Abstract

Three different diagnostic techniques are investigated for measurement of the thickness of liquid water films deposited on a transparent quartz plate. The methods are based on laser-induced fluorescence (LIF) from low concentrations of a dissolved tracer substance and spontaneous Raman scattering of liquid water, respectively, both excited with 266nm of radiation, and diode laser absorption spectroscopy (DLAS) in the near-infrared spectral region. Signal intensities are calibrated using liquid layers of known thickness between 0 and 1000μm. When applied to evaporating liquid water films, the thickness values derived from the direct DLAS and Raman scattering measurements correlate well with each other as a function of time after the start of data recording, while the LIF signal derived thickness values decrease faster with time due to selective tracer evaporation from the liquid. The simultaneous application of the LIF with a tracer-free detection technique can serve as an in situ reference for quantitative film thickness measurements.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. G. Felton, D. C. Kyritsis, and S. K. Fulcher, “LIF visualization of liquid fuel in the intake manifold during cold start,” SAE technical paper 952464 (Society of Automotive Engineers, 1995).
  2. M. Alonso, P. J. Kay, P. J. Bowen, R. Gilchrist, and S. Sapsford, “A laser induced fluorescence technique for quantitative transient liquid fuel films utilising total internal reflection,” Exp. Fluids 48, 133–142 (2010).
    [CrossRef]
  3. E. Kull, G. Wittafsky, and W. Stolz, “Two-dimensional visualization of liquid layers on transparent walls,” Opt. Lett. 22, 645–647 (1997).
    [CrossRef] [PubMed]
  4. H. Yang, D. Greszik, T. Dreier, and C. Schulz, “Simultaneous measurement of liquid film thickness and water vapor temperature using near-infrared tunable diode laser absorption spectroscopy,” Appl. Phys. B 99, 385–390 (2010).
    [CrossRef]
  5. A. Schagen and M. Modigell, “Local film thickness and temperature distribution measurement in wavy liquid films with a laser-induced luminescence technique,” Exp. Fluids 43, 209–221 (2007).
    [CrossRef]
  6. A. A. Mouza, N. A. Vlachos, S. V. Paras, and A. J. Karabelas, “Measurements of liquid film thickness using laser light absorption method,” Exp. Fluids. 28, 355–359 (2000).
    [CrossRef]
  7. C. Hidrovo and D. Hart, “Emission reabsorption laser induced fluorescence (ERLIF) film thickness measurement,” Meas. Sci. Technol. 12, 467–477 (2001).
    [CrossRef]
  8. D. Greszik, H. Yang, T. Dreier, and C. Schulz, “Measurement of water film thickness by laser-induced fluorescence and Raman imaging,” Appl. Phys. B (2010), DOI:10.1007/s00340-010-4200-x.
    [CrossRef]
  9. C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75–121 (2005).
    [CrossRef]
  10. A. C. Eckbreth, Laser Diagnostics for Combustion, Temperature and Species, 2nd ed. (Gordon & Breach, 1996).
  11. M. A. Siddiqi, Institute for Combustion and Gasdynamics, University of Duisburg-Essen (private communication, 2009).
  12. H. Xu, P. J. Wentworth, N. W. Howell, and J. A. Joens, “Temperature dependent near-UV molar absorptivities of aliphatic aldehydes and ketones in aqueous solution,” Spectrochim. Acta 49, 1171–1178 (1993).
    [CrossRef]
  13. J. Bartlett and K. Voss, “Raman scattering by pure water and seawater,” Appl. Opt. 37, 3324–3332 (1998).
    [CrossRef]
  14. X. Zhou, X. Liu, J. B. Jeffries, and R. K. Hanson, “Development of a sensor for temperature and water concentration in combustion gases using a single tunable diode laser,” Meas. Sci. Technol. 14, 1459–1468 (2003).
    [CrossRef]
  15. G. M. Hale and M. R. Querry, “Optical constants of water in the 200 nm to 200 μm wavelength region,” Appl. Opt. 12, 555–563 (1973).
    [CrossRef] [PubMed]
  16. J. M. Porter, J. B. Jeffries, and R. K. Hanson, “Mid-infrared laser-absorption diagnostic for vapor-phase fuel mole fraction and liquid fuel film thickness,” Appl. Phys. B (2010), DOI:10.1007/s00340-010-3942-9.
    [CrossRef]
  17. J. R. Collins, “Change in the infra-red absorption spectrum of water with temperature,” Phys. Rev. 26, 771–779 (1925).
    [CrossRef]
  18. T. Fuyoto, H. Kronemeyer, B. Lewerich, J. Brübach, T. Fujikawa, K. Akihama, T. Dreier, and C. Schulz, “Temperature and species measurement in a quenching boundary layer on a flat-flame burner,” Exp. Fluids , 49, 783–795 (2010).
    [CrossRef]
  19. D. W. Mattison, J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Tunable diode-laser temperature sensor for evaluation of a valveless pulse detonation engine,” in Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2005-0224 (American Institute of Aeronautics and Astronautics, 2005).
  20. W. Hentschel, A. Grote, and O. Langer, “Measurement of wall film thickness in the intake manifold of a standard production SI engine by a spectroscopic technique,” SAE technical paper 972832 (Society of Automotive Engineers, 1997).
  21. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, Wiley Series in Pure and Applied Optics (Wiley, 1991), pp. 407–411.

2010 (5)

M. Alonso, P. J. Kay, P. J. Bowen, R. Gilchrist, and S. Sapsford, “A laser induced fluorescence technique for quantitative transient liquid fuel films utilising total internal reflection,” Exp. Fluids 48, 133–142 (2010).
[CrossRef]

H. Yang, D. Greszik, T. Dreier, and C. Schulz, “Simultaneous measurement of liquid film thickness and water vapor temperature using near-infrared tunable diode laser absorption spectroscopy,” Appl. Phys. B 99, 385–390 (2010).
[CrossRef]

D. Greszik, H. Yang, T. Dreier, and C. Schulz, “Measurement of water film thickness by laser-induced fluorescence and Raman imaging,” Appl. Phys. B (2010), DOI:10.1007/s00340-010-4200-x.
[CrossRef]

J. M. Porter, J. B. Jeffries, and R. K. Hanson, “Mid-infrared laser-absorption diagnostic for vapor-phase fuel mole fraction and liquid fuel film thickness,” Appl. Phys. B (2010), DOI:10.1007/s00340-010-3942-9.
[CrossRef]

T. Fuyoto, H. Kronemeyer, B. Lewerich, J. Brübach, T. Fujikawa, K. Akihama, T. Dreier, and C. Schulz, “Temperature and species measurement in a quenching boundary layer on a flat-flame burner,” Exp. Fluids , 49, 783–795 (2010).
[CrossRef]

2007 (1)

A. Schagen and M. Modigell, “Local film thickness and temperature distribution measurement in wavy liquid films with a laser-induced luminescence technique,” Exp. Fluids 43, 209–221 (2007).
[CrossRef]

2005 (1)

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75–121 (2005).
[CrossRef]

2003 (1)

X. Zhou, X. Liu, J. B. Jeffries, and R. K. Hanson, “Development of a sensor for temperature and water concentration in combustion gases using a single tunable diode laser,” Meas. Sci. Technol. 14, 1459–1468 (2003).
[CrossRef]

2001 (1)

C. Hidrovo and D. Hart, “Emission reabsorption laser induced fluorescence (ERLIF) film thickness measurement,” Meas. Sci. Technol. 12, 467–477 (2001).
[CrossRef]

2000 (1)

A. A. Mouza, N. A. Vlachos, S. V. Paras, and A. J. Karabelas, “Measurements of liquid film thickness using laser light absorption method,” Exp. Fluids. 28, 355–359 (2000).
[CrossRef]

1998 (1)

1997 (1)

1993 (1)

H. Xu, P. J. Wentworth, N. W. Howell, and J. A. Joens, “Temperature dependent near-UV molar absorptivities of aliphatic aldehydes and ketones in aqueous solution,” Spectrochim. Acta 49, 1171–1178 (1993).
[CrossRef]

1973 (1)

1925 (1)

J. R. Collins, “Change in the infra-red absorption spectrum of water with temperature,” Phys. Rev. 26, 771–779 (1925).
[CrossRef]

Akihama, K.

T. Fuyoto, H. Kronemeyer, B. Lewerich, J. Brübach, T. Fujikawa, K. Akihama, T. Dreier, and C. Schulz, “Temperature and species measurement in a quenching boundary layer on a flat-flame burner,” Exp. Fluids , 49, 783–795 (2010).
[CrossRef]

Alonso, M.

M. Alonso, P. J. Kay, P. J. Bowen, R. Gilchrist, and S. Sapsford, “A laser induced fluorescence technique for quantitative transient liquid fuel films utilising total internal reflection,” Exp. Fluids 48, 133–142 (2010).
[CrossRef]

Bartlett, J.

Bowen, P. J.

M. Alonso, P. J. Kay, P. J. Bowen, R. Gilchrist, and S. Sapsford, “A laser induced fluorescence technique for quantitative transient liquid fuel films utilising total internal reflection,” Exp. Fluids 48, 133–142 (2010).
[CrossRef]

Brübach, J.

T. Fuyoto, H. Kronemeyer, B. Lewerich, J. Brübach, T. Fujikawa, K. Akihama, T. Dreier, and C. Schulz, “Temperature and species measurement in a quenching boundary layer on a flat-flame burner,” Exp. Fluids , 49, 783–795 (2010).
[CrossRef]

Collins, J. R.

J. R. Collins, “Change in the infra-red absorption spectrum of water with temperature,” Phys. Rev. 26, 771–779 (1925).
[CrossRef]

Dreier, T.

T. Fuyoto, H. Kronemeyer, B. Lewerich, J. Brübach, T. Fujikawa, K. Akihama, T. Dreier, and C. Schulz, “Temperature and species measurement in a quenching boundary layer on a flat-flame burner,” Exp. Fluids , 49, 783–795 (2010).
[CrossRef]

H. Yang, D. Greszik, T. Dreier, and C. Schulz, “Simultaneous measurement of liquid film thickness and water vapor temperature using near-infrared tunable diode laser absorption spectroscopy,” Appl. Phys. B 99, 385–390 (2010).
[CrossRef]

D. Greszik, H. Yang, T. Dreier, and C. Schulz, “Measurement of water film thickness by laser-induced fluorescence and Raman imaging,” Appl. Phys. B (2010), DOI:10.1007/s00340-010-4200-x.
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion, Temperature and Species, 2nd ed. (Gordon & Breach, 1996).

Felton, P. G.

P. G. Felton, D. C. Kyritsis, and S. K. Fulcher, “LIF visualization of liquid fuel in the intake manifold during cold start,” SAE technical paper 952464 (Society of Automotive Engineers, 1995).

Fujikawa, T.

T. Fuyoto, H. Kronemeyer, B. Lewerich, J. Brübach, T. Fujikawa, K. Akihama, T. Dreier, and C. Schulz, “Temperature and species measurement in a quenching boundary layer on a flat-flame burner,” Exp. Fluids , 49, 783–795 (2010).
[CrossRef]

Fulcher, S. K.

P. G. Felton, D. C. Kyritsis, and S. K. Fulcher, “LIF visualization of liquid fuel in the intake manifold during cold start,” SAE technical paper 952464 (Society of Automotive Engineers, 1995).

Fuyoto, T.

T. Fuyoto, H. Kronemeyer, B. Lewerich, J. Brübach, T. Fujikawa, K. Akihama, T. Dreier, and C. Schulz, “Temperature and species measurement in a quenching boundary layer on a flat-flame burner,” Exp. Fluids , 49, 783–795 (2010).
[CrossRef]

Gilchrist, R.

M. Alonso, P. J. Kay, P. J. Bowen, R. Gilchrist, and S. Sapsford, “A laser induced fluorescence technique for quantitative transient liquid fuel films utilising total internal reflection,” Exp. Fluids 48, 133–142 (2010).
[CrossRef]

Greszik, D.

H. Yang, D. Greszik, T. Dreier, and C. Schulz, “Simultaneous measurement of liquid film thickness and water vapor temperature using near-infrared tunable diode laser absorption spectroscopy,” Appl. Phys. B 99, 385–390 (2010).
[CrossRef]

D. Greszik, H. Yang, T. Dreier, and C. Schulz, “Measurement of water film thickness by laser-induced fluorescence and Raman imaging,” Appl. Phys. B (2010), DOI:10.1007/s00340-010-4200-x.
[CrossRef]

Grote, A.

W. Hentschel, A. Grote, and O. Langer, “Measurement of wall film thickness in the intake manifold of a standard production SI engine by a spectroscopic technique,” SAE technical paper 972832 (Society of Automotive Engineers, 1997).

Hale, G. M.

Hanson, R. K.

J. M. Porter, J. B. Jeffries, and R. K. Hanson, “Mid-infrared laser-absorption diagnostic for vapor-phase fuel mole fraction and liquid fuel film thickness,” Appl. Phys. B (2010), DOI:10.1007/s00340-010-3942-9.
[CrossRef]

X. Zhou, X. Liu, J. B. Jeffries, and R. K. Hanson, “Development of a sensor for temperature and water concentration in combustion gases using a single tunable diode laser,” Meas. Sci. Technol. 14, 1459–1468 (2003).
[CrossRef]

D. W. Mattison, J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Tunable diode-laser temperature sensor for evaluation of a valveless pulse detonation engine,” in Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2005-0224 (American Institute of Aeronautics and Astronautics, 2005).

Hart, D.

C. Hidrovo and D. Hart, “Emission reabsorption laser induced fluorescence (ERLIF) film thickness measurement,” Meas. Sci. Technol. 12, 467–477 (2001).
[CrossRef]

Hentschel, W.

W. Hentschel, A. Grote, and O. Langer, “Measurement of wall film thickness in the intake manifold of a standard production SI engine by a spectroscopic technique,” SAE technical paper 972832 (Society of Automotive Engineers, 1997).

Hidrovo, C.

C. Hidrovo and D. Hart, “Emission reabsorption laser induced fluorescence (ERLIF) film thickness measurement,” Meas. Sci. Technol. 12, 467–477 (2001).
[CrossRef]

Howell, N. W.

H. Xu, P. J. Wentworth, N. W. Howell, and J. A. Joens, “Temperature dependent near-UV molar absorptivities of aliphatic aldehydes and ketones in aqueous solution,” Spectrochim. Acta 49, 1171–1178 (1993).
[CrossRef]

Jeffries, J. B.

J. M. Porter, J. B. Jeffries, and R. K. Hanson, “Mid-infrared laser-absorption diagnostic for vapor-phase fuel mole fraction and liquid fuel film thickness,” Appl. Phys. B (2010), DOI:10.1007/s00340-010-3942-9.
[CrossRef]

X. Zhou, X. Liu, J. B. Jeffries, and R. K. Hanson, “Development of a sensor for temperature and water concentration in combustion gases using a single tunable diode laser,” Meas. Sci. Technol. 14, 1459–1468 (2003).
[CrossRef]

D. W. Mattison, J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Tunable diode-laser temperature sensor for evaluation of a valveless pulse detonation engine,” in Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2005-0224 (American Institute of Aeronautics and Astronautics, 2005).

Joens, J. A.

H. Xu, P. J. Wentworth, N. W. Howell, and J. A. Joens, “Temperature dependent near-UV molar absorptivities of aliphatic aldehydes and ketones in aqueous solution,” Spectrochim. Acta 49, 1171–1178 (1993).
[CrossRef]

Karabelas, A. J.

A. A. Mouza, N. A. Vlachos, S. V. Paras, and A. J. Karabelas, “Measurements of liquid film thickness using laser light absorption method,” Exp. Fluids. 28, 355–359 (2000).
[CrossRef]

Kay, P. J.

M. Alonso, P. J. Kay, P. J. Bowen, R. Gilchrist, and S. Sapsford, “A laser induced fluorescence technique for quantitative transient liquid fuel films utilising total internal reflection,” Exp. Fluids 48, 133–142 (2010).
[CrossRef]

Kronemeyer, H.

T. Fuyoto, H. Kronemeyer, B. Lewerich, J. Brübach, T. Fujikawa, K. Akihama, T. Dreier, and C. Schulz, “Temperature and species measurement in a quenching boundary layer on a flat-flame burner,” Exp. Fluids , 49, 783–795 (2010).
[CrossRef]

Kull, E.

Kyritsis, D. C.

P. G. Felton, D. C. Kyritsis, and S. K. Fulcher, “LIF visualization of liquid fuel in the intake manifold during cold start,” SAE technical paper 952464 (Society of Automotive Engineers, 1995).

Langer, O.

W. Hentschel, A. Grote, and O. Langer, “Measurement of wall film thickness in the intake manifold of a standard production SI engine by a spectroscopic technique,” SAE technical paper 972832 (Society of Automotive Engineers, 1997).

Lewerich, B.

T. Fuyoto, H. Kronemeyer, B. Lewerich, J. Brübach, T. Fujikawa, K. Akihama, T. Dreier, and C. Schulz, “Temperature and species measurement in a quenching boundary layer on a flat-flame burner,” Exp. Fluids , 49, 783–795 (2010).
[CrossRef]

Liu, J. T. C.

D. W. Mattison, J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Tunable diode-laser temperature sensor for evaluation of a valveless pulse detonation engine,” in Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2005-0224 (American Institute of Aeronautics and Astronautics, 2005).

Liu, X.

X. Zhou, X. Liu, J. B. Jeffries, and R. K. Hanson, “Development of a sensor for temperature and water concentration in combustion gases using a single tunable diode laser,” Meas. Sci. Technol. 14, 1459–1468 (2003).
[CrossRef]

Mattison, D. W.

D. W. Mattison, J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Tunable diode-laser temperature sensor for evaluation of a valveless pulse detonation engine,” in Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2005-0224 (American Institute of Aeronautics and Astronautics, 2005).

Modigell, M.

A. Schagen and M. Modigell, “Local film thickness and temperature distribution measurement in wavy liquid films with a laser-induced luminescence technique,” Exp. Fluids 43, 209–221 (2007).
[CrossRef]

Mouza, A. A.

A. A. Mouza, N. A. Vlachos, S. V. Paras, and A. J. Karabelas, “Measurements of liquid film thickness using laser light absorption method,” Exp. Fluids. 28, 355–359 (2000).
[CrossRef]

Paras, S. V.

A. A. Mouza, N. A. Vlachos, S. V. Paras, and A. J. Karabelas, “Measurements of liquid film thickness using laser light absorption method,” Exp. Fluids. 28, 355–359 (2000).
[CrossRef]

Porter, J. M.

J. M. Porter, J. B. Jeffries, and R. K. Hanson, “Mid-infrared laser-absorption diagnostic for vapor-phase fuel mole fraction and liquid fuel film thickness,” Appl. Phys. B (2010), DOI:10.1007/s00340-010-3942-9.
[CrossRef]

Querry, M. R.

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, Wiley Series in Pure and Applied Optics (Wiley, 1991), pp. 407–411.

Sapsford, S.

M. Alonso, P. J. Kay, P. J. Bowen, R. Gilchrist, and S. Sapsford, “A laser induced fluorescence technique for quantitative transient liquid fuel films utilising total internal reflection,” Exp. Fluids 48, 133–142 (2010).
[CrossRef]

Schagen, A.

A. Schagen and M. Modigell, “Local film thickness and temperature distribution measurement in wavy liquid films with a laser-induced luminescence technique,” Exp. Fluids 43, 209–221 (2007).
[CrossRef]

Schulz, C.

D. Greszik, H. Yang, T. Dreier, and C. Schulz, “Measurement of water film thickness by laser-induced fluorescence and Raman imaging,” Appl. Phys. B (2010), DOI:10.1007/s00340-010-4200-x.
[CrossRef]

H. Yang, D. Greszik, T. Dreier, and C. Schulz, “Simultaneous measurement of liquid film thickness and water vapor temperature using near-infrared tunable diode laser absorption spectroscopy,” Appl. Phys. B 99, 385–390 (2010).
[CrossRef]

T. Fuyoto, H. Kronemeyer, B. Lewerich, J. Brübach, T. Fujikawa, K. Akihama, T. Dreier, and C. Schulz, “Temperature and species measurement in a quenching boundary layer on a flat-flame burner,” Exp. Fluids , 49, 783–795 (2010).
[CrossRef]

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75–121 (2005).
[CrossRef]

Sick, V.

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75–121 (2005).
[CrossRef]

Siddiqi, M. A.

M. A. Siddiqi, Institute for Combustion and Gasdynamics, University of Duisburg-Essen (private communication, 2009).

Stolz, W.

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, Wiley Series in Pure and Applied Optics (Wiley, 1991), pp. 407–411.

Vlachos, N. A.

A. A. Mouza, N. A. Vlachos, S. V. Paras, and A. J. Karabelas, “Measurements of liquid film thickness using laser light absorption method,” Exp. Fluids. 28, 355–359 (2000).
[CrossRef]

Voss, K.

Wentworth, P. J.

H. Xu, P. J. Wentworth, N. W. Howell, and J. A. Joens, “Temperature dependent near-UV molar absorptivities of aliphatic aldehydes and ketones in aqueous solution,” Spectrochim. Acta 49, 1171–1178 (1993).
[CrossRef]

Wittafsky, G.

Xu, H.

H. Xu, P. J. Wentworth, N. W. Howell, and J. A. Joens, “Temperature dependent near-UV molar absorptivities of aliphatic aldehydes and ketones in aqueous solution,” Spectrochim. Acta 49, 1171–1178 (1993).
[CrossRef]

Yang, H.

D. Greszik, H. Yang, T. Dreier, and C. Schulz, “Measurement of water film thickness by laser-induced fluorescence and Raman imaging,” Appl. Phys. B (2010), DOI:10.1007/s00340-010-4200-x.
[CrossRef]

H. Yang, D. Greszik, T. Dreier, and C. Schulz, “Simultaneous measurement of liquid film thickness and water vapor temperature using near-infrared tunable diode laser absorption spectroscopy,” Appl. Phys. B 99, 385–390 (2010).
[CrossRef]

Zhou, X.

X. Zhou, X. Liu, J. B. Jeffries, and R. K. Hanson, “Development of a sensor for temperature and water concentration in combustion gases using a single tunable diode laser,” Meas. Sci. Technol. 14, 1459–1468 (2003).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (3)

J. M. Porter, J. B. Jeffries, and R. K. Hanson, “Mid-infrared laser-absorption diagnostic for vapor-phase fuel mole fraction and liquid fuel film thickness,” Appl. Phys. B (2010), DOI:10.1007/s00340-010-3942-9.
[CrossRef]

H. Yang, D. Greszik, T. Dreier, and C. Schulz, “Simultaneous measurement of liquid film thickness and water vapor temperature using near-infrared tunable diode laser absorption spectroscopy,” Appl. Phys. B 99, 385–390 (2010).
[CrossRef]

D. Greszik, H. Yang, T. Dreier, and C. Schulz, “Measurement of water film thickness by laser-induced fluorescence and Raman imaging,” Appl. Phys. B (2010), DOI:10.1007/s00340-010-4200-x.
[CrossRef]

Exp. Fluids (3)

A. Schagen and M. Modigell, “Local film thickness and temperature distribution measurement in wavy liquid films with a laser-induced luminescence technique,” Exp. Fluids 43, 209–221 (2007).
[CrossRef]

M. Alonso, P. J. Kay, P. J. Bowen, R. Gilchrist, and S. Sapsford, “A laser induced fluorescence technique for quantitative transient liquid fuel films utilising total internal reflection,” Exp. Fluids 48, 133–142 (2010).
[CrossRef]

T. Fuyoto, H. Kronemeyer, B. Lewerich, J. Brübach, T. Fujikawa, K. Akihama, T. Dreier, and C. Schulz, “Temperature and species measurement in a quenching boundary layer on a flat-flame burner,” Exp. Fluids , 49, 783–795 (2010).
[CrossRef]

Exp. Fluids. (1)

A. A. Mouza, N. A. Vlachos, S. V. Paras, and A. J. Karabelas, “Measurements of liquid film thickness using laser light absorption method,” Exp. Fluids. 28, 355–359 (2000).
[CrossRef]

Meas. Sci. Technol. (2)

C. Hidrovo and D. Hart, “Emission reabsorption laser induced fluorescence (ERLIF) film thickness measurement,” Meas. Sci. Technol. 12, 467–477 (2001).
[CrossRef]

X. Zhou, X. Liu, J. B. Jeffries, and R. K. Hanson, “Development of a sensor for temperature and water concentration in combustion gases using a single tunable diode laser,” Meas. Sci. Technol. 14, 1459–1468 (2003).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. (1)

J. R. Collins, “Change in the infra-red absorption spectrum of water with temperature,” Phys. Rev. 26, 771–779 (1925).
[CrossRef]

Prog. Energy Combust. Sci. (1)

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75–121 (2005).
[CrossRef]

Spectrochim. Acta (1)

H. Xu, P. J. Wentworth, N. W. Howell, and J. A. Joens, “Temperature dependent near-UV molar absorptivities of aliphatic aldehydes and ketones in aqueous solution,” Spectrochim. Acta 49, 1171–1178 (1993).
[CrossRef]

Other (6)

P. G. Felton, D. C. Kyritsis, and S. K. Fulcher, “LIF visualization of liquid fuel in the intake manifold during cold start,” SAE technical paper 952464 (Society of Automotive Engineers, 1995).

A. C. Eckbreth, Laser Diagnostics for Combustion, Temperature and Species, 2nd ed. (Gordon & Breach, 1996).

M. A. Siddiqi, Institute for Combustion and Gasdynamics, University of Duisburg-Essen (private communication, 2009).

D. W. Mattison, J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Tunable diode-laser temperature sensor for evaluation of a valveless pulse detonation engine,” in Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2005-0224 (American Institute of Aeronautics and Astronautics, 2005).

W. Hentschel, A. Grote, and O. Langer, “Measurement of wall film thickness in the intake manifold of a standard production SI engine by a spectroscopic technique,” SAE technical paper 972832 (Society of Automotive Engineers, 1997).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, Wiley Series in Pure and Applied Optics (Wiley, 1991), pp. 407–411.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Measured wavelength-dependent absorption cross section of EAA in an aqueous solution at room temperature. The spectral position of the excitation laser used in the current experiments is indicated by a vertical line. The spectrum was measured with a concentration of the solute of 0.1% (by weight) in a 10 mm long sample cell.

Fig. 2
Fig. 2

Fluorescence spectrum of 0.1   wt. % EAA solution at room temperature. The spectrum was measured in a 10 mm long sample cell. Also visible are scattered light at the laser wavelength and the Raman band of liquid water around 294 nm , respectively (see text).

Fig. 3
Fig. 3

Near-infrared–FTIR absorption spectrum of liquid water at room temperature. The wavelength positions of the two laser diodes used in this work are shown as vertical lines. The temperature dependence of the liquid water absorption cross section at these respective wavelengths is depicted in the inset.

Fig. 4
Fig. 4

Excitation and detection arrangement for droplet film measurements on a quartz substrate combining Raman/LIF imaging and absorption techniques.

Fig. 5
Fig. 5

Calibration tool used for producing liquid layers of known thickness. The upper quartz plate is movable with respect to the lower one by a tilting element (not shown) and a translation stage fixed to the stainless steel trough.

Fig. 6
Fig. 6

(a) Calibration curves showing growth of Raman and LIF signal intensities, respectively, with liquid film thickness. Curves are fitted analytical functions (see text). (b) Correlation of thickness values obtained with the NIR-DLAS technique at different sample temperatures around the ideal relationship (solid curve). All data were taken with the calibration tool depicted in Fig. 5.

Fig. 7
Fig. 7

Images of liquid droplet layer thickness (upper row) and spatial profiles along the marked horizontal lines (lower row) using the tracer-LIF (left image) and Raman scattering (right image) techniques, respectively. The laser-illuminated area is indicated by the red contour curve in each image.

Fig. 8
Fig. 8

Signal-to-noise ratios at a fixed film thickness of 100 μm for different numbers of averaged pictures for the LIF and Raman technique, respectively.

Fig. 9
Fig. 9

Variation of liquid water layer thickness with time during film evaporation evaluating, respectively, the (a) Raman and (b) LIF signal intensities (open symbols), in comparison with simultaneous NIR-DLAS measurements (filled symbols). To guide the eye, in each figure the Raman and LIF data, respectively, are fitted with a straight (dashed) curve. The fitting polynomials are depicted inside the corresponding graphs.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I LIF = η ϕ Ω 4 π E Laser N 1 0 σ abs A d ,
I Raman = η E Laser N d σ Raman d Ω d Ω det A d .
d = ln ( τ 1 / τ 2 ) ( σ 2 σ 1 ) n ,

Metrics