Abstract

We describe the implementation of a mid-infrared laser-based trace gas sensor with a photoreaction chamber, used for reproducing chemical transformations of benzene, toluene, and p-xylene (BTX) gases that may occur in the atmosphere. The system performance was assessed in the presence of photoreaction products including aerosol particles. A mid-infrared external cavity quantum cascade laser (EC-QCL)—tunable from 9.419.88μm (10121063cm1)—was used to monitor gas phase concentrations of BTX simultaneously and in real time during chemical processing of these compounds with hydroxyl radicals in a photoreaction chamber. Results are compared to concurrent measurements using ultraviolet differential optical absorption spectroscopy (UV DOAS). The EC-QCL based system provides quantitation limits of approximately 200, 200, and 600 parts in 109 (ppb) for benzene, toluene, and p-xylene, respectively, which represents a significant improvement over our previous work with this laser system. Correspondingly, we observe the best agreement between the EC-QCL measurements and the UV DOAS measurements with benzene, followed by toluene, then p-xylene. Although BTX gas-detection limits are not as low for the EC-QCL system as for UV DOAS, an unidentified by-product of the photoreactions was observed with the EC-QCL, but not with the UV DOAS system.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. R. Carmichael, A. Sandu, T. Chai, D. N. Daescu, E. M. Constantinescu, and Y. Tang, “Predicting air quality: Improvements through advanced methods to integrate models and measurements,” J. Comput. Phys. 227, 3540–3571 (2008).
    [CrossRef]
  2. M. Lippmann, Environmental Toxicants: Human Exposures and Their Health Effects (Wiley, 2009).
  3. “Interaction Profile for: Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX),” (Agency for Toxic Substances and Disease Registry, 2004).
  4. J. Whysner, M. V. Reddy, P. M. Ross, M. Mohan, and E. A. Lax, “Genotoxicity of benzene and its metabolites,” Mutat. Res. 566, 99–130 (2004).
    [CrossRef] [PubMed]
  5. J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, 2006).
  6. N. L. Ng, J. H. Kroll, A. W. H. Chan, P. S. Chhabra, R. C. Flagan, and J. H. Seinfeld, “Secondary organic aerosol formation from m-xylene, toluene, and benzene,” Atmos. Chem. Phys. 7, 3909–3922 (2007).
    [CrossRef]
  7. M. Martín-Reviejo and K. Wirtz, “Is benzene a precursor for secondary organic aerosol?,” Environ. Sci. Technol. 39, 1045–1054 (2005).
    [CrossRef] [PubMed]
  8. B. J. Finlayson-Pitts and J. N. Pitts, Chemistry of the Upper and Lower Atmosphere: Theory, Experiments and Applications (Academic, 2000).
  9. J. G. Calvert, R. Atkinson, K. H. Becker, R. M. Kamens, J. H. Seinfeld, T. J. Wallington, and G. Yarwood, The Mechanisms of Atmospheric Oxidation of Aromatic Hydrocarbons (Oxford University Press, 2002).
  10. H. Skov, A. Lindskog, F. Palmgren, and C. S. Christensen, “An overview of commonly used methods for measuring benzene in ambient air,” Atmos. Environ. 35, S141–S148 (2001).
    [CrossRef]
  11. K. Badjagbo, S. Moore, and S. Sauve, “Real-time continuous monitoring methods for airborne VOCs,” Trends Anal. Chem. 26, 931–940 (2007).
    [CrossRef]
  12. Z. Bacsik, J. Mink, and G. Keresztury, “FTIR spectroscopy of the atmosphere Part 2. Applications,” Appl. Spectrosc. Rev. 40, 327–390 (2005).
    [CrossRef]
  13. R. J. Yokelson, R. Susott, D. E. Ward, J. Reardon, and D. W. T. Griffith, “Emissions from smoldering combustion of biomass measured by open-path Fourier transform infrared spectroscopy,” J. Geophys. Res. 102, 18865–18877 (1997).
    [CrossRef]
  14. H. M. Heise, U. Muller, A. G. Gartner, and N. Holscher, “Improved chemometric strategies for quantitative FTIR spectral analysis and applications in atmospheric open-path monitoring,” Field Anal. Chem. Technol. 5, 13–28 (2001).
    [CrossRef]
  15. J. M. C. Plane and A. Saiz-Lopez, “UV-visible differential optical absorption spectroscopy,” in Analytical Techniques for Atmospheric Measurement, D.E.Heard, ed. (Blackwell, 2006), pp. 147–188.
    [CrossRef]
  16. R. Volkamer, L. T. Molina, M. J. Molina, T. Shirley, and W. H. Brune, “DOAS measurement of glyoxal as an indicator for fast VOC chemistry in urban air,” Geophys. Res. Lett. 32, L08806 (2005).
    [CrossRef]
  17. R. Volkamer, T. Etzkorn, A. Geyer, and U. Platt, “Correction of the oxygen interference with UV spectroscopic (DOAS) measurements of monocyclic aromatic hydrocarbons in the atmosphere,” Atmos. Environ. 32, 3731–3747 (1998).
    [CrossRef]
  18. I. Sydoryk, A. Lim, W. Jäger, J. Tulip, and M. T. Parsons, “Detection of benzene and toluene gases using a midinfrared continuous-wave external cavity quantum cascade laser at atmospheric pressure,” Appl. Opt. 49, 945–949 (2010).
    [CrossRef] [PubMed]
  19. B. Klotz, S. Sorensen, I. Barnes, K. H. Becker, T. Etzkorn, R. Volkamer, U. Platt, K. Wirtz, and M. Martín-Reviejo, “Atmospheric oxidation of toluene in a large-volume outdoor photoreactor: In situ determination of ring-retaining product yields,” J. Phys. Chem. A 102, 10289–10299 (1998).
    [CrossRef]
  20. H. Takekawa, H. Minoura, and S. Yamazaki, “Temperature dependence of secondary organic aerosol formation by photo-oxidation of hydrocarbons,” Atmos. Environ. 37, 3413–3424 (2003).
    [CrossRef]
  21. W. P. L. Carter, D. R. Cocker, D. R. Fitz, I. L. Malkina, K. Bumiller, C. G. Sauer, J. T. Pisano, C. Bufalino, and C. Song, “A new environmental chamber for evaluation of gas-phase chemical mechanisms and secondary aerosol formation,” Atmos. Environ. 39, 7768–7788 (2005).
    [CrossRef]
  22. C. Song, K. Na, B. Warren, Q. Malloy, and D. R. Cocker, “Secondary organic aerosol formation from m-xylene in the absence of NOx,” Environ. Sci. Technol. 41, 7409–7416(2007).
    [CrossRef] [PubMed]
  23. S. M. Murphy, A. Sorooshian, J. H. Kroll, N. L. Ng, P. Chhabra, C. Tong, J. D. Surratt, E. Knipping, R. C. Flagan, and J. H. Seinfeld, “Secondary aerosol formation from atmospheric reactions of aliphatic amines,” Atmos. Chem. Phys. 7, 2313–2337 (2007).
    [CrossRef]
  24. J. B. McManus, P. L. Kebabian, and W. S. Zahniser, “Astigmatic mirror multipass absorption cells for long-path-length spectroscopy,” Appl. Opt. 34, 3336–3348(1995).
    [CrossRef] [PubMed]
  25. U. Platt, “Differential Optical Absorption Spectroscopy (DOAS),” in Air Monitoring by Spectroscopy Techniques, M.W.Sigrist, ed. (Wiley, 1994), pp. 27–83.
  26. S. W. Sharpe, T. J. Johnson, R. L. Sams, P. M. Chu, G. C. Rhoderick, and P. A. Johnson, “Gas-phase databases for quantitative infrared spectroscopy,” Appl. Spectrosc. 58, 1452–1461 (2004).
    [CrossRef] [PubMed]
  27. S. Fally, M. Carleer, and A. C. Vandaele, “UV Fourier transform absorption cross sections of benzene, toluene, meta-, ortho-, and para-xylene,” J. Quant. Spectrosc. Radiat. Transfer 110, 766–782 (2009).
    [CrossRef]
  28. D. A. Skoog, F. J. Holler, and T. A. Nieman, Principles of Instrumental Analysis (Brooks/Cole: Thomson Learning, 1998).
  29. D. C. Harris, Quantitative Chemical Analysis (W. H. Freeman, New York, 1999).
  30. H. J. L. Forstner, R. C. Flagan, and J. H. Seinfeld, “Secondary organic aerosol from the photooxidation of aromatic hydrocarbons: Molecular composition,” Environ. Sci. Technol. 31, 1345–1358 (1997).
    [CrossRef]
  31. D. F. Smith, T. E. Kleindienst, and C. D. McIver, “Primary product distributions from the reaction of OH with m-, p-xylene, 1,2,4- and 1,3,5-trimethylbenzene,” J. Atmos. Chem. 34, 339–364 (1999).
    [CrossRef]
  32. R. Volkamer, P. Spietz, J. Burrows, and U. Platt, “High-resolution absorption cross-section of glyoxal in the UV-vis and IR spectral ranges,” J. Photochem. Photobiol., A 172, 35–46 (2005).
    [CrossRef]

2010 (1)

2009 (1)

S. Fally, M. Carleer, and A. C. Vandaele, “UV Fourier transform absorption cross sections of benzene, toluene, meta-, ortho-, and para-xylene,” J. Quant. Spectrosc. Radiat. Transfer 110, 766–782 (2009).
[CrossRef]

2008 (1)

G. R. Carmichael, A. Sandu, T. Chai, D. N. Daescu, E. M. Constantinescu, and Y. Tang, “Predicting air quality: Improvements through advanced methods to integrate models and measurements,” J. Comput. Phys. 227, 3540–3571 (2008).
[CrossRef]

2007 (4)

N. L. Ng, J. H. Kroll, A. W. H. Chan, P. S. Chhabra, R. C. Flagan, and J. H. Seinfeld, “Secondary organic aerosol formation from m-xylene, toluene, and benzene,” Atmos. Chem. Phys. 7, 3909–3922 (2007).
[CrossRef]

K. Badjagbo, S. Moore, and S. Sauve, “Real-time continuous monitoring methods for airborne VOCs,” Trends Anal. Chem. 26, 931–940 (2007).
[CrossRef]

C. Song, K. Na, B. Warren, Q. Malloy, and D. R. Cocker, “Secondary organic aerosol formation from m-xylene in the absence of NOx,” Environ. Sci. Technol. 41, 7409–7416(2007).
[CrossRef] [PubMed]

S. M. Murphy, A. Sorooshian, J. H. Kroll, N. L. Ng, P. Chhabra, C. Tong, J. D. Surratt, E. Knipping, R. C. Flagan, and J. H. Seinfeld, “Secondary aerosol formation from atmospheric reactions of aliphatic amines,” Atmos. Chem. Phys. 7, 2313–2337 (2007).
[CrossRef]

2005 (5)

W. P. L. Carter, D. R. Cocker, D. R. Fitz, I. L. Malkina, K. Bumiller, C. G. Sauer, J. T. Pisano, C. Bufalino, and C. Song, “A new environmental chamber for evaluation of gas-phase chemical mechanisms and secondary aerosol formation,” Atmos. Environ. 39, 7768–7788 (2005).
[CrossRef]

Z. Bacsik, J. Mink, and G. Keresztury, “FTIR spectroscopy of the atmosphere Part 2. Applications,” Appl. Spectrosc. Rev. 40, 327–390 (2005).
[CrossRef]

R. Volkamer, L. T. Molina, M. J. Molina, T. Shirley, and W. H. Brune, “DOAS measurement of glyoxal as an indicator for fast VOC chemistry in urban air,” Geophys. Res. Lett. 32, L08806 (2005).
[CrossRef]

M. Martín-Reviejo and K. Wirtz, “Is benzene a precursor for secondary organic aerosol?,” Environ. Sci. Technol. 39, 1045–1054 (2005).
[CrossRef] [PubMed]

R. Volkamer, P. Spietz, J. Burrows, and U. Platt, “High-resolution absorption cross-section of glyoxal in the UV-vis and IR spectral ranges,” J. Photochem. Photobiol., A 172, 35–46 (2005).
[CrossRef]

2004 (2)

2003 (1)

H. Takekawa, H. Minoura, and S. Yamazaki, “Temperature dependence of secondary organic aerosol formation by photo-oxidation of hydrocarbons,” Atmos. Environ. 37, 3413–3424 (2003).
[CrossRef]

2001 (2)

H. M. Heise, U. Muller, A. G. Gartner, and N. Holscher, “Improved chemometric strategies for quantitative FTIR spectral analysis and applications in atmospheric open-path monitoring,” Field Anal. Chem. Technol. 5, 13–28 (2001).
[CrossRef]

H. Skov, A. Lindskog, F. Palmgren, and C. S. Christensen, “An overview of commonly used methods for measuring benzene in ambient air,” Atmos. Environ. 35, S141–S148 (2001).
[CrossRef]

1999 (1)

D. F. Smith, T. E. Kleindienst, and C. D. McIver, “Primary product distributions from the reaction of OH with m-, p-xylene, 1,2,4- and 1,3,5-trimethylbenzene,” J. Atmos. Chem. 34, 339–364 (1999).
[CrossRef]

1998 (2)

R. Volkamer, T. Etzkorn, A. Geyer, and U. Platt, “Correction of the oxygen interference with UV spectroscopic (DOAS) measurements of monocyclic aromatic hydrocarbons in the atmosphere,” Atmos. Environ. 32, 3731–3747 (1998).
[CrossRef]

B. Klotz, S. Sorensen, I. Barnes, K. H. Becker, T. Etzkorn, R. Volkamer, U. Platt, K. Wirtz, and M. Martín-Reviejo, “Atmospheric oxidation of toluene in a large-volume outdoor photoreactor: In situ determination of ring-retaining product yields,” J. Phys. Chem. A 102, 10289–10299 (1998).
[CrossRef]

1997 (2)

R. J. Yokelson, R. Susott, D. E. Ward, J. Reardon, and D. W. T. Griffith, “Emissions from smoldering combustion of biomass measured by open-path Fourier transform infrared spectroscopy,” J. Geophys. Res. 102, 18865–18877 (1997).
[CrossRef]

H. J. L. Forstner, R. C. Flagan, and J. H. Seinfeld, “Secondary organic aerosol from the photooxidation of aromatic hydrocarbons: Molecular composition,” Environ. Sci. Technol. 31, 1345–1358 (1997).
[CrossRef]

1995 (1)

Atkinson, R.

J. G. Calvert, R. Atkinson, K. H. Becker, R. M. Kamens, J. H. Seinfeld, T. J. Wallington, and G. Yarwood, The Mechanisms of Atmospheric Oxidation of Aromatic Hydrocarbons (Oxford University Press, 2002).

Bacsik, Z.

Z. Bacsik, J. Mink, and G. Keresztury, “FTIR spectroscopy of the atmosphere Part 2. Applications,” Appl. Spectrosc. Rev. 40, 327–390 (2005).
[CrossRef]

Badjagbo, K.

K. Badjagbo, S. Moore, and S. Sauve, “Real-time continuous monitoring methods for airborne VOCs,” Trends Anal. Chem. 26, 931–940 (2007).
[CrossRef]

Barnes, I.

B. Klotz, S. Sorensen, I. Barnes, K. H. Becker, T. Etzkorn, R. Volkamer, U. Platt, K. Wirtz, and M. Martín-Reviejo, “Atmospheric oxidation of toluene in a large-volume outdoor photoreactor: In situ determination of ring-retaining product yields,” J. Phys. Chem. A 102, 10289–10299 (1998).
[CrossRef]

Becker, K. H.

B. Klotz, S. Sorensen, I. Barnes, K. H. Becker, T. Etzkorn, R. Volkamer, U. Platt, K. Wirtz, and M. Martín-Reviejo, “Atmospheric oxidation of toluene in a large-volume outdoor photoreactor: In situ determination of ring-retaining product yields,” J. Phys. Chem. A 102, 10289–10299 (1998).
[CrossRef]

J. G. Calvert, R. Atkinson, K. H. Becker, R. M. Kamens, J. H. Seinfeld, T. J. Wallington, and G. Yarwood, The Mechanisms of Atmospheric Oxidation of Aromatic Hydrocarbons (Oxford University Press, 2002).

Brune, W. H.

R. Volkamer, L. T. Molina, M. J. Molina, T. Shirley, and W. H. Brune, “DOAS measurement of glyoxal as an indicator for fast VOC chemistry in urban air,” Geophys. Res. Lett. 32, L08806 (2005).
[CrossRef]

Bufalino, C.

W. P. L. Carter, D. R. Cocker, D. R. Fitz, I. L. Malkina, K. Bumiller, C. G. Sauer, J. T. Pisano, C. Bufalino, and C. Song, “A new environmental chamber for evaluation of gas-phase chemical mechanisms and secondary aerosol formation,” Atmos. Environ. 39, 7768–7788 (2005).
[CrossRef]

Bumiller, K.

W. P. L. Carter, D. R. Cocker, D. R. Fitz, I. L. Malkina, K. Bumiller, C. G. Sauer, J. T. Pisano, C. Bufalino, and C. Song, “A new environmental chamber for evaluation of gas-phase chemical mechanisms and secondary aerosol formation,” Atmos. Environ. 39, 7768–7788 (2005).
[CrossRef]

Burrows, J.

R. Volkamer, P. Spietz, J. Burrows, and U. Platt, “High-resolution absorption cross-section of glyoxal in the UV-vis and IR spectral ranges,” J. Photochem. Photobiol., A 172, 35–46 (2005).
[CrossRef]

Calvert, J. G.

J. G. Calvert, R. Atkinson, K. H. Becker, R. M. Kamens, J. H. Seinfeld, T. J. Wallington, and G. Yarwood, The Mechanisms of Atmospheric Oxidation of Aromatic Hydrocarbons (Oxford University Press, 2002).

Carleer, M.

S. Fally, M. Carleer, and A. C. Vandaele, “UV Fourier transform absorption cross sections of benzene, toluene, meta-, ortho-, and para-xylene,” J. Quant. Spectrosc. Radiat. Transfer 110, 766–782 (2009).
[CrossRef]

Carmichael, G. R.

G. R. Carmichael, A. Sandu, T. Chai, D. N. Daescu, E. M. Constantinescu, and Y. Tang, “Predicting air quality: Improvements through advanced methods to integrate models and measurements,” J. Comput. Phys. 227, 3540–3571 (2008).
[CrossRef]

Carter, W. P. L.

W. P. L. Carter, D. R. Cocker, D. R. Fitz, I. L. Malkina, K. Bumiller, C. G. Sauer, J. T. Pisano, C. Bufalino, and C. Song, “A new environmental chamber for evaluation of gas-phase chemical mechanisms and secondary aerosol formation,” Atmos. Environ. 39, 7768–7788 (2005).
[CrossRef]

Chai, T.

G. R. Carmichael, A. Sandu, T. Chai, D. N. Daescu, E. M. Constantinescu, and Y. Tang, “Predicting air quality: Improvements through advanced methods to integrate models and measurements,” J. Comput. Phys. 227, 3540–3571 (2008).
[CrossRef]

Chan, A. W. H.

N. L. Ng, J. H. Kroll, A. W. H. Chan, P. S. Chhabra, R. C. Flagan, and J. H. Seinfeld, “Secondary organic aerosol formation from m-xylene, toluene, and benzene,” Atmos. Chem. Phys. 7, 3909–3922 (2007).
[CrossRef]

Chhabra, P.

S. M. Murphy, A. Sorooshian, J. H. Kroll, N. L. Ng, P. Chhabra, C. Tong, J. D. Surratt, E. Knipping, R. C. Flagan, and J. H. Seinfeld, “Secondary aerosol formation from atmospheric reactions of aliphatic amines,” Atmos. Chem. Phys. 7, 2313–2337 (2007).
[CrossRef]

Chhabra, P. S.

N. L. Ng, J. H. Kroll, A. W. H. Chan, P. S. Chhabra, R. C. Flagan, and J. H. Seinfeld, “Secondary organic aerosol formation from m-xylene, toluene, and benzene,” Atmos. Chem. Phys. 7, 3909–3922 (2007).
[CrossRef]

Christensen, C. S.

H. Skov, A. Lindskog, F. Palmgren, and C. S. Christensen, “An overview of commonly used methods for measuring benzene in ambient air,” Atmos. Environ. 35, S141–S148 (2001).
[CrossRef]

Chu, P. M.

Cocker, D. R.

C. Song, K. Na, B. Warren, Q. Malloy, and D. R. Cocker, “Secondary organic aerosol formation from m-xylene in the absence of NOx,” Environ. Sci. Technol. 41, 7409–7416(2007).
[CrossRef] [PubMed]

W. P. L. Carter, D. R. Cocker, D. R. Fitz, I. L. Malkina, K. Bumiller, C. G. Sauer, J. T. Pisano, C. Bufalino, and C. Song, “A new environmental chamber for evaluation of gas-phase chemical mechanisms and secondary aerosol formation,” Atmos. Environ. 39, 7768–7788 (2005).
[CrossRef]

Constantinescu, E. M.

G. R. Carmichael, A. Sandu, T. Chai, D. N. Daescu, E. M. Constantinescu, and Y. Tang, “Predicting air quality: Improvements through advanced methods to integrate models and measurements,” J. Comput. Phys. 227, 3540–3571 (2008).
[CrossRef]

Daescu, D. N.

G. R. Carmichael, A. Sandu, T. Chai, D. N. Daescu, E. M. Constantinescu, and Y. Tang, “Predicting air quality: Improvements through advanced methods to integrate models and measurements,” J. Comput. Phys. 227, 3540–3571 (2008).
[CrossRef]

Etzkorn, T.

R. Volkamer, T. Etzkorn, A. Geyer, and U. Platt, “Correction of the oxygen interference with UV spectroscopic (DOAS) measurements of monocyclic aromatic hydrocarbons in the atmosphere,” Atmos. Environ. 32, 3731–3747 (1998).
[CrossRef]

B. Klotz, S. Sorensen, I. Barnes, K. H. Becker, T. Etzkorn, R. Volkamer, U. Platt, K. Wirtz, and M. Martín-Reviejo, “Atmospheric oxidation of toluene in a large-volume outdoor photoreactor: In situ determination of ring-retaining product yields,” J. Phys. Chem. A 102, 10289–10299 (1998).
[CrossRef]

Fally, S.

S. Fally, M. Carleer, and A. C. Vandaele, “UV Fourier transform absorption cross sections of benzene, toluene, meta-, ortho-, and para-xylene,” J. Quant. Spectrosc. Radiat. Transfer 110, 766–782 (2009).
[CrossRef]

Finlayson-Pitts, B. J.

B. J. Finlayson-Pitts and J. N. Pitts, Chemistry of the Upper and Lower Atmosphere: Theory, Experiments and Applications (Academic, 2000).

Fitz, D. R.

W. P. L. Carter, D. R. Cocker, D. R. Fitz, I. L. Malkina, K. Bumiller, C. G. Sauer, J. T. Pisano, C. Bufalino, and C. Song, “A new environmental chamber for evaluation of gas-phase chemical mechanisms and secondary aerosol formation,” Atmos. Environ. 39, 7768–7788 (2005).
[CrossRef]

Flagan, R. C.

S. M. Murphy, A. Sorooshian, J. H. Kroll, N. L. Ng, P. Chhabra, C. Tong, J. D. Surratt, E. Knipping, R. C. Flagan, and J. H. Seinfeld, “Secondary aerosol formation from atmospheric reactions of aliphatic amines,” Atmos. Chem. Phys. 7, 2313–2337 (2007).
[CrossRef]

N. L. Ng, J. H. Kroll, A. W. H. Chan, P. S. Chhabra, R. C. Flagan, and J. H. Seinfeld, “Secondary organic aerosol formation from m-xylene, toluene, and benzene,” Atmos. Chem. Phys. 7, 3909–3922 (2007).
[CrossRef]

H. J. L. Forstner, R. C. Flagan, and J. H. Seinfeld, “Secondary organic aerosol from the photooxidation of aromatic hydrocarbons: Molecular composition,” Environ. Sci. Technol. 31, 1345–1358 (1997).
[CrossRef]

Forstner, H. J. L.

H. J. L. Forstner, R. C. Flagan, and J. H. Seinfeld, “Secondary organic aerosol from the photooxidation of aromatic hydrocarbons: Molecular composition,” Environ. Sci. Technol. 31, 1345–1358 (1997).
[CrossRef]

Gartner, A. G.

H. M. Heise, U. Muller, A. G. Gartner, and N. Holscher, “Improved chemometric strategies for quantitative FTIR spectral analysis and applications in atmospheric open-path monitoring,” Field Anal. Chem. Technol. 5, 13–28 (2001).
[CrossRef]

Geyer, A.

R. Volkamer, T. Etzkorn, A. Geyer, and U. Platt, “Correction of the oxygen interference with UV spectroscopic (DOAS) measurements of monocyclic aromatic hydrocarbons in the atmosphere,” Atmos. Environ. 32, 3731–3747 (1998).
[CrossRef]

Griffith, D. W. T.

R. J. Yokelson, R. Susott, D. E. Ward, J. Reardon, and D. W. T. Griffith, “Emissions from smoldering combustion of biomass measured by open-path Fourier transform infrared spectroscopy,” J. Geophys. Res. 102, 18865–18877 (1997).
[CrossRef]

Harris, D. C.

D. C. Harris, Quantitative Chemical Analysis (W. H. Freeman, New York, 1999).

Heise, H. M.

H. M. Heise, U. Muller, A. G. Gartner, and N. Holscher, “Improved chemometric strategies for quantitative FTIR spectral analysis and applications in atmospheric open-path monitoring,” Field Anal. Chem. Technol. 5, 13–28 (2001).
[CrossRef]

Holler, F. J.

D. A. Skoog, F. J. Holler, and T. A. Nieman, Principles of Instrumental Analysis (Brooks/Cole: Thomson Learning, 1998).

Holscher, N.

H. M. Heise, U. Muller, A. G. Gartner, and N. Holscher, “Improved chemometric strategies for quantitative FTIR spectral analysis and applications in atmospheric open-path monitoring,” Field Anal. Chem. Technol. 5, 13–28 (2001).
[CrossRef]

Jäger, W.

Johnson, P. A.

Johnson, T. J.

Kamens, R. M.

J. G. Calvert, R. Atkinson, K. H. Becker, R. M. Kamens, J. H. Seinfeld, T. J. Wallington, and G. Yarwood, The Mechanisms of Atmospheric Oxidation of Aromatic Hydrocarbons (Oxford University Press, 2002).

Kebabian, P. L.

Keresztury, G.

Z. Bacsik, J. Mink, and G. Keresztury, “FTIR spectroscopy of the atmosphere Part 2. Applications,” Appl. Spectrosc. Rev. 40, 327–390 (2005).
[CrossRef]

Kleindienst, T. E.

D. F. Smith, T. E. Kleindienst, and C. D. McIver, “Primary product distributions from the reaction of OH with m-, p-xylene, 1,2,4- and 1,3,5-trimethylbenzene,” J. Atmos. Chem. 34, 339–364 (1999).
[CrossRef]

Klotz, B.

B. Klotz, S. Sorensen, I. Barnes, K. H. Becker, T. Etzkorn, R. Volkamer, U. Platt, K. Wirtz, and M. Martín-Reviejo, “Atmospheric oxidation of toluene in a large-volume outdoor photoreactor: In situ determination of ring-retaining product yields,” J. Phys. Chem. A 102, 10289–10299 (1998).
[CrossRef]

Knipping, E.

S. M. Murphy, A. Sorooshian, J. H. Kroll, N. L. Ng, P. Chhabra, C. Tong, J. D. Surratt, E. Knipping, R. C. Flagan, and J. H. Seinfeld, “Secondary aerosol formation from atmospheric reactions of aliphatic amines,” Atmos. Chem. Phys. 7, 2313–2337 (2007).
[CrossRef]

Kroll, J. H.

S. M. Murphy, A. Sorooshian, J. H. Kroll, N. L. Ng, P. Chhabra, C. Tong, J. D. Surratt, E. Knipping, R. C. Flagan, and J. H. Seinfeld, “Secondary aerosol formation from atmospheric reactions of aliphatic amines,” Atmos. Chem. Phys. 7, 2313–2337 (2007).
[CrossRef]

N. L. Ng, J. H. Kroll, A. W. H. Chan, P. S. Chhabra, R. C. Flagan, and J. H. Seinfeld, “Secondary organic aerosol formation from m-xylene, toluene, and benzene,” Atmos. Chem. Phys. 7, 3909–3922 (2007).
[CrossRef]

Lax, E. A.

J. Whysner, M. V. Reddy, P. M. Ross, M. Mohan, and E. A. Lax, “Genotoxicity of benzene and its metabolites,” Mutat. Res. 566, 99–130 (2004).
[CrossRef] [PubMed]

Lim, A.

Lindskog, A.

H. Skov, A. Lindskog, F. Palmgren, and C. S. Christensen, “An overview of commonly used methods for measuring benzene in ambient air,” Atmos. Environ. 35, S141–S148 (2001).
[CrossRef]

Lippmann, M.

M. Lippmann, Environmental Toxicants: Human Exposures and Their Health Effects (Wiley, 2009).

Malkina, I. L.

W. P. L. Carter, D. R. Cocker, D. R. Fitz, I. L. Malkina, K. Bumiller, C. G. Sauer, J. T. Pisano, C. Bufalino, and C. Song, “A new environmental chamber for evaluation of gas-phase chemical mechanisms and secondary aerosol formation,” Atmos. Environ. 39, 7768–7788 (2005).
[CrossRef]

Malloy, Q.

C. Song, K. Na, B. Warren, Q. Malloy, and D. R. Cocker, “Secondary organic aerosol formation from m-xylene in the absence of NOx,” Environ. Sci. Technol. 41, 7409–7416(2007).
[CrossRef] [PubMed]

Martín-Reviejo, M.

M. Martín-Reviejo and K. Wirtz, “Is benzene a precursor for secondary organic aerosol?,” Environ. Sci. Technol. 39, 1045–1054 (2005).
[CrossRef] [PubMed]

B. Klotz, S. Sorensen, I. Barnes, K. H. Becker, T. Etzkorn, R. Volkamer, U. Platt, K. Wirtz, and M. Martín-Reviejo, “Atmospheric oxidation of toluene in a large-volume outdoor photoreactor: In situ determination of ring-retaining product yields,” J. Phys. Chem. A 102, 10289–10299 (1998).
[CrossRef]

McIver, C. D.

D. F. Smith, T. E. Kleindienst, and C. D. McIver, “Primary product distributions from the reaction of OH with m-, p-xylene, 1,2,4- and 1,3,5-trimethylbenzene,” J. Atmos. Chem. 34, 339–364 (1999).
[CrossRef]

McManus, J. B.

Mink, J.

Z. Bacsik, J. Mink, and G. Keresztury, “FTIR spectroscopy of the atmosphere Part 2. Applications,” Appl. Spectrosc. Rev. 40, 327–390 (2005).
[CrossRef]

Minoura, H.

H. Takekawa, H. Minoura, and S. Yamazaki, “Temperature dependence of secondary organic aerosol formation by photo-oxidation of hydrocarbons,” Atmos. Environ. 37, 3413–3424 (2003).
[CrossRef]

Mohan, M.

J. Whysner, M. V. Reddy, P. M. Ross, M. Mohan, and E. A. Lax, “Genotoxicity of benzene and its metabolites,” Mutat. Res. 566, 99–130 (2004).
[CrossRef] [PubMed]

Molina, L. T.

R. Volkamer, L. T. Molina, M. J. Molina, T. Shirley, and W. H. Brune, “DOAS measurement of glyoxal as an indicator for fast VOC chemistry in urban air,” Geophys. Res. Lett. 32, L08806 (2005).
[CrossRef]

Molina, M. J.

R. Volkamer, L. T. Molina, M. J. Molina, T. Shirley, and W. H. Brune, “DOAS measurement of glyoxal as an indicator for fast VOC chemistry in urban air,” Geophys. Res. Lett. 32, L08806 (2005).
[CrossRef]

Moore, S.

K. Badjagbo, S. Moore, and S. Sauve, “Real-time continuous monitoring methods for airborne VOCs,” Trends Anal. Chem. 26, 931–940 (2007).
[CrossRef]

Muller, U.

H. M. Heise, U. Muller, A. G. Gartner, and N. Holscher, “Improved chemometric strategies for quantitative FTIR spectral analysis and applications in atmospheric open-path monitoring,” Field Anal. Chem. Technol. 5, 13–28 (2001).
[CrossRef]

Murphy, S. M.

S. M. Murphy, A. Sorooshian, J. H. Kroll, N. L. Ng, P. Chhabra, C. Tong, J. D. Surratt, E. Knipping, R. C. Flagan, and J. H. Seinfeld, “Secondary aerosol formation from atmospheric reactions of aliphatic amines,” Atmos. Chem. Phys. 7, 2313–2337 (2007).
[CrossRef]

Na, K.

C. Song, K. Na, B. Warren, Q. Malloy, and D. R. Cocker, “Secondary organic aerosol formation from m-xylene in the absence of NOx,” Environ. Sci. Technol. 41, 7409–7416(2007).
[CrossRef] [PubMed]

Ng, N. L.

S. M. Murphy, A. Sorooshian, J. H. Kroll, N. L. Ng, P. Chhabra, C. Tong, J. D. Surratt, E. Knipping, R. C. Flagan, and J. H. Seinfeld, “Secondary aerosol formation from atmospheric reactions of aliphatic amines,” Atmos. Chem. Phys. 7, 2313–2337 (2007).
[CrossRef]

N. L. Ng, J. H. Kroll, A. W. H. Chan, P. S. Chhabra, R. C. Flagan, and J. H. Seinfeld, “Secondary organic aerosol formation from m-xylene, toluene, and benzene,” Atmos. Chem. Phys. 7, 3909–3922 (2007).
[CrossRef]

Nieman, T. A.

D. A. Skoog, F. J. Holler, and T. A. Nieman, Principles of Instrumental Analysis (Brooks/Cole: Thomson Learning, 1998).

Palmgren, F.

H. Skov, A. Lindskog, F. Palmgren, and C. S. Christensen, “An overview of commonly used methods for measuring benzene in ambient air,” Atmos. Environ. 35, S141–S148 (2001).
[CrossRef]

Pandis, S. N.

J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, 2006).

Parsons, M. T.

Pisano, J. T.

W. P. L. Carter, D. R. Cocker, D. R. Fitz, I. L. Malkina, K. Bumiller, C. G. Sauer, J. T. Pisano, C. Bufalino, and C. Song, “A new environmental chamber for evaluation of gas-phase chemical mechanisms and secondary aerosol formation,” Atmos. Environ. 39, 7768–7788 (2005).
[CrossRef]

Pitts, J. N.

B. J. Finlayson-Pitts and J. N. Pitts, Chemistry of the Upper and Lower Atmosphere: Theory, Experiments and Applications (Academic, 2000).

Plane, J. M. C.

J. M. C. Plane and A. Saiz-Lopez, “UV-visible differential optical absorption spectroscopy,” in Analytical Techniques for Atmospheric Measurement, D.E.Heard, ed. (Blackwell, 2006), pp. 147–188.
[CrossRef]

Platt, U.

R. Volkamer, P. Spietz, J. Burrows, and U. Platt, “High-resolution absorption cross-section of glyoxal in the UV-vis and IR spectral ranges,” J. Photochem. Photobiol., A 172, 35–46 (2005).
[CrossRef]

R. Volkamer, T. Etzkorn, A. Geyer, and U. Platt, “Correction of the oxygen interference with UV spectroscopic (DOAS) measurements of monocyclic aromatic hydrocarbons in the atmosphere,” Atmos. Environ. 32, 3731–3747 (1998).
[CrossRef]

B. Klotz, S. Sorensen, I. Barnes, K. H. Becker, T. Etzkorn, R. Volkamer, U. Platt, K. Wirtz, and M. Martín-Reviejo, “Atmospheric oxidation of toluene in a large-volume outdoor photoreactor: In situ determination of ring-retaining product yields,” J. Phys. Chem. A 102, 10289–10299 (1998).
[CrossRef]

U. Platt, “Differential Optical Absorption Spectroscopy (DOAS),” in Air Monitoring by Spectroscopy Techniques, M.W.Sigrist, ed. (Wiley, 1994), pp. 27–83.

Reardon, J.

R. J. Yokelson, R. Susott, D. E. Ward, J. Reardon, and D. W. T. Griffith, “Emissions from smoldering combustion of biomass measured by open-path Fourier transform infrared spectroscopy,” J. Geophys. Res. 102, 18865–18877 (1997).
[CrossRef]

Reddy, M. V.

J. Whysner, M. V. Reddy, P. M. Ross, M. Mohan, and E. A. Lax, “Genotoxicity of benzene and its metabolites,” Mutat. Res. 566, 99–130 (2004).
[CrossRef] [PubMed]

Rhoderick, G. C.

Ross, P. M.

J. Whysner, M. V. Reddy, P. M. Ross, M. Mohan, and E. A. Lax, “Genotoxicity of benzene and its metabolites,” Mutat. Res. 566, 99–130 (2004).
[CrossRef] [PubMed]

Saiz-Lopez, A.

J. M. C. Plane and A. Saiz-Lopez, “UV-visible differential optical absorption spectroscopy,” in Analytical Techniques for Atmospheric Measurement, D.E.Heard, ed. (Blackwell, 2006), pp. 147–188.
[CrossRef]

Sams, R. L.

Sandu, A.

G. R. Carmichael, A. Sandu, T. Chai, D. N. Daescu, E. M. Constantinescu, and Y. Tang, “Predicting air quality: Improvements through advanced methods to integrate models and measurements,” J. Comput. Phys. 227, 3540–3571 (2008).
[CrossRef]

Sauer, C. G.

W. P. L. Carter, D. R. Cocker, D. R. Fitz, I. L. Malkina, K. Bumiller, C. G. Sauer, J. T. Pisano, C. Bufalino, and C. Song, “A new environmental chamber for evaluation of gas-phase chemical mechanisms and secondary aerosol formation,” Atmos. Environ. 39, 7768–7788 (2005).
[CrossRef]

Sauve, S.

K. Badjagbo, S. Moore, and S. Sauve, “Real-time continuous monitoring methods for airborne VOCs,” Trends Anal. Chem. 26, 931–940 (2007).
[CrossRef]

Seinfeld, J. H.

N. L. Ng, J. H. Kroll, A. W. H. Chan, P. S. Chhabra, R. C. Flagan, and J. H. Seinfeld, “Secondary organic aerosol formation from m-xylene, toluene, and benzene,” Atmos. Chem. Phys. 7, 3909–3922 (2007).
[CrossRef]

S. M. Murphy, A. Sorooshian, J. H. Kroll, N. L. Ng, P. Chhabra, C. Tong, J. D. Surratt, E. Knipping, R. C. Flagan, and J. H. Seinfeld, “Secondary aerosol formation from atmospheric reactions of aliphatic amines,” Atmos. Chem. Phys. 7, 2313–2337 (2007).
[CrossRef]

H. J. L. Forstner, R. C. Flagan, and J. H. Seinfeld, “Secondary organic aerosol from the photooxidation of aromatic hydrocarbons: Molecular composition,” Environ. Sci. Technol. 31, 1345–1358 (1997).
[CrossRef]

J. G. Calvert, R. Atkinson, K. H. Becker, R. M. Kamens, J. H. Seinfeld, T. J. Wallington, and G. Yarwood, The Mechanisms of Atmospheric Oxidation of Aromatic Hydrocarbons (Oxford University Press, 2002).

J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, 2006).

Sharpe, S. W.

Shirley, T.

R. Volkamer, L. T. Molina, M. J. Molina, T. Shirley, and W. H. Brune, “DOAS measurement of glyoxal as an indicator for fast VOC chemistry in urban air,” Geophys. Res. Lett. 32, L08806 (2005).
[CrossRef]

Skoog, D. A.

D. A. Skoog, F. J. Holler, and T. A. Nieman, Principles of Instrumental Analysis (Brooks/Cole: Thomson Learning, 1998).

Skov, H.

H. Skov, A. Lindskog, F. Palmgren, and C. S. Christensen, “An overview of commonly used methods for measuring benzene in ambient air,” Atmos. Environ. 35, S141–S148 (2001).
[CrossRef]

Smith, D. F.

D. F. Smith, T. E. Kleindienst, and C. D. McIver, “Primary product distributions from the reaction of OH with m-, p-xylene, 1,2,4- and 1,3,5-trimethylbenzene,” J. Atmos. Chem. 34, 339–364 (1999).
[CrossRef]

Song, C.

C. Song, K. Na, B. Warren, Q. Malloy, and D. R. Cocker, “Secondary organic aerosol formation from m-xylene in the absence of NOx,” Environ. Sci. Technol. 41, 7409–7416(2007).
[CrossRef] [PubMed]

W. P. L. Carter, D. R. Cocker, D. R. Fitz, I. L. Malkina, K. Bumiller, C. G. Sauer, J. T. Pisano, C. Bufalino, and C. Song, “A new environmental chamber for evaluation of gas-phase chemical mechanisms and secondary aerosol formation,” Atmos. Environ. 39, 7768–7788 (2005).
[CrossRef]

Sorensen, S.

B. Klotz, S. Sorensen, I. Barnes, K. H. Becker, T. Etzkorn, R. Volkamer, U. Platt, K. Wirtz, and M. Martín-Reviejo, “Atmospheric oxidation of toluene in a large-volume outdoor photoreactor: In situ determination of ring-retaining product yields,” J. Phys. Chem. A 102, 10289–10299 (1998).
[CrossRef]

Sorooshian, A.

S. M. Murphy, A. Sorooshian, J. H. Kroll, N. L. Ng, P. Chhabra, C. Tong, J. D. Surratt, E. Knipping, R. C. Flagan, and J. H. Seinfeld, “Secondary aerosol formation from atmospheric reactions of aliphatic amines,” Atmos. Chem. Phys. 7, 2313–2337 (2007).
[CrossRef]

Spietz, P.

R. Volkamer, P. Spietz, J. Burrows, and U. Platt, “High-resolution absorption cross-section of glyoxal in the UV-vis and IR spectral ranges,” J. Photochem. Photobiol., A 172, 35–46 (2005).
[CrossRef]

Surratt, J. D.

S. M. Murphy, A. Sorooshian, J. H. Kroll, N. L. Ng, P. Chhabra, C. Tong, J. D. Surratt, E. Knipping, R. C. Flagan, and J. H. Seinfeld, “Secondary aerosol formation from atmospheric reactions of aliphatic amines,” Atmos. Chem. Phys. 7, 2313–2337 (2007).
[CrossRef]

Susott, R.

R. J. Yokelson, R. Susott, D. E. Ward, J. Reardon, and D. W. T. Griffith, “Emissions from smoldering combustion of biomass measured by open-path Fourier transform infrared spectroscopy,” J. Geophys. Res. 102, 18865–18877 (1997).
[CrossRef]

Sydoryk, I.

Takekawa, H.

H. Takekawa, H. Minoura, and S. Yamazaki, “Temperature dependence of secondary organic aerosol formation by photo-oxidation of hydrocarbons,” Atmos. Environ. 37, 3413–3424 (2003).
[CrossRef]

Tang, Y.

G. R. Carmichael, A. Sandu, T. Chai, D. N. Daescu, E. M. Constantinescu, and Y. Tang, “Predicting air quality: Improvements through advanced methods to integrate models and measurements,” J. Comput. Phys. 227, 3540–3571 (2008).
[CrossRef]

Tong, C.

S. M. Murphy, A. Sorooshian, J. H. Kroll, N. L. Ng, P. Chhabra, C. Tong, J. D. Surratt, E. Knipping, R. C. Flagan, and J. H. Seinfeld, “Secondary aerosol formation from atmospheric reactions of aliphatic amines,” Atmos. Chem. Phys. 7, 2313–2337 (2007).
[CrossRef]

Tulip, J.

Vandaele, A. C.

S. Fally, M. Carleer, and A. C. Vandaele, “UV Fourier transform absorption cross sections of benzene, toluene, meta-, ortho-, and para-xylene,” J. Quant. Spectrosc. Radiat. Transfer 110, 766–782 (2009).
[CrossRef]

Volkamer, R.

R. Volkamer, P. Spietz, J. Burrows, and U. Platt, “High-resolution absorption cross-section of glyoxal in the UV-vis and IR spectral ranges,” J. Photochem. Photobiol., A 172, 35–46 (2005).
[CrossRef]

R. Volkamer, L. T. Molina, M. J. Molina, T. Shirley, and W. H. Brune, “DOAS measurement of glyoxal as an indicator for fast VOC chemistry in urban air,” Geophys. Res. Lett. 32, L08806 (2005).
[CrossRef]

B. Klotz, S. Sorensen, I. Barnes, K. H. Becker, T. Etzkorn, R. Volkamer, U. Platt, K. Wirtz, and M. Martín-Reviejo, “Atmospheric oxidation of toluene in a large-volume outdoor photoreactor: In situ determination of ring-retaining product yields,” J. Phys. Chem. A 102, 10289–10299 (1998).
[CrossRef]

R. Volkamer, T. Etzkorn, A. Geyer, and U. Platt, “Correction of the oxygen interference with UV spectroscopic (DOAS) measurements of monocyclic aromatic hydrocarbons in the atmosphere,” Atmos. Environ. 32, 3731–3747 (1998).
[CrossRef]

Wallington, T. J.

J. G. Calvert, R. Atkinson, K. H. Becker, R. M. Kamens, J. H. Seinfeld, T. J. Wallington, and G. Yarwood, The Mechanisms of Atmospheric Oxidation of Aromatic Hydrocarbons (Oxford University Press, 2002).

Ward, D. E.

R. J. Yokelson, R. Susott, D. E. Ward, J. Reardon, and D. W. T. Griffith, “Emissions from smoldering combustion of biomass measured by open-path Fourier transform infrared spectroscopy,” J. Geophys. Res. 102, 18865–18877 (1997).
[CrossRef]

Warren, B.

C. Song, K. Na, B. Warren, Q. Malloy, and D. R. Cocker, “Secondary organic aerosol formation from m-xylene in the absence of NOx,” Environ. Sci. Technol. 41, 7409–7416(2007).
[CrossRef] [PubMed]

Whysner, J.

J. Whysner, M. V. Reddy, P. M. Ross, M. Mohan, and E. A. Lax, “Genotoxicity of benzene and its metabolites,” Mutat. Res. 566, 99–130 (2004).
[CrossRef] [PubMed]

Wirtz, K.

M. Martín-Reviejo and K. Wirtz, “Is benzene a precursor for secondary organic aerosol?,” Environ. Sci. Technol. 39, 1045–1054 (2005).
[CrossRef] [PubMed]

B. Klotz, S. Sorensen, I. Barnes, K. H. Becker, T. Etzkorn, R. Volkamer, U. Platt, K. Wirtz, and M. Martín-Reviejo, “Atmospheric oxidation of toluene in a large-volume outdoor photoreactor: In situ determination of ring-retaining product yields,” J. Phys. Chem. A 102, 10289–10299 (1998).
[CrossRef]

Yamazaki, S.

H. Takekawa, H. Minoura, and S. Yamazaki, “Temperature dependence of secondary organic aerosol formation by photo-oxidation of hydrocarbons,” Atmos. Environ. 37, 3413–3424 (2003).
[CrossRef]

Yarwood, G.

J. G. Calvert, R. Atkinson, K. H. Becker, R. M. Kamens, J. H. Seinfeld, T. J. Wallington, and G. Yarwood, The Mechanisms of Atmospheric Oxidation of Aromatic Hydrocarbons (Oxford University Press, 2002).

Yokelson, R. J.

R. J. Yokelson, R. Susott, D. E. Ward, J. Reardon, and D. W. T. Griffith, “Emissions from smoldering combustion of biomass measured by open-path Fourier transform infrared spectroscopy,” J. Geophys. Res. 102, 18865–18877 (1997).
[CrossRef]

Zahniser, W. S.

Appl. Opt. (2)

Appl. Spectrosc. (1)

Appl. Spectrosc. Rev. (1)

Z. Bacsik, J. Mink, and G. Keresztury, “FTIR spectroscopy of the atmosphere Part 2. Applications,” Appl. Spectrosc. Rev. 40, 327–390 (2005).
[CrossRef]

Atmos. Chem. Phys. (2)

N. L. Ng, J. H. Kroll, A. W. H. Chan, P. S. Chhabra, R. C. Flagan, and J. H. Seinfeld, “Secondary organic aerosol formation from m-xylene, toluene, and benzene,” Atmos. Chem. Phys. 7, 3909–3922 (2007).
[CrossRef]

S. M. Murphy, A. Sorooshian, J. H. Kroll, N. L. Ng, P. Chhabra, C. Tong, J. D. Surratt, E. Knipping, R. C. Flagan, and J. H. Seinfeld, “Secondary aerosol formation from atmospheric reactions of aliphatic amines,” Atmos. Chem. Phys. 7, 2313–2337 (2007).
[CrossRef]

Atmos. Environ. (4)

H. Takekawa, H. Minoura, and S. Yamazaki, “Temperature dependence of secondary organic aerosol formation by photo-oxidation of hydrocarbons,” Atmos. Environ. 37, 3413–3424 (2003).
[CrossRef]

W. P. L. Carter, D. R. Cocker, D. R. Fitz, I. L. Malkina, K. Bumiller, C. G. Sauer, J. T. Pisano, C. Bufalino, and C. Song, “A new environmental chamber for evaluation of gas-phase chemical mechanisms and secondary aerosol formation,” Atmos. Environ. 39, 7768–7788 (2005).
[CrossRef]

H. Skov, A. Lindskog, F. Palmgren, and C. S. Christensen, “An overview of commonly used methods for measuring benzene in ambient air,” Atmos. Environ. 35, S141–S148 (2001).
[CrossRef]

R. Volkamer, T. Etzkorn, A. Geyer, and U. Platt, “Correction of the oxygen interference with UV spectroscopic (DOAS) measurements of monocyclic aromatic hydrocarbons in the atmosphere,” Atmos. Environ. 32, 3731–3747 (1998).
[CrossRef]

Environ. Sci. Technol. (3)

M. Martín-Reviejo and K. Wirtz, “Is benzene a precursor for secondary organic aerosol?,” Environ. Sci. Technol. 39, 1045–1054 (2005).
[CrossRef] [PubMed]

C. Song, K. Na, B. Warren, Q. Malloy, and D. R. Cocker, “Secondary organic aerosol formation from m-xylene in the absence of NOx,” Environ. Sci. Technol. 41, 7409–7416(2007).
[CrossRef] [PubMed]

H. J. L. Forstner, R. C. Flagan, and J. H. Seinfeld, “Secondary organic aerosol from the photooxidation of aromatic hydrocarbons: Molecular composition,” Environ. Sci. Technol. 31, 1345–1358 (1997).
[CrossRef]

Field Anal. Chem. Technol. (1)

H. M. Heise, U. Muller, A. G. Gartner, and N. Holscher, “Improved chemometric strategies for quantitative FTIR spectral analysis and applications in atmospheric open-path monitoring,” Field Anal. Chem. Technol. 5, 13–28 (2001).
[CrossRef]

Geophys. Res. Lett. (1)

R. Volkamer, L. T. Molina, M. J. Molina, T. Shirley, and W. H. Brune, “DOAS measurement of glyoxal as an indicator for fast VOC chemistry in urban air,” Geophys. Res. Lett. 32, L08806 (2005).
[CrossRef]

J. Atmos. Chem. (1)

D. F. Smith, T. E. Kleindienst, and C. D. McIver, “Primary product distributions from the reaction of OH with m-, p-xylene, 1,2,4- and 1,3,5-trimethylbenzene,” J. Atmos. Chem. 34, 339–364 (1999).
[CrossRef]

J. Comput. Phys. (1)

G. R. Carmichael, A. Sandu, T. Chai, D. N. Daescu, E. M. Constantinescu, and Y. Tang, “Predicting air quality: Improvements through advanced methods to integrate models and measurements,” J. Comput. Phys. 227, 3540–3571 (2008).
[CrossRef]

J. Geophys. Res. (1)

R. J. Yokelson, R. Susott, D. E. Ward, J. Reardon, and D. W. T. Griffith, “Emissions from smoldering combustion of biomass measured by open-path Fourier transform infrared spectroscopy,” J. Geophys. Res. 102, 18865–18877 (1997).
[CrossRef]

J. Photochem. Photobiol., A (1)

R. Volkamer, P. Spietz, J. Burrows, and U. Platt, “High-resolution absorption cross-section of glyoxal in the UV-vis and IR spectral ranges,” J. Photochem. Photobiol., A 172, 35–46 (2005).
[CrossRef]

J. Phys. Chem. A (1)

B. Klotz, S. Sorensen, I. Barnes, K. H. Becker, T. Etzkorn, R. Volkamer, U. Platt, K. Wirtz, and M. Martín-Reviejo, “Atmospheric oxidation of toluene in a large-volume outdoor photoreactor: In situ determination of ring-retaining product yields,” J. Phys. Chem. A 102, 10289–10299 (1998).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

S. Fally, M. Carleer, and A. C. Vandaele, “UV Fourier transform absorption cross sections of benzene, toluene, meta-, ortho-, and para-xylene,” J. Quant. Spectrosc. Radiat. Transfer 110, 766–782 (2009).
[CrossRef]

Mutat. Res. (1)

J. Whysner, M. V. Reddy, P. M. Ross, M. Mohan, and E. A. Lax, “Genotoxicity of benzene and its metabolites,” Mutat. Res. 566, 99–130 (2004).
[CrossRef] [PubMed]

Trends Anal. Chem. (1)

K. Badjagbo, S. Moore, and S. Sauve, “Real-time continuous monitoring methods for airborne VOCs,” Trends Anal. Chem. 26, 931–940 (2007).
[CrossRef]

Other (9)

J. M. C. Plane and A. Saiz-Lopez, “UV-visible differential optical absorption spectroscopy,” in Analytical Techniques for Atmospheric Measurement, D.E.Heard, ed. (Blackwell, 2006), pp. 147–188.
[CrossRef]

J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, 2006).

M. Lippmann, Environmental Toxicants: Human Exposures and Their Health Effects (Wiley, 2009).

“Interaction Profile for: Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX),” (Agency for Toxic Substances and Disease Registry, 2004).

B. J. Finlayson-Pitts and J. N. Pitts, Chemistry of the Upper and Lower Atmosphere: Theory, Experiments and Applications (Academic, 2000).

J. G. Calvert, R. Atkinson, K. H. Becker, R. M. Kamens, J. H. Seinfeld, T. J. Wallington, and G. Yarwood, The Mechanisms of Atmospheric Oxidation of Aromatic Hydrocarbons (Oxford University Press, 2002).

D. A. Skoog, F. J. Holler, and T. A. Nieman, Principles of Instrumental Analysis (Brooks/Cole: Thomson Learning, 1998).

D. C. Harris, Quantitative Chemical Analysis (W. H. Freeman, New York, 1999).

U. Platt, “Differential Optical Absorption Spectroscopy (DOAS),” in Air Monitoring by Spectroscopy Techniques, M.W.Sigrist, ed. (Wiley, 1994), pp. 27–83.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of experimental setup. Temperature was measured on the outer surfaces of the photoreaction chamber and outside the aluminum enclosure (dashed line). Temperatures were 25 30 ° C within the aluminum enclosure and approximately 21 ° C outside the aluminum enclosure. The condensation particle counter (CPC) was positioned inside the aluminum enclosure to operate at the same temperature as the photoreaction chamber. The UV deuterium lamp and spectrometer were positioned outside the aluminum chamber, with the UV light directed through optical fibres and collimating/collecting lenses. The optical paths are indicated with dotted lines and sample and gas flows are indicated with thick lines.

Fig. 2
Fig. 2

Combined gas concentration calibration data for benzene, toluene, and xylene gases. Mid-IR data are shown as open symbols, with the dashed curve indicating the best linear fit through the data. UV data are shown as filled symbols, with the solid curve indicating the best linear fit through the data.

Fig. 3
Fig. 3

Mid-IR differential optical absorption spectra of (A) benzene ( 3.8 ppm ) + p -xylene ( 3.6 ppm ), and (B) benzene ( 3.9 ppm ) + toluene ( 4.6 ppm ) + p -xylene ( 3.0 ppm ). The path length for these measurements was approximately 70 m . Benzene, toluene, and p-xylene absorb at approximately 9.63 μm , 9.69 μm , and 9.77 μm , respectively. The thick gray curves are observed data and the thin black curves are fits to literature data [26]. Literature spectra have an uncertainty of 3%, and the observed spectra have an uncertainty of 6%.

Fig. 4
Fig. 4

UV differential optical absorption spectra of (A) benzene ( 1.1 ppm ) + p -xylene ( 1.2 ppm ), and (B) benzene ( 3.9 ppm ) + toluene ( 4.6 ppm ) + p -xylene ( 2.1 ppm ). The path length for these measurements was 1.2 m . Although each component has several overlapping absorption features in this region, benzene, toluene, and p-xylene have peak absorption at approximately 253 nm , 267 nm , and 272 nm , respectively. The relative heights of absorption features are critical to determine component gas concentrations. The thick gray curves are observed data and the thin black curves are fits to literature data [27]. Literature and observed spectra have an uncertainty of approximately 1%.

Fig. 5
Fig. 5

Benzene and p-xylene gas concentration measurements in the photoreaction chamber as a function of time. Mid-IR data are shown as thick gray curves and UV data are shown as thin black curves. The products panel shows normalized secondary organic aerosol particle number density as a thin black curve and normalized by-product concentration as a thick gray curve. All data were corrected to account for dilution of the photoreaction chamber content over the course of the reaction, as described in the text.

Fig. 6
Fig. 6

Benzene, toluene, and p-xylene gas concentration measurements in the photoreaction chamber as a function of time. Mid-IR data are shown as thick gray curves, UV data are shown as thin black curves. The product panel shows normalized secondary organic aerosol particle number density as a thin black curve and normalized by-product concentration as a thick gray curve. All data were corrected to account for dilution of the photoreaction chamber content over the course of the reaction, as described in the text.

Fig. 7
Fig. 7

Mid-IR differential optical absorption spectra at specific time intervals for (A)  benzene + p -xylene, and (B)  benzene + toluene + p -xylene. Solid spectra are at t = 0   h , dashed spectra are at t = 1   h (without dilution correction), and dotted spectra are at t = 5   h (without dilution correction). Benzene, toluene, and p-xylene absorb at approximately 9.63 μm , 9.69 μm , and 9.77 μm , respectively. A reaction by-product peak is observed in both cases at 9.67 μm , as indicated by the vertical line through the spectra. Uncertainty in observed spectra is 6%.

Tables (1)

Tables Icon

Table 1 Specifications and Performance Comparison between Mid-IR and UV Systems

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

H 2 O 2 + h ν ( < 370 nm ) 2 OH ( Reaction   1 ) ,
OH + BTX products , ( Reaction   2 ) ,

Metrics