrum for the Alq 3 thin films on the glass substrate.

Fig. 4
Fig. 4

Calculated electric-field distribution as a function of the distance, z, along the film thickness.

Metrics