Abstract

Recent work demonstrating detection of nuclear spin magnetization via Faraday rotation in transparent fluids promises novel opportunities for magnetic resonance imaging and spectroscopy. Unfortunately, low sensitivity is a serious concern. With this motivation in mind, we explore the use of an optical cavity to augment the Faraday rotation experienced by a linearly polarized beam traversing a sample fluid. Relying on a setup that affords reduced sample size and high-frequency modulation, we demonstrate amplification of regular (i.e., nonnuclear) Faraday rotation of order 20. Extensions of the present methodology that take into account the geometric constraints imposed by a high-field magnet may open the way to high-sensitivity, optically-detected magnetic resonance in the liquid state.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. D. Barron, Molecular Light Scattering and Optical Activity, 2nd ed. (Cambridge University, 2004).
    [CrossRef]
  2. A. K. Zvezdin, V. A. Kotov, Modern Magnetooptics and Magnetooptical Materials (IOP Publishing, 1997).
    [CrossRef]
  3. I. M. Savukov, S. -K. Lee, and M. V. Romalis, “Optical detection of liquid-state NMR,” Nature 442, 1021–1024 (2006).
    [CrossRef] [PubMed]
  4. D. Pagliero, W. Dong, D. Sakellariou, and C. A. Meriles, “Time-resolved, optically-detected NMR of fluids at high magnetic fields,” J. Chem. Phys. 133, 154505 (2010).
    [CrossRef] [PubMed]
  5. D. Pagliero, Department of Physics, CUNY–City College of New York, 138th Street and Convent Avenue, New York, New York 10031, USA and C. A. Meriles are preparing a manuscript to be called “Light-induced spectral contrast in liquid-state, optically-detected NMR.”
  6. R. Rosenberg, C. B. Rubinstein, and D. R. Herriott, “Resonant optical Faraday rotator,” Appl. Opt. 3, 1079–1083 (1964).
    [CrossRef]
  7. T. Müller, K. B. Wiberg, P. H. Vaccaro, J. R. Cheeseman, and M. J. Frish, “Cavity ring-down polarimetry (CRDP): theoretical and experimental characterization,” J. Opt. Soc. Am. B 19, 125–141 (2002).
    [CrossRef]
  8. B. A. Paldus and A. A. Kachanov, “A historical overview of cavity-enhanced methods,” Can. J. Phys. 83, 975–999 (2005).
    [CrossRef]
  9. C. A. Meriles, “Optical detection of NMR in organic fluids,” Concepts Magn. Reson. 32A, 79–87 (2008).
    [CrossRef]
  10. J. M. Vaughan, The Fabry–Perot Interferometer: History, Theory, Practice and Applications, The Adam Hilger Series on Optics and Optoelectronics (Adam Hilger, 1989).
  11. S. A. Crooker, D. D. Awschalom, J. J. Baumberg, F. Flack, and N. Samarth, “Optical spin resonance and transverse spin relaxation in magnetic semiconductor quantum wells,” Phys. Rev. B 56, 7574–7588 (1997).
    [CrossRef]
  12. A unique spectrometer clock serves as the basis to simultaneously set the timing of the pulse sequence and generate all rf signals. Thus the time delay between successive scans can be synchronized with the signal beating without accumulating errors, hence allowing for coherent averaging.
  13. Because of the stronger Verdet constants typical in glasses (of order ∼10−5 rad/gauss/cm) we found that approximately 2/3 of the observed signal was due to glass (each wall was ∼0.3 mm thick). This contribution can be eliminated with the use of a cylindrical geometry in which the walls of the container are far removed from the ends of the rf solenoid. Unfortunately, this procedure proved inadequate for cavity measurements due to increased scattering in the fluid and lack of parallelism between the windows.
  14. R. Engeln, G. Berden, E. van den Berg, and G. Meijer, “Polarization dependent cavity ring-down spectroscopy,” J. Chem. Phys. 107, 4458–4467 (1997).
    [CrossRef]
  15. R. M. Pope and E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).
    [CrossRef]
  16. S. Xu, G. Sha, and J. Xie, “Cavity ring-down spectroscopy in the liquid phase,” Rev. Sci. Instrum. 73, 255–258 (2002).
    [CrossRef]
  17. S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectroscopy of liquids,” Rev. Sci. Instrum. 76, 023107 (2005).
    [CrossRef]
  18. L. van der Sneppen, F. Ariese, C. Gooijer, and W. Ubachs, “Cavity ring-down spectroscopy for detection of liquid chromatography at UV wavelengths using standard cuvettes in normal incidence geometry,” J. Chromatogr. A 1148, 184–188 (2007).
    [CrossRef] [PubMed]
  19. B. Bahnev, L. van der Sneppen, A. E. Wiskerke, F. Ariese, C. Goojier, and W. Ubachs, “Miniaturized cavity ring-down detection in a liquid flow cell,” Anal. Chem. 77, 1188–1191 (2005).
    [CrossRef] [PubMed]
  20. For gas-filled cavities, amplification of the Faraday rotation of order 104 have been reached. See, for example, D. Jacob, M. Vallet, F. Bretenaker, A. Le Floch, and R. Le Naour, “Small Faraday rotation measurement with a Fabry–Perot cavity,” Appl. Phys. Lett. 66, 3546–3548 (1995).
    [CrossRef]
  21. K. L. Snyder and R. N. Zare, “Cavity ring-down spectroscopy as detector for liquid chromatography,” Anal. Chem. 75, 3086–3091 (2003).
    [CrossRef] [PubMed]
  22. Z. Y. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluid. 4, 145–158 (2008).
    [CrossRef]
  23. D. Z. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127, 8952–8953 (2005).
    [CrossRef] [PubMed]
  24. Z. Li, Z. Zhang, A. Scherer, and D. Psaltis, “Mechanically tunable optofluidic distributed feedback dye laser,” Opt. Express 14, 10494–10499 (2006).
    [CrossRef] [PubMed]

2010 (1)

D. Pagliero, W. Dong, D. Sakellariou, and C. A. Meriles, “Time-resolved, optically-detected NMR of fluids at high magnetic fields,” J. Chem. Phys. 133, 154505 (2010).
[CrossRef] [PubMed]

2008 (2)

C. A. Meriles, “Optical detection of NMR in organic fluids,” Concepts Magn. Reson. 32A, 79–87 (2008).
[CrossRef]

Z. Y. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluid. 4, 145–158 (2008).
[CrossRef]

2007 (1)

L. van der Sneppen, F. Ariese, C. Gooijer, and W. Ubachs, “Cavity ring-down spectroscopy for detection of liquid chromatography at UV wavelengths using standard cuvettes in normal incidence geometry,” J. Chromatogr. A 1148, 184–188 (2007).
[CrossRef] [PubMed]

2006 (2)

2005 (4)

B. Bahnev, L. van der Sneppen, A. E. Wiskerke, F. Ariese, C. Goojier, and W. Ubachs, “Miniaturized cavity ring-down detection in a liquid flow cell,” Anal. Chem. 77, 1188–1191 (2005).
[CrossRef] [PubMed]

D. Z. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127, 8952–8953 (2005).
[CrossRef] [PubMed]

S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectroscopy of liquids,” Rev. Sci. Instrum. 76, 023107 (2005).
[CrossRef]

B. A. Paldus and A. A. Kachanov, “A historical overview of cavity-enhanced methods,” Can. J. Phys. 83, 975–999 (2005).
[CrossRef]

2004 (1)

L. D. Barron, Molecular Light Scattering and Optical Activity, 2nd ed. (Cambridge University, 2004).
[CrossRef]

2003 (1)

K. L. Snyder and R. N. Zare, “Cavity ring-down spectroscopy as detector for liquid chromatography,” Anal. Chem. 75, 3086–3091 (2003).
[CrossRef] [PubMed]

2002 (2)

1997 (4)

R. M. Pope and E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).
[CrossRef]

A. K. Zvezdin, V. A. Kotov, Modern Magnetooptics and Magnetooptical Materials (IOP Publishing, 1997).
[CrossRef]

S. A. Crooker, D. D. Awschalom, J. J. Baumberg, F. Flack, and N. Samarth, “Optical spin resonance and transverse spin relaxation in magnetic semiconductor quantum wells,” Phys. Rev. B 56, 7574–7588 (1997).
[CrossRef]

R. Engeln, G. Berden, E. van den Berg, and G. Meijer, “Polarization dependent cavity ring-down spectroscopy,” J. Chem. Phys. 107, 4458–4467 (1997).
[CrossRef]

1995 (1)

For gas-filled cavities, amplification of the Faraday rotation of order 104 have been reached. See, for example, D. Jacob, M. Vallet, F. Bretenaker, A. Le Floch, and R. Le Naour, “Small Faraday rotation measurement with a Fabry–Perot cavity,” Appl. Phys. Lett. 66, 3546–3548 (1995).
[CrossRef]

1989 (1)

J. M. Vaughan, The Fabry–Perot Interferometer: History, Theory, Practice and Applications, The Adam Hilger Series on Optics and Optoelectronics (Adam Hilger, 1989).

1964 (1)

Ariese, F.

L. van der Sneppen, F. Ariese, C. Gooijer, and W. Ubachs, “Cavity ring-down spectroscopy for detection of liquid chromatography at UV wavelengths using standard cuvettes in normal incidence geometry,” J. Chromatogr. A 1148, 184–188 (2007).
[CrossRef] [PubMed]

B. Bahnev, L. van der Sneppen, A. E. Wiskerke, F. Ariese, C. Goojier, and W. Ubachs, “Miniaturized cavity ring-down detection in a liquid flow cell,” Anal. Chem. 77, 1188–1191 (2005).
[CrossRef] [PubMed]

Awschalom, D. D.

S. A. Crooker, D. D. Awschalom, J. J. Baumberg, F. Flack, and N. Samarth, “Optical spin resonance and transverse spin relaxation in magnetic semiconductor quantum wells,” Phys. Rev. B 56, 7574–7588 (1997).
[CrossRef]

Bahnev, B.

B. Bahnev, L. van der Sneppen, A. E. Wiskerke, F. Ariese, C. Goojier, and W. Ubachs, “Miniaturized cavity ring-down detection in a liquid flow cell,” Anal. Chem. 77, 1188–1191 (2005).
[CrossRef] [PubMed]

Barron, L. D.

L. D. Barron, Molecular Light Scattering and Optical Activity, 2nd ed. (Cambridge University, 2004).
[CrossRef]

Baumberg, J. J.

S. A. Crooker, D. D. Awschalom, J. J. Baumberg, F. Flack, and N. Samarth, “Optical spin resonance and transverse spin relaxation in magnetic semiconductor quantum wells,” Phys. Rev. B 56, 7574–7588 (1997).
[CrossRef]

Bawendi, M. G.

D. Z. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127, 8952–8953 (2005).
[CrossRef] [PubMed]

Berden, G.

R. Engeln, G. Berden, E. van den Berg, and G. Meijer, “Polarization dependent cavity ring-down spectroscopy,” J. Chem. Phys. 107, 4458–4467 (1997).
[CrossRef]

Bretenaker, F.

For gas-filled cavities, amplification of the Faraday rotation of order 104 have been reached. See, for example, D. Jacob, M. Vallet, F. Bretenaker, A. Le Floch, and R. Le Naour, “Small Faraday rotation measurement with a Fabry–Perot cavity,” Appl. Phys. Lett. 66, 3546–3548 (1995).
[CrossRef]

Chan, Y.

D. Z. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127, 8952–8953 (2005).
[CrossRef] [PubMed]

Cheeseman, J. R.

Conroy, R. S.

D. Z. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127, 8952–8953 (2005).
[CrossRef] [PubMed]

Crooker, S. A.

S. A. Crooker, D. D. Awschalom, J. J. Baumberg, F. Flack, and N. Samarth, “Optical spin resonance and transverse spin relaxation in magnetic semiconductor quantum wells,” Phys. Rev. B 56, 7574–7588 (1997).
[CrossRef]

Dong, W.

D. Pagliero, W. Dong, D. Sakellariou, and C. A. Meriles, “Time-resolved, optically-detected NMR of fluids at high magnetic fields,” J. Chem. Phys. 133, 154505 (2010).
[CrossRef] [PubMed]

Engeln, R.

R. Engeln, G. Berden, E. van den Berg, and G. Meijer, “Polarization dependent cavity ring-down spectroscopy,” J. Chem. Phys. 107, 4458–4467 (1997).
[CrossRef]

Fiedler, S. E.

S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectroscopy of liquids,” Rev. Sci. Instrum. 76, 023107 (2005).
[CrossRef]

Flack, F.

S. A. Crooker, D. D. Awschalom, J. J. Baumberg, F. Flack, and N. Samarth, “Optical spin resonance and transverse spin relaxation in magnetic semiconductor quantum wells,” Phys. Rev. B 56, 7574–7588 (1997).
[CrossRef]

Frish, M. J.

Fry, E. S.

Gooijer, C.

L. van der Sneppen, F. Ariese, C. Gooijer, and W. Ubachs, “Cavity ring-down spectroscopy for detection of liquid chromatography at UV wavelengths using standard cuvettes in normal incidence geometry,” J. Chromatogr. A 1148, 184–188 (2007).
[CrossRef] [PubMed]

Goojier, C.

B. Bahnev, L. van der Sneppen, A. E. Wiskerke, F. Ariese, C. Goojier, and W. Ubachs, “Miniaturized cavity ring-down detection in a liquid flow cell,” Anal. Chem. 77, 1188–1191 (2005).
[CrossRef] [PubMed]

Herriott, D. R.

Hese, A.

S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectroscopy of liquids,” Rev. Sci. Instrum. 76, 023107 (2005).
[CrossRef]

Jacob, D.

For gas-filled cavities, amplification of the Faraday rotation of order 104 have been reached. See, for example, D. Jacob, M. Vallet, F. Bretenaker, A. Le Floch, and R. Le Naour, “Small Faraday rotation measurement with a Fabry–Perot cavity,” Appl. Phys. Lett. 66, 3546–3548 (1995).
[CrossRef]

Kachanov, A. A.

B. A. Paldus and A. A. Kachanov, “A historical overview of cavity-enhanced methods,” Can. J. Phys. 83, 975–999 (2005).
[CrossRef]

Kotov, V. A.

A. K. Zvezdin, V. A. Kotov, Modern Magnetooptics and Magnetooptical Materials (IOP Publishing, 1997).
[CrossRef]

Le Floch, A.

For gas-filled cavities, amplification of the Faraday rotation of order 104 have been reached. See, for example, D. Jacob, M. Vallet, F. Bretenaker, A. Le Floch, and R. Le Naour, “Small Faraday rotation measurement with a Fabry–Perot cavity,” Appl. Phys. Lett. 66, 3546–3548 (1995).
[CrossRef]

Le Naour, R.

For gas-filled cavities, amplification of the Faraday rotation of order 104 have been reached. See, for example, D. Jacob, M. Vallet, F. Bretenaker, A. Le Floch, and R. Le Naour, “Small Faraday rotation measurement with a Fabry–Perot cavity,” Appl. Phys. Lett. 66, 3546–3548 (1995).
[CrossRef]

Lee, S.?-K.

I. M. Savukov, S. -K. Lee, and M. V. Romalis, “Optical detection of liquid-state NMR,” Nature 442, 1021–1024 (2006).
[CrossRef] [PubMed]

Li, Z.

Li, Z. Y.

Z. Y. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluid. 4, 145–158 (2008).
[CrossRef]

Mayers, B. T.

D. Z. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127, 8952–8953 (2005).
[CrossRef] [PubMed]

Meijer, G.

R. Engeln, G. Berden, E. van den Berg, and G. Meijer, “Polarization dependent cavity ring-down spectroscopy,” J. Chem. Phys. 107, 4458–4467 (1997).
[CrossRef]

Meriles, C. A.

D. Pagliero, W. Dong, D. Sakellariou, and C. A. Meriles, “Time-resolved, optically-detected NMR of fluids at high magnetic fields,” J. Chem. Phys. 133, 154505 (2010).
[CrossRef] [PubMed]

C. A. Meriles, “Optical detection of NMR in organic fluids,” Concepts Magn. Reson. 32A, 79–87 (2008).
[CrossRef]

D. Pagliero, Department of Physics, CUNY–City College of New York, 138th Street and Convent Avenue, New York, New York 10031, USA and C. A. Meriles are preparing a manuscript to be called “Light-induced spectral contrast in liquid-state, optically-detected NMR.”

Müller, T.

Nocera, D. G.

D. Z. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127, 8952–8953 (2005).
[CrossRef] [PubMed]

Pagliero, D.

D. Pagliero, W. Dong, D. Sakellariou, and C. A. Meriles, “Time-resolved, optically-detected NMR of fluids at high magnetic fields,” J. Chem. Phys. 133, 154505 (2010).
[CrossRef] [PubMed]

D. Pagliero, Department of Physics, CUNY–City College of New York, 138th Street and Convent Avenue, New York, New York 10031, USA and C. A. Meriles are preparing a manuscript to be called “Light-induced spectral contrast in liquid-state, optically-detected NMR.”

Paldus, B. A.

B. A. Paldus and A. A. Kachanov, “A historical overview of cavity-enhanced methods,” Can. J. Phys. 83, 975–999 (2005).
[CrossRef]

Pope, R. M.

Psaltis, D.

Romalis, M. V.

I. M. Savukov, S. -K. Lee, and M. V. Romalis, “Optical detection of liquid-state NMR,” Nature 442, 1021–1024 (2006).
[CrossRef] [PubMed]

Rosenberg, R.

Rubinstein, C. B.

Ruth, A. A.

S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectroscopy of liquids,” Rev. Sci. Instrum. 76, 023107 (2005).
[CrossRef]

Sakellariou, D.

D. Pagliero, W. Dong, D. Sakellariou, and C. A. Meriles, “Time-resolved, optically-detected NMR of fluids at high magnetic fields,” J. Chem. Phys. 133, 154505 (2010).
[CrossRef] [PubMed]

Samarth, N.

S. A. Crooker, D. D. Awschalom, J. J. Baumberg, F. Flack, and N. Samarth, “Optical spin resonance and transverse spin relaxation in magnetic semiconductor quantum wells,” Phys. Rev. B 56, 7574–7588 (1997).
[CrossRef]

Savukov, I. M.

I. M. Savukov, S. -K. Lee, and M. V. Romalis, “Optical detection of liquid-state NMR,” Nature 442, 1021–1024 (2006).
[CrossRef] [PubMed]

Scherer, A.

Sha, G.

S. Xu, G. Sha, and J. Xie, “Cavity ring-down spectroscopy in the liquid phase,” Rev. Sci. Instrum. 73, 255–258 (2002).
[CrossRef]

Snee, P. T.

D. Z. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127, 8952–8953 (2005).
[CrossRef] [PubMed]

Snyder, K. L.

K. L. Snyder and R. N. Zare, “Cavity ring-down spectroscopy as detector for liquid chromatography,” Anal. Chem. 75, 3086–3091 (2003).
[CrossRef] [PubMed]

Ubachs, W.

L. van der Sneppen, F. Ariese, C. Gooijer, and W. Ubachs, “Cavity ring-down spectroscopy for detection of liquid chromatography at UV wavelengths using standard cuvettes in normal incidence geometry,” J. Chromatogr. A 1148, 184–188 (2007).
[CrossRef] [PubMed]

B. Bahnev, L. van der Sneppen, A. E. Wiskerke, F. Ariese, C. Goojier, and W. Ubachs, “Miniaturized cavity ring-down detection in a liquid flow cell,” Anal. Chem. 77, 1188–1191 (2005).
[CrossRef] [PubMed]

Vaccaro, P. H.

Vallet, M.

For gas-filled cavities, amplification of the Faraday rotation of order 104 have been reached. See, for example, D. Jacob, M. Vallet, F. Bretenaker, A. Le Floch, and R. Le Naour, “Small Faraday rotation measurement with a Fabry–Perot cavity,” Appl. Phys. Lett. 66, 3546–3548 (1995).
[CrossRef]

van den Berg, E.

R. Engeln, G. Berden, E. van den Berg, and G. Meijer, “Polarization dependent cavity ring-down spectroscopy,” J. Chem. Phys. 107, 4458–4467 (1997).
[CrossRef]

van der Sneppen, L.

L. van der Sneppen, F. Ariese, C. Gooijer, and W. Ubachs, “Cavity ring-down spectroscopy for detection of liquid chromatography at UV wavelengths using standard cuvettes in normal incidence geometry,” J. Chromatogr. A 1148, 184–188 (2007).
[CrossRef] [PubMed]

B. Bahnev, L. van der Sneppen, A. E. Wiskerke, F. Ariese, C. Goojier, and W. Ubachs, “Miniaturized cavity ring-down detection in a liquid flow cell,” Anal. Chem. 77, 1188–1191 (2005).
[CrossRef] [PubMed]

Vaughan, J. M.

J. M. Vaughan, The Fabry–Perot Interferometer: History, Theory, Practice and Applications, The Adam Hilger Series on Optics and Optoelectronics (Adam Hilger, 1989).

Vezenov, D. Z.

D. Z. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127, 8952–8953 (2005).
[CrossRef] [PubMed]

Whitesides, G. M.

D. Z. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127, 8952–8953 (2005).
[CrossRef] [PubMed]

Wiberg, K. B.

Wiskerke, A. E.

B. Bahnev, L. van der Sneppen, A. E. Wiskerke, F. Ariese, C. Goojier, and W. Ubachs, “Miniaturized cavity ring-down detection in a liquid flow cell,” Anal. Chem. 77, 1188–1191 (2005).
[CrossRef] [PubMed]

Xie, J.

S. Xu, G. Sha, and J. Xie, “Cavity ring-down spectroscopy in the liquid phase,” Rev. Sci. Instrum. 73, 255–258 (2002).
[CrossRef]

Xu, S.

S. Xu, G. Sha, and J. Xie, “Cavity ring-down spectroscopy in the liquid phase,” Rev. Sci. Instrum. 73, 255–258 (2002).
[CrossRef]

Zare, R. N.

K. L. Snyder and R. N. Zare, “Cavity ring-down spectroscopy as detector for liquid chromatography,” Anal. Chem. 75, 3086–3091 (2003).
[CrossRef] [PubMed]

Zhang, Z.

Zvezdin, A. K.

A. K. Zvezdin, V. A. Kotov, Modern Magnetooptics and Magnetooptical Materials (IOP Publishing, 1997).
[CrossRef]

Anal. Chem. (2)

B. Bahnev, L. van der Sneppen, A. E. Wiskerke, F. Ariese, C. Goojier, and W. Ubachs, “Miniaturized cavity ring-down detection in a liquid flow cell,” Anal. Chem. 77, 1188–1191 (2005).
[CrossRef] [PubMed]

K. L. Snyder and R. N. Zare, “Cavity ring-down spectroscopy as detector for liquid chromatography,” Anal. Chem. 75, 3086–3091 (2003).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

For gas-filled cavities, amplification of the Faraday rotation of order 104 have been reached. See, for example, D. Jacob, M. Vallet, F. Bretenaker, A. Le Floch, and R. Le Naour, “Small Faraday rotation measurement with a Fabry–Perot cavity,” Appl. Phys. Lett. 66, 3546–3548 (1995).
[CrossRef]

Can. J. Phys. (1)

B. A. Paldus and A. A. Kachanov, “A historical overview of cavity-enhanced methods,” Can. J. Phys. 83, 975–999 (2005).
[CrossRef]

Concepts Magn. Reson. (1)

C. A. Meriles, “Optical detection of NMR in organic fluids,” Concepts Magn. Reson. 32A, 79–87 (2008).
[CrossRef]

J. Am. Chem. Soc. (1)

D. Z. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127, 8952–8953 (2005).
[CrossRef] [PubMed]

J. Chem. Phys. (2)

D. Pagliero, W. Dong, D. Sakellariou, and C. A. Meriles, “Time-resolved, optically-detected NMR of fluids at high magnetic fields,” J. Chem. Phys. 133, 154505 (2010).
[CrossRef] [PubMed]

R. Engeln, G. Berden, E. van den Berg, and G. Meijer, “Polarization dependent cavity ring-down spectroscopy,” J. Chem. Phys. 107, 4458–4467 (1997).
[CrossRef]

J. Chromatogr. A (1)

L. van der Sneppen, F. Ariese, C. Gooijer, and W. Ubachs, “Cavity ring-down spectroscopy for detection of liquid chromatography at UV wavelengths using standard cuvettes in normal incidence geometry,” J. Chromatogr. A 1148, 184–188 (2007).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Microfluid. Nanofluid. (1)

Z. Y. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluid. 4, 145–158 (2008).
[CrossRef]

Nature (1)

I. M. Savukov, S. -K. Lee, and M. V. Romalis, “Optical detection of liquid-state NMR,” Nature 442, 1021–1024 (2006).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Rev. B (1)

S. A. Crooker, D. D. Awschalom, J. J. Baumberg, F. Flack, and N. Samarth, “Optical spin resonance and transverse spin relaxation in magnetic semiconductor quantum wells,” Phys. Rev. B 56, 7574–7588 (1997).
[CrossRef]

Rev. Sci. Instrum. (2)

S. Xu, G. Sha, and J. Xie, “Cavity ring-down spectroscopy in the liquid phase,” Rev. Sci. Instrum. 73, 255–258 (2002).
[CrossRef]

S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectroscopy of liquids,” Rev. Sci. Instrum. 76, 023107 (2005).
[CrossRef]

Other (6)

A unique spectrometer clock serves as the basis to simultaneously set the timing of the pulse sequence and generate all rf signals. Thus the time delay between successive scans can be synchronized with the signal beating without accumulating errors, hence allowing for coherent averaging.

Because of the stronger Verdet constants typical in glasses (of order ∼10−5 rad/gauss/cm) we found that approximately 2/3 of the observed signal was due to glass (each wall was ∼0.3 mm thick). This contribution can be eliminated with the use of a cylindrical geometry in which the walls of the container are far removed from the ends of the rf solenoid. Unfortunately, this procedure proved inadequate for cavity measurements due to increased scattering in the fluid and lack of parallelism between the windows.

J. M. Vaughan, The Fabry–Perot Interferometer: History, Theory, Practice and Applications, The Adam Hilger Series on Optics and Optoelectronics (Adam Hilger, 1989).

D. Pagliero, Department of Physics, CUNY–City College of New York, 138th Street and Convent Avenue, New York, New York 10031, USA and C. A. Meriles are preparing a manuscript to be called “Light-induced spectral contrast in liquid-state, optically-detected NMR.”

L. D. Barron, Molecular Light Scattering and Optical Activity, 2nd ed. (Cambridge University, 2004).
[CrossRef]

A. K. Zvezdin, V. A. Kotov, Modern Magnetooptics and Magnetooptical Materials (IOP Publishing, 1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Experimental setup. Faraday rotation of water contained in a 0.3-cm-thick cuvette was induced by the magnetic field of a 10-turn split coil aligned along the optical path. A 20 mW , linearly-polarized He–Ne laser was used as the light source. Removable spherical mirrors symmetrically located relative to the sample center formed a Fabry–Perot cavity in confocal geometry. A λ / 2 -plate, Glan–Laser polarizer and a balanced, dual photoreceiver were used for optical detection. A NMR spectrometer was used to simultaneously drive the magnetic field at the sample and amplify, demodulate and process the resulting signal. (b) Example OFR signal at 50 MHz after averaging ten 1 s scans. The observed beating results from a (arbitrary) 5 Hz shift of the driving field relative to the demodulation frequency. The signal amplitude corresponds in this example to 10 6 rad . Offset for clarity is a signal with the beam blocked from the detector demonstrating the virtual absence of rf pickup. (c) Fourier transform of (b) in magnitude mode used to quantify the signal amplitude. Side lobes are the result of signal truncation.

Fig. 2
Fig. 2

(a) Fourier transform (magnitude mode) of the cavity- enhanced, water-induced Faraday rotation signal after a single 1 s scan. The driving field amplitude was 0.1 mT and the light intensity before the half-wave plate was 0.4 mW . (b) Single-pass signal after removing the cavity mirrors from the beam path; light attenuators immediately after the laser output were added in order to keep the illumination intensity at the photodetectors unaltered. (c) Same as in (b) but without the light attenuators. In this case, the light intensity before the half-wave plate was 10 mW and the calculated water-induced Faraday rotation 2 μrad . In (a)–(c), the frequency shift between excitation and reference was 20 Hz .

Fig. 3
Fig. 3

(Insets) Signal amplitude S for a 1 s scan as a function of the driving magnetic field B rf (left) and output laser intensity I out (measured at the half-wave plate, right). In the first case, the input laser intensity I in (measured before the cavity or sample) was 10 mW , whereas the fixed rf field amplitude in the right insert was B rf = 0.2 mT . (Main) Allan plot of the limit of detection δ θ min versus averaging time (calculated as the number of 1 s scans); I in = 10 mW , B rf = 0.2 mT . (a) Single-pass detection; I out = 10 mW and B rf = 0.2 mT . Dashed curve indicates the expected square-root dependence. (b) “Cavity-enhanced” detection; I out = 0.4 mW . Predicted values with time are indicated by a solid curve. Note that in spite of the cavity gain, the limit of detection remains actually greater than that for single-pass due to reduced light throughput. (c) Calculated cavity-enhanced limit of detection assuming M = 20 and I out = 10 mW as in (a). (d) Faraday rotation induced by proton spins in a 3-cm-long, room-temperature water sample at 10 T and illuminated at 630 nm .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S ( t ) f ( I o , ω ) I o θ F sin ( ω t ) ,

Metrics