A. Federico and G. H. Kaufmann, “Robust phase recovery in temporal speckle pattern interferometry using a 3D directional wavelet transform,” Opt. Lett. 34, 2336–2338 (2009).

[CrossRef]
[PubMed]

M. B. Bernini, A. Federico, and G. H. Kaufmann, “Normalization of fringe patterns using the bidimensional empirical mode decomposition and the Hilbert transform,” Appl. Opt. 48, 6862–6869 (2009).

[CrossRef]
[PubMed]

Z. Wu and N. E. Huang, “Ensemble empirical mode decomposition: a noise-assisted data analysis method,” Advances Adapt. Data Anal. 1, 1–41 (2009).

[CrossRef]

M. B. Bernini, A. Federico, and G. H. Kaufmann, “Noise reduction in digital speckle pattern interferometry using bidimensional empirical mode decomposition,” Appl. Opt. 47, 2592–2598 (2008).

[CrossRef]
[PubMed]

A. Federico and G. H. Kaufmann, “Phase recovery in temporal speckle pattern interferometry using the generalized S-transform,” Opt. Lett. 33, 866–868 (2008).

[CrossRef]
[PubMed]

S. Equis and P. Jacquot, “Phase extraction in dynamic speckle interferometry with empirical mode decomposition and Hilbert transform,” Strain 46, 550–558 (2008).

[CrossRef]

F. A. Marengo Rodriguez, A. Federico, and G. H. Kaufmann, “Hilbert transform analysis of a time series of speckle interferograms with a temporal carrier,” Appl. Opt. 47, 1310–1316(2008).

[CrossRef]

L. R. Watkins, “Phase recovery from fringe patterns using the continuous wavelet transform,” Opt. Lasers Eng. 45, 298–303(2007).

[CrossRef]

C. Damerval, S. Meignen, and V. Perrier, “A fast algorithm for bidimensional EMD,” IEEE Signal Process. Lett. 12, 701–704(2005).

[CrossRef]

G. H. Kaufmann, “Phase measurement in temporal speckle pattern interferometry using the Fourier transform method with and without a temporal carrier,” Opt. Commun. 217, 141–149 (2003).

[CrossRef]

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. A 454, 903–995 (1998).

[CrossRef]

M. B. Bernini, A. Federico, and G. H. Kaufmann, “Normalization of fringe patterns using the bidimensional empirical mode decomposition and the Hilbert transform,” Appl. Opt. 48, 6862–6869 (2009).

[CrossRef]
[PubMed]

M. B. Bernini, A. Federico, and G. H. Kaufmann, “Noise reduction in digital speckle pattern interferometry using bidimensional empirical mode decomposition,” Appl. Opt. 47, 2592–2598 (2008).

[CrossRef]
[PubMed]

C. Damerval, S. Meignen, and V. Perrier, “A fast algorithm for bidimensional EMD,” IEEE Signal Process. Lett. 12, 701–704(2005).

[CrossRef]

S. Equis and P. Jacquot, “Phase extraction in dynamic speckle interferometry with empirical mode decomposition and Hilbert transform,” Strain 46, 550–558 (2008).

[CrossRef]

S. Equis and P. Jacquot, “A new application of the Delaunay triangulation: the processing of speckle interferometry signals,” in Proceedings of Fringe, the International Workshop on Automatic Processing of Fringe Patterns, W.Osten and M. Kujawinska, eds. (Springer, 2009), pp 123–131.

A. Federico and G. H. Kaufmann, “Robust phase recovery in temporal speckle pattern interferometry using a 3D directional wavelet transform,” Opt. Lett. 34, 2336–2338 (2009).

[CrossRef]
[PubMed]

M. B. Bernini, A. Federico, and G. H. Kaufmann, “Normalization of fringe patterns using the bidimensional empirical mode decomposition and the Hilbert transform,” Appl. Opt. 48, 6862–6869 (2009).

[CrossRef]
[PubMed]

M. B. Bernini, A. Federico, and G. H. Kaufmann, “Noise reduction in digital speckle pattern interferometry using bidimensional empirical mode decomposition,” Appl. Opt. 47, 2592–2598 (2008).

[CrossRef]
[PubMed]

F. A. Marengo Rodriguez, A. Federico, and G. H. Kaufmann, “Hilbert transform analysis of a time series of speckle interferograms with a temporal carrier,” Appl. Opt. 47, 1310–1316(2008).

[CrossRef]

A. Federico and G. H. Kaufmann, “Phase recovery in temporal speckle pattern interferometry using the generalized S-transform,” Opt. Lett. 33, 866–868 (2008).

[CrossRef]
[PubMed]

W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge University, 1992), Chap. 13.

Z. Wu and N. E. Huang, “Ensemble empirical mode decomposition: a noise-assisted data analysis method,” Advances Adapt. Data Anal. 1, 1–41 (2009).

[CrossRef]

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. A 454, 903–995 (1998).

[CrossRef]

J. M. Huntley, “Automated analysis of speckle interferograms,” in Digital Speckle Pattern Interferometry and Related Techniques, P.K.Rastogi, ed. (Wiley, 2001), pp. 59–139.

S. Equis and P. Jacquot, “Phase extraction in dynamic speckle interferometry with empirical mode decomposition and Hilbert transform,” Strain 46, 550–558 (2008).

[CrossRef]

S. Equis and P. Jacquot, “A new application of the Delaunay triangulation: the processing of speckle interferometry signals,” in Proceedings of Fringe, the International Workshop on Automatic Processing of Fringe Patterns, W.Osten and M. Kujawinska, eds. (Springer, 2009), pp 123–131.

A. Federico and G. H. Kaufmann, “Robust phase recovery in temporal speckle pattern interferometry using a 3D directional wavelet transform,” Opt. Lett. 34, 2336–2338 (2009).

[CrossRef]
[PubMed]

M. B. Bernini, A. Federico, and G. H. Kaufmann, “Normalization of fringe patterns using the bidimensional empirical mode decomposition and the Hilbert transform,” Appl. Opt. 48, 6862–6869 (2009).

[CrossRef]
[PubMed]

M. B. Bernini, A. Federico, and G. H. Kaufmann, “Noise reduction in digital speckle pattern interferometry using bidimensional empirical mode decomposition,” Appl. Opt. 47, 2592–2598 (2008).

[CrossRef]
[PubMed]

F. A. Marengo Rodriguez, A. Federico, and G. H. Kaufmann, “Hilbert transform analysis of a time series of speckle interferograms with a temporal carrier,” Appl. Opt. 47, 1310–1316(2008).

[CrossRef]

A. Federico and G. H. Kaufmann, “Phase recovery in temporal speckle pattern interferometry using the generalized S-transform,” Opt. Lett. 33, 866–868 (2008).

[CrossRef]
[PubMed]

G. H. Kaufmann, “Phase measurement in temporal speckle pattern interferometry using the Fourier transform method with and without a temporal carrier,” Opt. Commun. 217, 141–149 (2003).

[CrossRef]

G. H. Kaufmann and G. E. Galizzi, “Phase measurement in temporal speckle pattern interferometry: comparison between the phase-shifting and the Fourier transform methods,” Appl. Opt. 41, 7254–7263 (2002).

[CrossRef]
[PubMed]

S. Equis and P. Jacquot, “A new application of the Delaunay triangulation: the processing of speckle interferometry signals,” in Proceedings of Fringe, the International Workshop on Automatic Processing of Fringe Patterns, W.Osten and M. Kujawinska, eds. (Springer, 2009), pp 123–131.

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. A 454, 903–995 (1998).

[CrossRef]

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. A 454, 903–995 (1998).

[CrossRef]

C. Damerval, S. Meignen, and V. Perrier, “A fast algorithm for bidimensional EMD,” IEEE Signal Process. Lett. 12, 701–704(2005).

[CrossRef]

C. Damerval, S. Meignen, and V. Perrier, “A fast algorithm for bidimensional EMD,” IEEE Signal Process. Lett. 12, 701–704(2005).

[CrossRef]

W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge University, 1992), Chap. 13.

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. A 454, 903–995 (1998).

[CrossRef]

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. A 454, 903–995 (1998).

[CrossRef]

W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge University, 1992), Chap. 13.

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. A 454, 903–995 (1998).

[CrossRef]

W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge University, 1992), Chap. 13.

L. R. Watkins, “Phase recovery from fringe patterns using the continuous wavelet transform,” Opt. Lasers Eng. 45, 298–303(2007).

[CrossRef]

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. A 454, 903–995 (1998).

[CrossRef]

Z. Wu and N. E. Huang, “Ensemble empirical mode decomposition: a noise-assisted data analysis method,” Advances Adapt. Data Anal. 1, 1–41 (2009).

[CrossRef]

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. A 454, 903–995 (1998).

[CrossRef]

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. A 454, 903–995 (1998).

[CrossRef]

Z. Wu and N. E. Huang, “Ensemble empirical mode decomposition: a noise-assisted data analysis method,” Advances Adapt. Data Anal. 1, 1–41 (2009).

[CrossRef]

M. B. Bernini, A. Federico, and G. H. Kaufmann, “Noise reduction in digital speckle pattern interferometry using bidimensional empirical mode decomposition,” Appl. Opt. 47, 2592–2598 (2008).

[CrossRef]
[PubMed]

F. A. Marengo Rodriguez, A. Federico, and G. H. Kaufmann, “Hilbert transform analysis of a time series of speckle interferograms with a temporal carrier,” Appl. Opt. 47, 1310–1316(2008).

[CrossRef]

M. B. Bernini, A. Federico, and G. H. Kaufmann, “Normalization of fringe patterns using the bidimensional empirical mode decomposition and the Hilbert transform,” Appl. Opt. 48, 6862–6869 (2009).

[CrossRef]
[PubMed]

G. H. Kaufmann and G. E. Galizzi, “Phase measurement in temporal speckle pattern interferometry: comparison between the phase-shifting and the Fourier transform methods,” Appl. Opt. 41, 7254–7263 (2002).

[CrossRef]
[PubMed]

V. D. Madjarova, H. Kadono, and S. Toyooka, “Use of dynamic electronic speckle pattern interferometry with the Hilbert transform method to investigate thermal expansion of a joint material,” Appl. Opt. 45, 7590–7596 (2006).

[CrossRef]
[PubMed]

C. Damerval, S. Meignen, and V. Perrier, “A fast algorithm for bidimensional EMD,” IEEE Signal Process. Lett. 12, 701–704(2005).

[CrossRef]

G. H. Kaufmann, “Phase measurement in temporal speckle pattern interferometry using the Fourier transform method with and without a temporal carrier,” Opt. Commun. 217, 141–149 (2003).

[CrossRef]

L. R. Watkins, “Phase recovery from fringe patterns using the continuous wavelet transform,” Opt. Lasers Eng. 45, 298–303(2007).

[CrossRef]

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. A 454, 903–995 (1998).

[CrossRef]

S. Equis and P. Jacquot, “Phase extraction in dynamic speckle interferometry with empirical mode decomposition and Hilbert transform,” Strain 46, 550–558 (2008).

[CrossRef]

J. M. Huntley, “Automated analysis of speckle interferograms,” in Digital Speckle Pattern Interferometry and Related Techniques, P.K.Rastogi, ed. (Wiley, 2001), pp. 59–139.

S. Equis and P. Jacquot, “A new application of the Delaunay triangulation: the processing of speckle interferometry signals,” in Proceedings of Fringe, the International Workshop on Automatic Processing of Fringe Patterns, W.Osten and M. Kujawinska, eds. (Springer, 2009), pp 123–131.

W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge University, 1992), Chap. 13.