Abstract

We carried out a remote study of ship wakes by optical methods. Both Mie and Raman scattering signals and their evolution were simultaneously recorded by gated detector (intensified CCD). The Mie scattering signal was detectable within 1min after water disturbance by a high-speed boat. According to an approximation of experimental data, Raman signal fluctuations can be detected for a much longer time under the same conditions. We have demonstrated that Raman spectroscopy is substantially more sensitive to water perturbation compared to conventional acoustic (sonar) technique and can be used for ship wake detection and monitoring.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Reed, R. F. Beck, O. M. Griffin, and R. D. Peltzer, “Hydrodynamics of remotely sensed surface ship wakes,” Soc. Nav. Arch. Mar. Eng. Trans. 98, 319–363 (1990) (in Russian).
  2. O. N. Nikitin and I. V. Chernyi, “Remote methods for measurements in the ocean: application of aerospace microwave radiometry tools for observation of processes in the active ocean layer,” Morskie Ispytaniya 3, 22–27 (2008).
  3. M. G. Bulatov, Yu. A. Kravtsov, O. Y. Lavrova, K. T. Litovchenko, M. I. Mityagina, M. D. Raev, K. D. Sabinin, Yu. G. Trokhimovskii, A. N. Churyumov, and I. V. Shugan, “Physical mechanisms of aerospace radar imaging of the ocean,” Phys. Usp. 46, 63–79 (2003).
    [CrossRef]
  4. I. V. Cherny and V. Y. Raizer, Passive Microwave Remote Sensing of Oceans (Wiley-Praxis, 1998).
  5. J. D. Lyden, R. R. Hammond, D. R. Lyzenga, and R. A. Shuchman, “Synthetic aperture radar imaging of surface ship wakes,” J. Geophys. Res. 93, 12293–12303 (1988).
    [CrossRef]
  6. A. B. Ezerskii, B. M. Sandler, and D. A. Selivanovskii, “Echo-ranging observations of gas bubbles near the sea surface,” Sov. Phys. Acoust. 35, 483–485 (1989).
  7. M. V. Trevorrow, S. Vagle, and D. M. Farmer, “Acoustical measurements of microbubbles within ship wakes,” J. Acoust. Soc. Am. 95, 1922–1930 (1994).
    [CrossRef]
  8. A. I. Stepanov, S. N. Karpov, V. A. Kondrashov, S. I. Sachava, M. S. Samartsev, L. A. Spivak, V. A. Tershukov, S. A. Rogov, and S. A. Mal’kov, “Shipborne lidar for hydrological research,” J. Opt. Technol. 75, 101–106 (2008).
    [CrossRef]
  9. N. F. Bunkin and F. V. Bunkin, “Bubstons are stable gas microbubbles in highly diluted solutions of electrolytes,” Sov. Phys. JETP 101, 512–527 (1992).
  10. N. F. Bunkin and F. V. Bunkin, “Screening of strongly charged macroparticles in liquid electrolyte solutions,” Sov. Phys. JETP 96, 730–746 (2003).
    [CrossRef]
  11. R. M. Pashley, M. Rzechowicz, L. R. Pashley, and M. J. Francis, “De-gassed water is a better cleaning agent,” J. Phys. Chem. B 109, 1231–1238 (2005).
    [CrossRef]
  12. P. Valleé, J. Lafait, L. Legrand, P. Mentré, M.-O. Monod, and Y. Thomas, “Effects of pulsed low-frequency electromagnetic fields on water characterized by light scattering techniques: role of bubbles,” Langmuir 21, 2293–2299 (2005).
    [CrossRef] [PubMed]

2008 (2)

O. N. Nikitin and I. V. Chernyi, “Remote methods for measurements in the ocean: application of aerospace microwave radiometry tools for observation of processes in the active ocean layer,” Morskie Ispytaniya 3, 22–27 (2008).

A. I. Stepanov, S. N. Karpov, V. A. Kondrashov, S. I. Sachava, M. S. Samartsev, L. A. Spivak, V. A. Tershukov, S. A. Rogov, and S. A. Mal’kov, “Shipborne lidar for hydrological research,” J. Opt. Technol. 75, 101–106 (2008).
[CrossRef]

2005 (2)

R. M. Pashley, M. Rzechowicz, L. R. Pashley, and M. J. Francis, “De-gassed water is a better cleaning agent,” J. Phys. Chem. B 109, 1231–1238 (2005).
[CrossRef]

P. Valleé, J. Lafait, L. Legrand, P. Mentré, M.-O. Monod, and Y. Thomas, “Effects of pulsed low-frequency electromagnetic fields on water characterized by light scattering techniques: role of bubbles,” Langmuir 21, 2293–2299 (2005).
[CrossRef] [PubMed]

2003 (2)

N. F. Bunkin and F. V. Bunkin, “Screening of strongly charged macroparticles in liquid electrolyte solutions,” Sov. Phys. JETP 96, 730–746 (2003).
[CrossRef]

M. G. Bulatov, Yu. A. Kravtsov, O. Y. Lavrova, K. T. Litovchenko, M. I. Mityagina, M. D. Raev, K. D. Sabinin, Yu. G. Trokhimovskii, A. N. Churyumov, and I. V. Shugan, “Physical mechanisms of aerospace radar imaging of the ocean,” Phys. Usp. 46, 63–79 (2003).
[CrossRef]

1994 (1)

M. V. Trevorrow, S. Vagle, and D. M. Farmer, “Acoustical measurements of microbubbles within ship wakes,” J. Acoust. Soc. Am. 95, 1922–1930 (1994).
[CrossRef]

1992 (1)

N. F. Bunkin and F. V. Bunkin, “Bubstons are stable gas microbubbles in highly diluted solutions of electrolytes,” Sov. Phys. JETP 101, 512–527 (1992).

1990 (1)

A. M. Reed, R. F. Beck, O. M. Griffin, and R. D. Peltzer, “Hydrodynamics of remotely sensed surface ship wakes,” Soc. Nav. Arch. Mar. Eng. Trans. 98, 319–363 (1990) (in Russian).

1989 (1)

A. B. Ezerskii, B. M. Sandler, and D. A. Selivanovskii, “Echo-ranging observations of gas bubbles near the sea surface,” Sov. Phys. Acoust. 35, 483–485 (1989).

1988 (1)

J. D. Lyden, R. R. Hammond, D. R. Lyzenga, and R. A. Shuchman, “Synthetic aperture radar imaging of surface ship wakes,” J. Geophys. Res. 93, 12293–12303 (1988).
[CrossRef]

Beck, R. F.

A. M. Reed, R. F. Beck, O. M. Griffin, and R. D. Peltzer, “Hydrodynamics of remotely sensed surface ship wakes,” Soc. Nav. Arch. Mar. Eng. Trans. 98, 319–363 (1990) (in Russian).

Bulatov, M. G.

M. G. Bulatov, Yu. A. Kravtsov, O. Y. Lavrova, K. T. Litovchenko, M. I. Mityagina, M. D. Raev, K. D. Sabinin, Yu. G. Trokhimovskii, A. N. Churyumov, and I. V. Shugan, “Physical mechanisms of aerospace radar imaging of the ocean,” Phys. Usp. 46, 63–79 (2003).
[CrossRef]

Bunkin, F. V.

N. F. Bunkin and F. V. Bunkin, “Screening of strongly charged macroparticles in liquid electrolyte solutions,” Sov. Phys. JETP 96, 730–746 (2003).
[CrossRef]

N. F. Bunkin and F. V. Bunkin, “Bubstons are stable gas microbubbles in highly diluted solutions of electrolytes,” Sov. Phys. JETP 101, 512–527 (1992).

Bunkin, N. F.

N. F. Bunkin and F. V. Bunkin, “Screening of strongly charged macroparticles in liquid electrolyte solutions,” Sov. Phys. JETP 96, 730–746 (2003).
[CrossRef]

N. F. Bunkin and F. V. Bunkin, “Bubstons are stable gas microbubbles in highly diluted solutions of electrolytes,” Sov. Phys. JETP 101, 512–527 (1992).

Cherny, I. V.

I. V. Cherny and V. Y. Raizer, Passive Microwave Remote Sensing of Oceans (Wiley-Praxis, 1998).

Chernyi, I. V.

O. N. Nikitin and I. V. Chernyi, “Remote methods for measurements in the ocean: application of aerospace microwave radiometry tools for observation of processes in the active ocean layer,” Morskie Ispytaniya 3, 22–27 (2008).

Churyumov, A. N.

M. G. Bulatov, Yu. A. Kravtsov, O. Y. Lavrova, K. T. Litovchenko, M. I. Mityagina, M. D. Raev, K. D. Sabinin, Yu. G. Trokhimovskii, A. N. Churyumov, and I. V. Shugan, “Physical mechanisms of aerospace radar imaging of the ocean,” Phys. Usp. 46, 63–79 (2003).
[CrossRef]

Ezerskii, A. B.

A. B. Ezerskii, B. M. Sandler, and D. A. Selivanovskii, “Echo-ranging observations of gas bubbles near the sea surface,” Sov. Phys. Acoust. 35, 483–485 (1989).

Farmer, D. M.

M. V. Trevorrow, S. Vagle, and D. M. Farmer, “Acoustical measurements of microbubbles within ship wakes,” J. Acoust. Soc. Am. 95, 1922–1930 (1994).
[CrossRef]

Francis, M. J.

R. M. Pashley, M. Rzechowicz, L. R. Pashley, and M. J. Francis, “De-gassed water is a better cleaning agent,” J. Phys. Chem. B 109, 1231–1238 (2005).
[CrossRef]

Griffin, O. M.

A. M. Reed, R. F. Beck, O. M. Griffin, and R. D. Peltzer, “Hydrodynamics of remotely sensed surface ship wakes,” Soc. Nav. Arch. Mar. Eng. Trans. 98, 319–363 (1990) (in Russian).

Hammond, R. R.

J. D. Lyden, R. R. Hammond, D. R. Lyzenga, and R. A. Shuchman, “Synthetic aperture radar imaging of surface ship wakes,” J. Geophys. Res. 93, 12293–12303 (1988).
[CrossRef]

Karpov, S. N.

Kondrashov, V. A.

Kravtsov, Yu. A.

M. G. Bulatov, Yu. A. Kravtsov, O. Y. Lavrova, K. T. Litovchenko, M. I. Mityagina, M. D. Raev, K. D. Sabinin, Yu. G. Trokhimovskii, A. N. Churyumov, and I. V. Shugan, “Physical mechanisms of aerospace radar imaging of the ocean,” Phys. Usp. 46, 63–79 (2003).
[CrossRef]

Lafait, J.

P. Valleé, J. Lafait, L. Legrand, P. Mentré, M.-O. Monod, and Y. Thomas, “Effects of pulsed low-frequency electromagnetic fields on water characterized by light scattering techniques: role of bubbles,” Langmuir 21, 2293–2299 (2005).
[CrossRef] [PubMed]

Lavrova, O. Y.

M. G. Bulatov, Yu. A. Kravtsov, O. Y. Lavrova, K. T. Litovchenko, M. I. Mityagina, M. D. Raev, K. D. Sabinin, Yu. G. Trokhimovskii, A. N. Churyumov, and I. V. Shugan, “Physical mechanisms of aerospace radar imaging of the ocean,” Phys. Usp. 46, 63–79 (2003).
[CrossRef]

Legrand, L.

P. Valleé, J. Lafait, L. Legrand, P. Mentré, M.-O. Monod, and Y. Thomas, “Effects of pulsed low-frequency electromagnetic fields on water characterized by light scattering techniques: role of bubbles,” Langmuir 21, 2293–2299 (2005).
[CrossRef] [PubMed]

Litovchenko, K. T.

M. G. Bulatov, Yu. A. Kravtsov, O. Y. Lavrova, K. T. Litovchenko, M. I. Mityagina, M. D. Raev, K. D. Sabinin, Yu. G. Trokhimovskii, A. N. Churyumov, and I. V. Shugan, “Physical mechanisms of aerospace radar imaging of the ocean,” Phys. Usp. 46, 63–79 (2003).
[CrossRef]

Lyden, J. D.

J. D. Lyden, R. R. Hammond, D. R. Lyzenga, and R. A. Shuchman, “Synthetic aperture radar imaging of surface ship wakes,” J. Geophys. Res. 93, 12293–12303 (1988).
[CrossRef]

Lyzenga, D. R.

J. D. Lyden, R. R. Hammond, D. R. Lyzenga, and R. A. Shuchman, “Synthetic aperture radar imaging of surface ship wakes,” J. Geophys. Res. 93, 12293–12303 (1988).
[CrossRef]

Mal’kov, S. A.

Mentré, P.

P. Valleé, J. Lafait, L. Legrand, P. Mentré, M.-O. Monod, and Y. Thomas, “Effects of pulsed low-frequency electromagnetic fields on water characterized by light scattering techniques: role of bubbles,” Langmuir 21, 2293–2299 (2005).
[CrossRef] [PubMed]

Mityagina, M. I.

M. G. Bulatov, Yu. A. Kravtsov, O. Y. Lavrova, K. T. Litovchenko, M. I. Mityagina, M. D. Raev, K. D. Sabinin, Yu. G. Trokhimovskii, A. N. Churyumov, and I. V. Shugan, “Physical mechanisms of aerospace radar imaging of the ocean,” Phys. Usp. 46, 63–79 (2003).
[CrossRef]

Monod, M.-O.

P. Valleé, J. Lafait, L. Legrand, P. Mentré, M.-O. Monod, and Y. Thomas, “Effects of pulsed low-frequency electromagnetic fields on water characterized by light scattering techniques: role of bubbles,” Langmuir 21, 2293–2299 (2005).
[CrossRef] [PubMed]

Nikitin, O. N.

O. N. Nikitin and I. V. Chernyi, “Remote methods for measurements in the ocean: application of aerospace microwave radiometry tools for observation of processes in the active ocean layer,” Morskie Ispytaniya 3, 22–27 (2008).

Pashley, L. R.

R. M. Pashley, M. Rzechowicz, L. R. Pashley, and M. J. Francis, “De-gassed water is a better cleaning agent,” J. Phys. Chem. B 109, 1231–1238 (2005).
[CrossRef]

Pashley, R. M.

R. M. Pashley, M. Rzechowicz, L. R. Pashley, and M. J. Francis, “De-gassed water is a better cleaning agent,” J. Phys. Chem. B 109, 1231–1238 (2005).
[CrossRef]

Peltzer, R. D.

A. M. Reed, R. F. Beck, O. M. Griffin, and R. D. Peltzer, “Hydrodynamics of remotely sensed surface ship wakes,” Soc. Nav. Arch. Mar. Eng. Trans. 98, 319–363 (1990) (in Russian).

Raev, M. D.

M. G. Bulatov, Yu. A. Kravtsov, O. Y. Lavrova, K. T. Litovchenko, M. I. Mityagina, M. D. Raev, K. D. Sabinin, Yu. G. Trokhimovskii, A. N. Churyumov, and I. V. Shugan, “Physical mechanisms of aerospace radar imaging of the ocean,” Phys. Usp. 46, 63–79 (2003).
[CrossRef]

Raizer, V. Y.

I. V. Cherny and V. Y. Raizer, Passive Microwave Remote Sensing of Oceans (Wiley-Praxis, 1998).

Reed, A. M.

A. M. Reed, R. F. Beck, O. M. Griffin, and R. D. Peltzer, “Hydrodynamics of remotely sensed surface ship wakes,” Soc. Nav. Arch. Mar. Eng. Trans. 98, 319–363 (1990) (in Russian).

Rogov, S. A.

Rzechowicz, M.

R. M. Pashley, M. Rzechowicz, L. R. Pashley, and M. J. Francis, “De-gassed water is a better cleaning agent,” J. Phys. Chem. B 109, 1231–1238 (2005).
[CrossRef]

Sabinin, K. D.

M. G. Bulatov, Yu. A. Kravtsov, O. Y. Lavrova, K. T. Litovchenko, M. I. Mityagina, M. D. Raev, K. D. Sabinin, Yu. G. Trokhimovskii, A. N. Churyumov, and I. V. Shugan, “Physical mechanisms of aerospace radar imaging of the ocean,” Phys. Usp. 46, 63–79 (2003).
[CrossRef]

Sachava, S. I.

Samartsev, M. S.

Sandler, B. M.

A. B. Ezerskii, B. M. Sandler, and D. A. Selivanovskii, “Echo-ranging observations of gas bubbles near the sea surface,” Sov. Phys. Acoust. 35, 483–485 (1989).

Selivanovskii, D. A.

A. B. Ezerskii, B. M. Sandler, and D. A. Selivanovskii, “Echo-ranging observations of gas bubbles near the sea surface,” Sov. Phys. Acoust. 35, 483–485 (1989).

Shuchman, R. A.

J. D. Lyden, R. R. Hammond, D. R. Lyzenga, and R. A. Shuchman, “Synthetic aperture radar imaging of surface ship wakes,” J. Geophys. Res. 93, 12293–12303 (1988).
[CrossRef]

Shugan, I. V.

M. G. Bulatov, Yu. A. Kravtsov, O. Y. Lavrova, K. T. Litovchenko, M. I. Mityagina, M. D. Raev, K. D. Sabinin, Yu. G. Trokhimovskii, A. N. Churyumov, and I. V. Shugan, “Physical mechanisms of aerospace radar imaging of the ocean,” Phys. Usp. 46, 63–79 (2003).
[CrossRef]

Spivak, L. A.

Stepanov, A. I.

Tershukov, V. A.

Thomas, Y.

P. Valleé, J. Lafait, L. Legrand, P. Mentré, M.-O. Monod, and Y. Thomas, “Effects of pulsed low-frequency electromagnetic fields on water characterized by light scattering techniques: role of bubbles,” Langmuir 21, 2293–2299 (2005).
[CrossRef] [PubMed]

Trevorrow, M. V.

M. V. Trevorrow, S. Vagle, and D. M. Farmer, “Acoustical measurements of microbubbles within ship wakes,” J. Acoust. Soc. Am. 95, 1922–1930 (1994).
[CrossRef]

Trokhimovskii, Yu. G.

M. G. Bulatov, Yu. A. Kravtsov, O. Y. Lavrova, K. T. Litovchenko, M. I. Mityagina, M. D. Raev, K. D. Sabinin, Yu. G. Trokhimovskii, A. N. Churyumov, and I. V. Shugan, “Physical mechanisms of aerospace radar imaging of the ocean,” Phys. Usp. 46, 63–79 (2003).
[CrossRef]

Vagle, S.

M. V. Trevorrow, S. Vagle, and D. M. Farmer, “Acoustical measurements of microbubbles within ship wakes,” J. Acoust. Soc. Am. 95, 1922–1930 (1994).
[CrossRef]

Valleé, P.

P. Valleé, J. Lafait, L. Legrand, P. Mentré, M.-O. Monod, and Y. Thomas, “Effects of pulsed low-frequency electromagnetic fields on water characterized by light scattering techniques: role of bubbles,” Langmuir 21, 2293–2299 (2005).
[CrossRef] [PubMed]

J. Acoust. Soc. Am. (1)

M. V. Trevorrow, S. Vagle, and D. M. Farmer, “Acoustical measurements of microbubbles within ship wakes,” J. Acoust. Soc. Am. 95, 1922–1930 (1994).
[CrossRef]

J. Geophys. Res. (1)

J. D. Lyden, R. R. Hammond, D. R. Lyzenga, and R. A. Shuchman, “Synthetic aperture radar imaging of surface ship wakes,” J. Geophys. Res. 93, 12293–12303 (1988).
[CrossRef]

J. Opt. Technol. (1)

J. Phys. Chem. B (1)

R. M. Pashley, M. Rzechowicz, L. R. Pashley, and M. J. Francis, “De-gassed water is a better cleaning agent,” J. Phys. Chem. B 109, 1231–1238 (2005).
[CrossRef]

Langmuir (1)

P. Valleé, J. Lafait, L. Legrand, P. Mentré, M.-O. Monod, and Y. Thomas, “Effects of pulsed low-frequency electromagnetic fields on water characterized by light scattering techniques: role of bubbles,” Langmuir 21, 2293–2299 (2005).
[CrossRef] [PubMed]

Morskie Ispytaniya (1)

O. N. Nikitin and I. V. Chernyi, “Remote methods for measurements in the ocean: application of aerospace microwave radiometry tools for observation of processes in the active ocean layer,” Morskie Ispytaniya 3, 22–27 (2008).

Phys. Usp. (1)

M. G. Bulatov, Yu. A. Kravtsov, O. Y. Lavrova, K. T. Litovchenko, M. I. Mityagina, M. D. Raev, K. D. Sabinin, Yu. G. Trokhimovskii, A. N. Churyumov, and I. V. Shugan, “Physical mechanisms of aerospace radar imaging of the ocean,” Phys. Usp. 46, 63–79 (2003).
[CrossRef]

Soc. Nav. Arch. Mar. Eng. Trans. (1)

A. M. Reed, R. F. Beck, O. M. Griffin, and R. D. Peltzer, “Hydrodynamics of remotely sensed surface ship wakes,” Soc. Nav. Arch. Mar. Eng. Trans. 98, 319–363 (1990) (in Russian).

Sov. Phys. Acoust. (1)

A. B. Ezerskii, B. M. Sandler, and D. A. Selivanovskii, “Echo-ranging observations of gas bubbles near the sea surface,” Sov. Phys. Acoust. 35, 483–485 (1989).

Sov. Phys. JETP (2)

N. F. Bunkin and F. V. Bunkin, “Bubstons are stable gas microbubbles in highly diluted solutions of electrolytes,” Sov. Phys. JETP 101, 512–527 (1992).

N. F. Bunkin and F. V. Bunkin, “Screening of strongly charged macroparticles in liquid electrolyte solutions,” Sov. Phys. JETP 96, 730–746 (2003).
[CrossRef]

Other (1)

I. V. Cherny and V. Y. Raizer, Passive Microwave Remote Sensing of Oceans (Wiley-Praxis, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optical layout of the RS lidar.

Fig. 2
Fig. 2

Typical echo signal of the RS lidar at the simultaneous detection of the backscattering of the pumping radiation at the wavelength 527 nm attenuated by filter, the Stocks component of the RS in water at the wavelength 652 nm , and the chlorophyll-A fluorescence at the wavelength 685 nm . Spectra of the echo signal from the depths 4 m (curve 1, squares) and 6 m (curve 2, circles).

Fig. 3
Fig. 3

Depth evolution of backscattering signal, measured from the ship in the open sea.

Fig. 4
Fig. 4

Simultaneous measurement of Raman and elastic scatterings in the boat wake. The bold arrow marks the moment when a boat has passed through laser beam; other arrows point at subsequent turbulent vortices.

Fig. 5
Fig. 5

Time evolution of the signal from the backscattering of the 527 nm radiation (curve 1, attenuated by a factor of 10 4 by filter) on inhomogeneities (bubbles) and from the RS on water molecules (curve 2).

Metrics