Abstract

We propose a control method for the optical components of a dynamically reconfigurable optical platform, the ternary optical computer (TOC). The optical components are made of liquid-crystal cell arrays (LCCAs) and polarizers, so the control method is for generating the pilot signals of the LCCAs to meet user demands. In this work, we first briefly introduce the TOC theory, the modules in the TOC monitor system, and the addressing of these LCCAs. Then we focus on the method for generating the control information (CI) of optical components, i.e., the encoder and the operator in the TOC according to the operands and the information about the basic operating units needed by an operation. In addition, we define data structures, some of which store the information to generate the CI and others that mainly store the generated CI. Finally we provide an example to verify the proposed method and conduct an experiment to generate the LCCA CI. The results demonstrate the correctness and feasibility of the method.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. H. Khan and U. R. Nejib, “Optical logic gates employing liquid crystal optical switches,” Appl. Opt. 26, 270–273(1987).
    [CrossRef] [PubMed]
  2. C. S. Guo, S. J. Yue, X. L. Wang, J. P. Ding, and H. T. Wang, “Polarization-selective diffractive optical elements with a twisted-nematic liquid-crystal display,” Appl. Opt. 49, 1069–1074 (2010).
    [CrossRef] [PubMed]
  3. J. A. Davis, G. H. Evans, and I. Moreno, “Polarization-multiplexed diffractive optical elements with liquid-crystal displays,” Appl. Opt. 44, 4049–4052 (2005).
    [CrossRef] [PubMed]
  4. D. A. Gregory, “Real-time pattern recognition using a modified liquid crystal television in a coherent optical correlator,” Appl. Opt. 25, 467–469 (1986).
    [CrossRef] [PubMed]
  5. J. A. Davis, D. E. McNamara, D. M. Cottrell, and T. Sonehara, “Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator,” Appl. Opt. 39, 1549–1554 (2000).
    [CrossRef]
  6. M. E. Caldwell and E. M. Yeatman, “Surface-plasmon spatial light modulators based on liquid crystal,” Appl. Opt. 31, 3880–3891 (1992).
    [CrossRef] [PubMed]
  7. E. G. Putten, I. M. Vellekoop, and A. P. Mosk, “Spatial amplitude and phase modulation using commercial twisted nematic LCDs,” Appl. Opt. 47, 2076–2081 (2008).
    [CrossRef] [PubMed]
  8. I. Moreno, J. A. Davis, F. A. Klein, and M. J. Mitry, “Polarization-splitting common-path interferometer based on a zero-twist liquid crystal display,” Appl. Opt. 47, 1797–1801 (2008).
    [CrossRef] [PubMed]
  9. C. Y. Chung, K. C. Cho, C. C. Chang, C. H. Lin, W. C. Yen, and S. J. Chen, “Adaptive-optics system with liquid-crystal phase-shift interferometer,” Appl. Opt. 45, 3409–3414 (2006).
    [CrossRef] [PubMed]
  10. J. A. Davis, J. Adachi, C. R. Fernández-Pousa, and I. Moreno, “Polarization beam splitters using polarization diffraction gratings,” Opt. Lett. 26, 587–589 (2001).
    [CrossRef]
  11. C. R. Fernández-Pousa, I. Moreno, J. A. Davis, and J. Adachi, “Polarizing diffraction-grating triplicators,” Opt. Lett. 26, 1651–1653 (2001).
    [CrossRef]
  12. F. Gori, “Measuring stokes parameters by means of a polarization grating,” Opt. Lett. 24, 584–586 (1999).
    [CrossRef]
  13. M. T. Fatehi, K. C. Wasmundt, and S. A. Collins, “Optical flip-flops and sequential logic circuits using a liquid crystal light valve,” Appl. Opt. 23, 2163–2171 (1984).
    [CrossRef] [PubMed]
  14. M. T. Fatehi, K. C. Wasmundt, and S. A. Collins, “Optical logic gates using liquid crystal light valve: implementations and application example,” Appl. Opt. 20, 2250–2256 (1981).
    [CrossRef] [PubMed]
  15. L. G. Neto, D. Roberge, and Y. Sheng, “Programmable optical phase-mostly holograms with coupled-mode modulation liquid crystal television,” Appl. Opt. 34, 1944–1950 (1995).
    [CrossRef] [PubMed]
  16. Y. Jin, H. C. He, and Y. T. Lü, “Ternary optical computer principle,” Sci. China Ser. F 46, 145–150 (2003).
    [CrossRef]
  17. J.-Y. Yan, Y. Jin, and K.-Z. Zuo, “Decrease-radix design principle for carrying/borrowing free multi-valued and application in ternary optical computer,” Sci. China Ser. F 51, 1415–1426(2008).
    [CrossRef]
  18. X. C. Wang, J. J. Peng, M. Li, Z. Y. Shen, and S. Ouyang, “Carry-free vector-matrix multiplication on a dynamically reconfigurable optical platform,” Appl. Opt. 49, 2352–2362(2010).
    [CrossRef] [PubMed]
  19. L. Teng, J. J. Peng, Y. Jin, and M. Li, “A cellular automata calculation model based on ternary optical computer,” in Proceedings of the 2nd International Conference on High Performance Computing and Applications (HPCA2009) (Springer, 2009), pp. 377–383.

2010

2008

2006

2005

2003

Y. Jin, H. C. He, and Y. T. Lü, “Ternary optical computer principle,” Sci. China Ser. F 46, 145–150 (2003).
[CrossRef]

2001

2000

1999

1995

1992

1987

1986

1984

1981

Adachi, J.

Caldwell, M. E.

Chang, C. C.

Chen, S. J.

Cho, K. C.

Chung, C. Y.

Collins, S. A.

Cottrell, D. M.

Davis, J. A.

Ding, J. P.

Evans, G. H.

Fatehi, M. T.

Fernández-Pousa, C. R.

Gori, F.

Gregory, D. A.

Guo, C. S.

He, H. C.

Y. Jin, H. C. He, and Y. T. Lü, “Ternary optical computer principle,” Sci. China Ser. F 46, 145–150 (2003).
[CrossRef]

Jin, Y.

J.-Y. Yan, Y. Jin, and K.-Z. Zuo, “Decrease-radix design principle for carrying/borrowing free multi-valued and application in ternary optical computer,” Sci. China Ser. F 51, 1415–1426(2008).
[CrossRef]

Y. Jin, H. C. He, and Y. T. Lü, “Ternary optical computer principle,” Sci. China Ser. F 46, 145–150 (2003).
[CrossRef]

L. Teng, J. J. Peng, Y. Jin, and M. Li, “A cellular automata calculation model based on ternary optical computer,” in Proceedings of the 2nd International Conference on High Performance Computing and Applications (HPCA2009) (Springer, 2009), pp. 377–383.

Khan, A. H.

Klein, F. A.

Li, M.

X. C. Wang, J. J. Peng, M. Li, Z. Y. Shen, and S. Ouyang, “Carry-free vector-matrix multiplication on a dynamically reconfigurable optical platform,” Appl. Opt. 49, 2352–2362(2010).
[CrossRef] [PubMed]

L. Teng, J. J. Peng, Y. Jin, and M. Li, “A cellular automata calculation model based on ternary optical computer,” in Proceedings of the 2nd International Conference on High Performance Computing and Applications (HPCA2009) (Springer, 2009), pp. 377–383.

Lin, C. H.

Lü, Y. T.

Y. Jin, H. C. He, and Y. T. Lü, “Ternary optical computer principle,” Sci. China Ser. F 46, 145–150 (2003).
[CrossRef]

McNamara, D. E.

Mitry, M. J.

Moreno, I.

Mosk, A. P.

Nejib, U. R.

Neto, L. G.

Ouyang, S.

Peng, J. J.

X. C. Wang, J. J. Peng, M. Li, Z. Y. Shen, and S. Ouyang, “Carry-free vector-matrix multiplication on a dynamically reconfigurable optical platform,” Appl. Opt. 49, 2352–2362(2010).
[CrossRef] [PubMed]

L. Teng, J. J. Peng, Y. Jin, and M. Li, “A cellular automata calculation model based on ternary optical computer,” in Proceedings of the 2nd International Conference on High Performance Computing and Applications (HPCA2009) (Springer, 2009), pp. 377–383.

Putten, E. G.

Roberge, D.

Shen, Z. Y.

Sheng, Y.

Sonehara, T.

Teng, L.

L. Teng, J. J. Peng, Y. Jin, and M. Li, “A cellular automata calculation model based on ternary optical computer,” in Proceedings of the 2nd International Conference on High Performance Computing and Applications (HPCA2009) (Springer, 2009), pp. 377–383.

Vellekoop, I. M.

Wang, H. T.

Wang, X. C.

Wang, X. L.

Wasmundt, K. C.

Yan, J.-Y.

J.-Y. Yan, Y. Jin, and K.-Z. Zuo, “Decrease-radix design principle for carrying/borrowing free multi-valued and application in ternary optical computer,” Sci. China Ser. F 51, 1415–1426(2008).
[CrossRef]

Yeatman, E. M.

Yen, W. C.

Yue, S. J.

Zuo, K.-Z.

J.-Y. Yan, Y. Jin, and K.-Z. Zuo, “Decrease-radix design principle for carrying/borrowing free multi-valued and application in ternary optical computer,” Sci. China Ser. F 51, 1415–1426(2008).
[CrossRef]

Appl. Opt.

A. H. Khan and U. R. Nejib, “Optical logic gates employing liquid crystal optical switches,” Appl. Opt. 26, 270–273(1987).
[CrossRef] [PubMed]

C. S. Guo, S. J. Yue, X. L. Wang, J. P. Ding, and H. T. Wang, “Polarization-selective diffractive optical elements with a twisted-nematic liquid-crystal display,” Appl. Opt. 49, 1069–1074 (2010).
[CrossRef] [PubMed]

J. A. Davis, G. H. Evans, and I. Moreno, “Polarization-multiplexed diffractive optical elements with liquid-crystal displays,” Appl. Opt. 44, 4049–4052 (2005).
[CrossRef] [PubMed]

D. A. Gregory, “Real-time pattern recognition using a modified liquid crystal television in a coherent optical correlator,” Appl. Opt. 25, 467–469 (1986).
[CrossRef] [PubMed]

J. A. Davis, D. E. McNamara, D. M. Cottrell, and T. Sonehara, “Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator,” Appl. Opt. 39, 1549–1554 (2000).
[CrossRef]

M. E. Caldwell and E. M. Yeatman, “Surface-plasmon spatial light modulators based on liquid crystal,” Appl. Opt. 31, 3880–3891 (1992).
[CrossRef] [PubMed]

E. G. Putten, I. M. Vellekoop, and A. P. Mosk, “Spatial amplitude and phase modulation using commercial twisted nematic LCDs,” Appl. Opt. 47, 2076–2081 (2008).
[CrossRef] [PubMed]

I. Moreno, J. A. Davis, F. A. Klein, and M. J. Mitry, “Polarization-splitting common-path interferometer based on a zero-twist liquid crystal display,” Appl. Opt. 47, 1797–1801 (2008).
[CrossRef] [PubMed]

C. Y. Chung, K. C. Cho, C. C. Chang, C. H. Lin, W. C. Yen, and S. J. Chen, “Adaptive-optics system with liquid-crystal phase-shift interferometer,” Appl. Opt. 45, 3409–3414 (2006).
[CrossRef] [PubMed]

M. T. Fatehi, K. C. Wasmundt, and S. A. Collins, “Optical flip-flops and sequential logic circuits using a liquid crystal light valve,” Appl. Opt. 23, 2163–2171 (1984).
[CrossRef] [PubMed]

M. T. Fatehi, K. C. Wasmundt, and S. A. Collins, “Optical logic gates using liquid crystal light valve: implementations and application example,” Appl. Opt. 20, 2250–2256 (1981).
[CrossRef] [PubMed]

L. G. Neto, D. Roberge, and Y. Sheng, “Programmable optical phase-mostly holograms with coupled-mode modulation liquid crystal television,” Appl. Opt. 34, 1944–1950 (1995).
[CrossRef] [PubMed]

X. C. Wang, J. J. Peng, M. Li, Z. Y. Shen, and S. Ouyang, “Carry-free vector-matrix multiplication on a dynamically reconfigurable optical platform,” Appl. Opt. 49, 2352–2362(2010).
[CrossRef] [PubMed]

Opt. Lett.

Sci. China Ser. F

Y. Jin, H. C. He, and Y. T. Lü, “Ternary optical computer principle,” Sci. China Ser. F 46, 145–150 (2003).
[CrossRef]

J.-Y. Yan, Y. Jin, and K.-Z. Zuo, “Decrease-radix design principle for carrying/borrowing free multi-valued and application in ternary optical computer,” Sci. China Ser. F 51, 1415–1426(2008).
[CrossRef]

Other

L. Teng, J. J. Peng, Y. Jin, and M. Li, “A cellular automata calculation model based on ternary optical computer,” in Proceedings of the 2nd International Conference on High Performance Computing and Applications (HPCA2009) (Springer, 2009), pp. 377–383.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Architecture of the TOC.

Fig. 2
Fig. 2

Schematic diagram of each LCCA address.

Fig. 3
Fig. 3

Data structures used to generate the CI.

Fig. 4
Fig. 4

Monitor system in the TOC.

Fig. 5
Fig. 5

Encoding of the TOC.

Fig. 6
Fig. 6

CI to achieve the operation in the example.

Fig. 7
Fig. 7

Outputs of achieving the operation in the example.

Tables (7)

Tables Icon

Table 1 Control Information of the Encoder

Tables Icon

Table 2 Eight Electric Control Logics for Three Optical States

Tables Icon

Table 3 Basic Operating Unit Information to Generate the Control Information of L3

Tables Icon

Table 4 Truth Table of T Transformation

Tables Icon

Table 5 Map from the Input Symbols to Optical States and the Control of the Encoder

Tables Icon

Table 6 Basic Operating Units Needed by T Transformation and Their Information

Tables Icon

Table 7 Control Information to Achieve the Operation in the Example and Their Outputs

Metrics