Abstract

A microwave-scattering-based resonance-enhanced multi-photon ionization technique is used to detect molecular species such as NO, CO, Xe, and Ar in pure form, and for standoff detection of trace species in atmospheric pressure air. In this paper,the spectra, dynamics, and the detection limits of trace species in air are studied. We demonstrate 10m scale standoff detection of NO, and show that the system has a linear response down to the parts in 109 NO levels in ambient air.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. S. Moore, “Instrumentation for trace detection of high explosives,” Rev. Sci. Instrum. 75, 2499–2512 (2004).
    [CrossRef]
  2. D. S. Moore, “Recent advances in trace explosives detection instrumentation,” Sens. Imaging 8, 9–38 (2007).
    [CrossRef]
  3. D.R.Crosley, ed., Laser Probes for Combustion Chemistry, ACS Symposium 134 (American Chemical Society, 1980).
    [CrossRef]
  4. A. Owyoung, “Coherent Raman gain spectroscopy using cw laser sources,” IEEE J. Quantum Electron. QE-14, 192–203(1978).
    [CrossRef]
  5. D. G. Murdock, S. V. Stearns, R. T. Lines, D. Lenz, D. M. Brown, and C. R. Philbrick, “Applications of real-world gas detection: Airborne Natural Gas Emission Lidar (ANGEL) system,” J. Appl. Remote Sens. 2, 023518 (2008).
    [CrossRef]
  6. L. Dudragne, P. Adam, and J. Amouroux, “Time-resolved laser-induced breakdown spectroscopy: application for qualitative and quantitative detection of fluorine, chlorine, sulfur, and carbon in air,” Appl. Spectrosc. 52, 1321–1327(1998).
    [CrossRef]
  7. J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Standoff detection of chemical and biological threats using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 62, 353–363 (2008).
    [CrossRef] [PubMed]
  8. W. D. Kulatilaka, C. Ning, S. V. Naik, N. M. Laurendeau, R. P. Lucht, J. P. Kuehner, S. Roy, and J. R. Gord, “Measurement of nitric oxide concentrations in flames by using electronic-resonance-enhanced coherent anti-Stokes Raman scattering,” Opt. Lett. 31, 3357–3359 (2006).
    [CrossRef] [PubMed]
  9. V. Kocharovsky, S. Cameron, K. Lehmann, R. Lucht, R. Miles, Y. Rostovtsev, W. Warren, G. R. Welch, and M. O. Scully, “Gain-swept super-radiance applied to the stand-off detection of trace impurities in the atmosphere,” Proc. Natl. Acad. Sci. USA 102, 7806–7811 (2005).
    [CrossRef] [PubMed]
  10. R. B. Miles, Z. Zhang, S. H. Zaidi, and M. N. Shneider, “Microwave scattering from laser ionized molecules: a new approach to nonintrusive diagnostics,” AIAA J. 45, 513–515(2007).
    [CrossRef]
  11. T. A. Cool, “Quantitative measurement of NO density by resonance three-photon ionization,” Appl. Opt. 23, 1559–1572(1984).
    [CrossRef] [PubMed]
  12. M. N. Schneider and R. B. Miles, “Microwave diagnostics of small plasma objects,” J. Appl. Phys. 98, 0033301 (2006).
    [CrossRef]
  13. W. P. Hess, K. A. H. German, R. A. Bradley, D. P. Taylor, and K. M. Beck, “Laser desorption of NO and CO from sodium nitrate and calcium carbonate crystals,” in IEEE/LEOS 1996 Summer Topical Meetings (1996), pp. 9–10.
  14. Z. Zhang, M. N. Shneider, and R. B. Miles, “Coherent microwave Rayleigh scattering from resonance-enhanced multiphoton ionization in argon,” Phys. Rev. Lett. 98, 265005 (2007).
    [CrossRef] [PubMed]
  15. A. Dogariu, M. N. Shneider, and R. B. Miles, “Direct measurement of the electron loss rate in air,” in Quantum Electronics and Laser Science Conference (QELS), OSA Technical Digest (Optical Society of America, 2010), paper JTuD2.
  16. Z. Zhang, S. Zaidi, C. Brennan, A. Dogariu, M. N. Shneider, and R. B. Miles, “Radar REMPI detection of NO2 by NO photo-fragments,” paper AIAA-2009-525 presented at the 47th AIAA Aerospace Sciences Meeting, Orlando, Fla., 5–9 January 2009.
  17. Y. Luo, Y. D. Cheng, H. Agren, R. Maripuu, W. Seibt, L. Ohlund, P. Ejeklint, B. Carman, K. Z. Xing, Y. Achiba, and K. Siegbahn, “Highly excited states of nitric oxide studied by high-resolution resonance-enhanced multiphoton ionization spectroscopy,” Chem. Phys. 153, 473–481 (1991).
    [CrossRef]

2008

D. G. Murdock, S. V. Stearns, R. T. Lines, D. Lenz, D. M. Brown, and C. R. Philbrick, “Applications of real-world gas detection: Airborne Natural Gas Emission Lidar (ANGEL) system,” J. Appl. Remote Sens. 2, 023518 (2008).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Standoff detection of chemical and biological threats using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 62, 353–363 (2008).
[CrossRef] [PubMed]

2007

D. S. Moore, “Recent advances in trace explosives detection instrumentation,” Sens. Imaging 8, 9–38 (2007).
[CrossRef]

R. B. Miles, Z. Zhang, S. H. Zaidi, and M. N. Shneider, “Microwave scattering from laser ionized molecules: a new approach to nonintrusive diagnostics,” AIAA J. 45, 513–515(2007).
[CrossRef]

Z. Zhang, M. N. Shneider, and R. B. Miles, “Coherent microwave Rayleigh scattering from resonance-enhanced multiphoton ionization in argon,” Phys. Rev. Lett. 98, 265005 (2007).
[CrossRef] [PubMed]

2006

2005

V. Kocharovsky, S. Cameron, K. Lehmann, R. Lucht, R. Miles, Y. Rostovtsev, W. Warren, G. R. Welch, and M. O. Scully, “Gain-swept super-radiance applied to the stand-off detection of trace impurities in the atmosphere,” Proc. Natl. Acad. Sci. USA 102, 7806–7811 (2005).
[CrossRef] [PubMed]

2004

D. S. Moore, “Instrumentation for trace detection of high explosives,” Rev. Sci. Instrum. 75, 2499–2512 (2004).
[CrossRef]

1998

1991

Y. Luo, Y. D. Cheng, H. Agren, R. Maripuu, W. Seibt, L. Ohlund, P. Ejeklint, B. Carman, K. Z. Xing, Y. Achiba, and K. Siegbahn, “Highly excited states of nitric oxide studied by high-resolution resonance-enhanced multiphoton ionization spectroscopy,” Chem. Phys. 153, 473–481 (1991).
[CrossRef]

1984

1978

A. Owyoung, “Coherent Raman gain spectroscopy using cw laser sources,” IEEE J. Quantum Electron. QE-14, 192–203(1978).
[CrossRef]

Achiba, Y.

Y. Luo, Y. D. Cheng, H. Agren, R. Maripuu, W. Seibt, L. Ohlund, P. Ejeklint, B. Carman, K. Z. Xing, Y. Achiba, and K. Siegbahn, “Highly excited states of nitric oxide studied by high-resolution resonance-enhanced multiphoton ionization spectroscopy,” Chem. Phys. 153, 473–481 (1991).
[CrossRef]

Adam, P.

Agren, H.

Y. Luo, Y. D. Cheng, H. Agren, R. Maripuu, W. Seibt, L. Ohlund, P. Ejeklint, B. Carman, K. Z. Xing, Y. Achiba, and K. Siegbahn, “Highly excited states of nitric oxide studied by high-resolution resonance-enhanced multiphoton ionization spectroscopy,” Chem. Phys. 153, 473–481 (1991).
[CrossRef]

Amouroux, J.

Beck, K. M.

W. P. Hess, K. A. H. German, R. A. Bradley, D. P. Taylor, and K. M. Beck, “Laser desorption of NO and CO from sodium nitrate and calcium carbonate crystals,” in IEEE/LEOS 1996 Summer Topical Meetings (1996), pp. 9–10.

Bradley, R. A.

W. P. Hess, K. A. H. German, R. A. Bradley, D. P. Taylor, and K. M. Beck, “Laser desorption of NO and CO from sodium nitrate and calcium carbonate crystals,” in IEEE/LEOS 1996 Summer Topical Meetings (1996), pp. 9–10.

Brennan, C.

Z. Zhang, S. Zaidi, C. Brennan, A. Dogariu, M. N. Shneider, and R. B. Miles, “Radar REMPI detection of NO2 by NO photo-fragments,” paper AIAA-2009-525 presented at the 47th AIAA Aerospace Sciences Meeting, Orlando, Fla., 5–9 January 2009.

Brown, D. M.

D. G. Murdock, S. V. Stearns, R. T. Lines, D. Lenz, D. M. Brown, and C. R. Philbrick, “Applications of real-world gas detection: Airborne Natural Gas Emission Lidar (ANGEL) system,” J. Appl. Remote Sens. 2, 023518 (2008).
[CrossRef]

Cameron, S.

V. Kocharovsky, S. Cameron, K. Lehmann, R. Lucht, R. Miles, Y. Rostovtsev, W. Warren, G. R. Welch, and M. O. Scully, “Gain-swept super-radiance applied to the stand-off detection of trace impurities in the atmosphere,” Proc. Natl. Acad. Sci. USA 102, 7806–7811 (2005).
[CrossRef] [PubMed]

Carman, B.

Y. Luo, Y. D. Cheng, H. Agren, R. Maripuu, W. Seibt, L. Ohlund, P. Ejeklint, B. Carman, K. Z. Xing, Y. Achiba, and K. Siegbahn, “Highly excited states of nitric oxide studied by high-resolution resonance-enhanced multiphoton ionization spectroscopy,” Chem. Phys. 153, 473–481 (1991).
[CrossRef]

Cheng, Y. D.

Y. Luo, Y. D. Cheng, H. Agren, R. Maripuu, W. Seibt, L. Ohlund, P. Ejeklint, B. Carman, K. Z. Xing, Y. Achiba, and K. Siegbahn, “Highly excited states of nitric oxide studied by high-resolution resonance-enhanced multiphoton ionization spectroscopy,” Chem. Phys. 153, 473–481 (1991).
[CrossRef]

Cool, T. A.

De Lucia, F. C.

Dogariu, A.

Z. Zhang, S. Zaidi, C. Brennan, A. Dogariu, M. N. Shneider, and R. B. Miles, “Radar REMPI detection of NO2 by NO photo-fragments,” paper AIAA-2009-525 presented at the 47th AIAA Aerospace Sciences Meeting, Orlando, Fla., 5–9 January 2009.

A. Dogariu, M. N. Shneider, and R. B. Miles, “Direct measurement of the electron loss rate in air,” in Quantum Electronics and Laser Science Conference (QELS), OSA Technical Digest (Optical Society of America, 2010), paper JTuD2.

Dudragne, L.

Ejeklint, P.

Y. Luo, Y. D. Cheng, H. Agren, R. Maripuu, W. Seibt, L. Ohlund, P. Ejeklint, B. Carman, K. Z. Xing, Y. Achiba, and K. Siegbahn, “Highly excited states of nitric oxide studied by high-resolution resonance-enhanced multiphoton ionization spectroscopy,” Chem. Phys. 153, 473–481 (1991).
[CrossRef]

German, K. A. H.

W. P. Hess, K. A. H. German, R. A. Bradley, D. P. Taylor, and K. M. Beck, “Laser desorption of NO and CO from sodium nitrate and calcium carbonate crystals,” in IEEE/LEOS 1996 Summer Topical Meetings (1996), pp. 9–10.

Gord, J. R.

Gottfried, J. L.

Hess, W. P.

W. P. Hess, K. A. H. German, R. A. Bradley, D. P. Taylor, and K. M. Beck, “Laser desorption of NO and CO from sodium nitrate and calcium carbonate crystals,” in IEEE/LEOS 1996 Summer Topical Meetings (1996), pp. 9–10.

Kocharovsky, V.

V. Kocharovsky, S. Cameron, K. Lehmann, R. Lucht, R. Miles, Y. Rostovtsev, W. Warren, G. R. Welch, and M. O. Scully, “Gain-swept super-radiance applied to the stand-off detection of trace impurities in the atmosphere,” Proc. Natl. Acad. Sci. USA 102, 7806–7811 (2005).
[CrossRef] [PubMed]

Kuehner, J. P.

Kulatilaka, W. D.

Laurendeau, N. M.

Lehmann, K.

V. Kocharovsky, S. Cameron, K. Lehmann, R. Lucht, R. Miles, Y. Rostovtsev, W. Warren, G. R. Welch, and M. O. Scully, “Gain-swept super-radiance applied to the stand-off detection of trace impurities in the atmosphere,” Proc. Natl. Acad. Sci. USA 102, 7806–7811 (2005).
[CrossRef] [PubMed]

Lenz, D.

D. G. Murdock, S. V. Stearns, R. T. Lines, D. Lenz, D. M. Brown, and C. R. Philbrick, “Applications of real-world gas detection: Airborne Natural Gas Emission Lidar (ANGEL) system,” J. Appl. Remote Sens. 2, 023518 (2008).
[CrossRef]

Lines, R. T.

D. G. Murdock, S. V. Stearns, R. T. Lines, D. Lenz, D. M. Brown, and C. R. Philbrick, “Applications of real-world gas detection: Airborne Natural Gas Emission Lidar (ANGEL) system,” J. Appl. Remote Sens. 2, 023518 (2008).
[CrossRef]

Lucht, R.

V. Kocharovsky, S. Cameron, K. Lehmann, R. Lucht, R. Miles, Y. Rostovtsev, W. Warren, G. R. Welch, and M. O. Scully, “Gain-swept super-radiance applied to the stand-off detection of trace impurities in the atmosphere,” Proc. Natl. Acad. Sci. USA 102, 7806–7811 (2005).
[CrossRef] [PubMed]

Lucht, R. P.

Luo, Y.

Y. Luo, Y. D. Cheng, H. Agren, R. Maripuu, W. Seibt, L. Ohlund, P. Ejeklint, B. Carman, K. Z. Xing, Y. Achiba, and K. Siegbahn, “Highly excited states of nitric oxide studied by high-resolution resonance-enhanced multiphoton ionization spectroscopy,” Chem. Phys. 153, 473–481 (1991).
[CrossRef]

Maripuu, R.

Y. Luo, Y. D. Cheng, H. Agren, R. Maripuu, W. Seibt, L. Ohlund, P. Ejeklint, B. Carman, K. Z. Xing, Y. Achiba, and K. Siegbahn, “Highly excited states of nitric oxide studied by high-resolution resonance-enhanced multiphoton ionization spectroscopy,” Chem. Phys. 153, 473–481 (1991).
[CrossRef]

Miles, R.

V. Kocharovsky, S. Cameron, K. Lehmann, R. Lucht, R. Miles, Y. Rostovtsev, W. Warren, G. R. Welch, and M. O. Scully, “Gain-swept super-radiance applied to the stand-off detection of trace impurities in the atmosphere,” Proc. Natl. Acad. Sci. USA 102, 7806–7811 (2005).
[CrossRef] [PubMed]

Miles, R. B.

R. B. Miles, Z. Zhang, S. H. Zaidi, and M. N. Shneider, “Microwave scattering from laser ionized molecules: a new approach to nonintrusive diagnostics,” AIAA J. 45, 513–515(2007).
[CrossRef]

Z. Zhang, M. N. Shneider, and R. B. Miles, “Coherent microwave Rayleigh scattering from resonance-enhanced multiphoton ionization in argon,” Phys. Rev. Lett. 98, 265005 (2007).
[CrossRef] [PubMed]

M. N. Schneider and R. B. Miles, “Microwave diagnostics of small plasma objects,” J. Appl. Phys. 98, 0033301 (2006).
[CrossRef]

A. Dogariu, M. N. Shneider, and R. B. Miles, “Direct measurement of the electron loss rate in air,” in Quantum Electronics and Laser Science Conference (QELS), OSA Technical Digest (Optical Society of America, 2010), paper JTuD2.

Z. Zhang, S. Zaidi, C. Brennan, A. Dogariu, M. N. Shneider, and R. B. Miles, “Radar REMPI detection of NO2 by NO photo-fragments,” paper AIAA-2009-525 presented at the 47th AIAA Aerospace Sciences Meeting, Orlando, Fla., 5–9 January 2009.

Miziolek, A. W.

Moore, D. S.

D. S. Moore, “Recent advances in trace explosives detection instrumentation,” Sens. Imaging 8, 9–38 (2007).
[CrossRef]

D. S. Moore, “Instrumentation for trace detection of high explosives,” Rev. Sci. Instrum. 75, 2499–2512 (2004).
[CrossRef]

Munson, C. A.

Murdock, D. G.

D. G. Murdock, S. V. Stearns, R. T. Lines, D. Lenz, D. M. Brown, and C. R. Philbrick, “Applications of real-world gas detection: Airborne Natural Gas Emission Lidar (ANGEL) system,” J. Appl. Remote Sens. 2, 023518 (2008).
[CrossRef]

Naik, S. V.

Ning, C.

Ohlund, L.

Y. Luo, Y. D. Cheng, H. Agren, R. Maripuu, W. Seibt, L. Ohlund, P. Ejeklint, B. Carman, K. Z. Xing, Y. Achiba, and K. Siegbahn, “Highly excited states of nitric oxide studied by high-resolution resonance-enhanced multiphoton ionization spectroscopy,” Chem. Phys. 153, 473–481 (1991).
[CrossRef]

Owyoung, A.

A. Owyoung, “Coherent Raman gain spectroscopy using cw laser sources,” IEEE J. Quantum Electron. QE-14, 192–203(1978).
[CrossRef]

Philbrick, C. R.

D. G. Murdock, S. V. Stearns, R. T. Lines, D. Lenz, D. M. Brown, and C. R. Philbrick, “Applications of real-world gas detection: Airborne Natural Gas Emission Lidar (ANGEL) system,” J. Appl. Remote Sens. 2, 023518 (2008).
[CrossRef]

Rostovtsev, Y.

V. Kocharovsky, S. Cameron, K. Lehmann, R. Lucht, R. Miles, Y. Rostovtsev, W. Warren, G. R. Welch, and M. O. Scully, “Gain-swept super-radiance applied to the stand-off detection of trace impurities in the atmosphere,” Proc. Natl. Acad. Sci. USA 102, 7806–7811 (2005).
[CrossRef] [PubMed]

Roy, S.

Schneider, M. N.

M. N. Schneider and R. B. Miles, “Microwave diagnostics of small plasma objects,” J. Appl. Phys. 98, 0033301 (2006).
[CrossRef]

Scully, M. O.

V. Kocharovsky, S. Cameron, K. Lehmann, R. Lucht, R. Miles, Y. Rostovtsev, W. Warren, G. R. Welch, and M. O. Scully, “Gain-swept super-radiance applied to the stand-off detection of trace impurities in the atmosphere,” Proc. Natl. Acad. Sci. USA 102, 7806–7811 (2005).
[CrossRef] [PubMed]

Seibt, W.

Y. Luo, Y. D. Cheng, H. Agren, R. Maripuu, W. Seibt, L. Ohlund, P. Ejeklint, B. Carman, K. Z. Xing, Y. Achiba, and K. Siegbahn, “Highly excited states of nitric oxide studied by high-resolution resonance-enhanced multiphoton ionization spectroscopy,” Chem. Phys. 153, 473–481 (1991).
[CrossRef]

Shneider, M. N.

R. B. Miles, Z. Zhang, S. H. Zaidi, and M. N. Shneider, “Microwave scattering from laser ionized molecules: a new approach to nonintrusive diagnostics,” AIAA J. 45, 513–515(2007).
[CrossRef]

Z. Zhang, M. N. Shneider, and R. B. Miles, “Coherent microwave Rayleigh scattering from resonance-enhanced multiphoton ionization in argon,” Phys. Rev. Lett. 98, 265005 (2007).
[CrossRef] [PubMed]

Z. Zhang, S. Zaidi, C. Brennan, A. Dogariu, M. N. Shneider, and R. B. Miles, “Radar REMPI detection of NO2 by NO photo-fragments,” paper AIAA-2009-525 presented at the 47th AIAA Aerospace Sciences Meeting, Orlando, Fla., 5–9 January 2009.

A. Dogariu, M. N. Shneider, and R. B. Miles, “Direct measurement of the electron loss rate in air,” in Quantum Electronics and Laser Science Conference (QELS), OSA Technical Digest (Optical Society of America, 2010), paper JTuD2.

Siegbahn, K.

Y. Luo, Y. D. Cheng, H. Agren, R. Maripuu, W. Seibt, L. Ohlund, P. Ejeklint, B. Carman, K. Z. Xing, Y. Achiba, and K. Siegbahn, “Highly excited states of nitric oxide studied by high-resolution resonance-enhanced multiphoton ionization spectroscopy,” Chem. Phys. 153, 473–481 (1991).
[CrossRef]

Stearns, S. V.

D. G. Murdock, S. V. Stearns, R. T. Lines, D. Lenz, D. M. Brown, and C. R. Philbrick, “Applications of real-world gas detection: Airborne Natural Gas Emission Lidar (ANGEL) system,” J. Appl. Remote Sens. 2, 023518 (2008).
[CrossRef]

Taylor, D. P.

W. P. Hess, K. A. H. German, R. A. Bradley, D. P. Taylor, and K. M. Beck, “Laser desorption of NO and CO from sodium nitrate and calcium carbonate crystals,” in IEEE/LEOS 1996 Summer Topical Meetings (1996), pp. 9–10.

Warren, W.

V. Kocharovsky, S. Cameron, K. Lehmann, R. Lucht, R. Miles, Y. Rostovtsev, W. Warren, G. R. Welch, and M. O. Scully, “Gain-swept super-radiance applied to the stand-off detection of trace impurities in the atmosphere,” Proc. Natl. Acad. Sci. USA 102, 7806–7811 (2005).
[CrossRef] [PubMed]

Welch, G. R.

V. Kocharovsky, S. Cameron, K. Lehmann, R. Lucht, R. Miles, Y. Rostovtsev, W. Warren, G. R. Welch, and M. O. Scully, “Gain-swept super-radiance applied to the stand-off detection of trace impurities in the atmosphere,” Proc. Natl. Acad. Sci. USA 102, 7806–7811 (2005).
[CrossRef] [PubMed]

Xing, K. Z.

Y. Luo, Y. D. Cheng, H. Agren, R. Maripuu, W. Seibt, L. Ohlund, P. Ejeklint, B. Carman, K. Z. Xing, Y. Achiba, and K. Siegbahn, “Highly excited states of nitric oxide studied by high-resolution resonance-enhanced multiphoton ionization spectroscopy,” Chem. Phys. 153, 473–481 (1991).
[CrossRef]

Zaidi, S.

Z. Zhang, S. Zaidi, C. Brennan, A. Dogariu, M. N. Shneider, and R. B. Miles, “Radar REMPI detection of NO2 by NO photo-fragments,” paper AIAA-2009-525 presented at the 47th AIAA Aerospace Sciences Meeting, Orlando, Fla., 5–9 January 2009.

Zaidi, S. H.

R. B. Miles, Z. Zhang, S. H. Zaidi, and M. N. Shneider, “Microwave scattering from laser ionized molecules: a new approach to nonintrusive diagnostics,” AIAA J. 45, 513–515(2007).
[CrossRef]

Zhang, Z.

R. B. Miles, Z. Zhang, S. H. Zaidi, and M. N. Shneider, “Microwave scattering from laser ionized molecules: a new approach to nonintrusive diagnostics,” AIAA J. 45, 513–515(2007).
[CrossRef]

Z. Zhang, M. N. Shneider, and R. B. Miles, “Coherent microwave Rayleigh scattering from resonance-enhanced multiphoton ionization in argon,” Phys. Rev. Lett. 98, 265005 (2007).
[CrossRef] [PubMed]

Z. Zhang, S. Zaidi, C. Brennan, A. Dogariu, M. N. Shneider, and R. B. Miles, “Radar REMPI detection of NO2 by NO photo-fragments,” paper AIAA-2009-525 presented at the 47th AIAA Aerospace Sciences Meeting, Orlando, Fla., 5–9 January 2009.

AIAA J.

R. B. Miles, Z. Zhang, S. H. Zaidi, and M. N. Shneider, “Microwave scattering from laser ionized molecules: a new approach to nonintrusive diagnostics,” AIAA J. 45, 513–515(2007).
[CrossRef]

Appl. Opt.

Appl. Spectrosc.

Chem. Phys.

Y. Luo, Y. D. Cheng, H. Agren, R. Maripuu, W. Seibt, L. Ohlund, P. Ejeklint, B. Carman, K. Z. Xing, Y. Achiba, and K. Siegbahn, “Highly excited states of nitric oxide studied by high-resolution resonance-enhanced multiphoton ionization spectroscopy,” Chem. Phys. 153, 473–481 (1991).
[CrossRef]

IEEE J. Quantum Electron.

A. Owyoung, “Coherent Raman gain spectroscopy using cw laser sources,” IEEE J. Quantum Electron. QE-14, 192–203(1978).
[CrossRef]

J. Appl. Phys.

M. N. Schneider and R. B. Miles, “Microwave diagnostics of small plasma objects,” J. Appl. Phys. 98, 0033301 (2006).
[CrossRef]

J. Appl. Remote Sens.

D. G. Murdock, S. V. Stearns, R. T. Lines, D. Lenz, D. M. Brown, and C. R. Philbrick, “Applications of real-world gas detection: Airborne Natural Gas Emission Lidar (ANGEL) system,” J. Appl. Remote Sens. 2, 023518 (2008).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

Z. Zhang, M. N. Shneider, and R. B. Miles, “Coherent microwave Rayleigh scattering from resonance-enhanced multiphoton ionization in argon,” Phys. Rev. Lett. 98, 265005 (2007).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA

V. Kocharovsky, S. Cameron, K. Lehmann, R. Lucht, R. Miles, Y. Rostovtsev, W. Warren, G. R. Welch, and M. O. Scully, “Gain-swept super-radiance applied to the stand-off detection of trace impurities in the atmosphere,” Proc. Natl. Acad. Sci. USA 102, 7806–7811 (2005).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

D. S. Moore, “Instrumentation for trace detection of high explosives,” Rev. Sci. Instrum. 75, 2499–2512 (2004).
[CrossRef]

Sens. Imaging

D. S. Moore, “Recent advances in trace explosives detection instrumentation,” Sens. Imaging 8, 9–38 (2007).
[CrossRef]

Other

D.R.Crosley, ed., Laser Probes for Combustion Chemistry, ACS Symposium 134 (American Chemical Society, 1980).
[CrossRef]

A. Dogariu, M. N. Shneider, and R. B. Miles, “Direct measurement of the electron loss rate in air,” in Quantum Electronics and Laser Science Conference (QELS), OSA Technical Digest (Optical Society of America, 2010), paper JTuD2.

Z. Zhang, S. Zaidi, C. Brennan, A. Dogariu, M. N. Shneider, and R. B. Miles, “Radar REMPI detection of NO2 by NO photo-fragments,” paper AIAA-2009-525 presented at the 47th AIAA Aerospace Sciences Meeting, Orlando, Fla., 5–9 January 2009.

W. P. Hess, K. A. H. German, R. A. Bradley, D. P. Taylor, and K. M. Beck, “Laser desorption of NO and CO from sodium nitrate and calcium carbonate crystals,” in IEEE/LEOS 1996 Summer Topical Meetings (1996), pp. 9–10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup for radar REMPI.

Fig. 2
Fig. 2

Spectra (left) and dynamics (right) of 2 + 1 radar REMPI in CO.

Fig. 3
Fig. 3

2 + 1 radar REMPI in Xe while varying the pressure of Xe atoms.

Fig. 4
Fig. 4

Spectrum (left) and dynamics (right) of 3 + 1 radar REMPI in Ar.

Fig. 5
Fig. 5

1 + 1 radar REMPI spectra in NO : N 2 mixture 1 4 .

Fig. 6
Fig. 6

REMPI signal at 44 , 176 cm 1 for varying NO partial pressure in 1 atm air.

Fig. 7
Fig. 7

Radar REMPI signal dynamics while varying NO partial pressure in atmospheric air.

Fig. 8
Fig. 8

Remote radar REMPI signal from 1% NO in nitrogen atmosphere.

Tables (1)

Tables Icon

Table 1 Excitation Wavelength, Resonant State Energy, and REMPI Process for Selected Species

Metrics