Abstract

We present what we believe to be the first application of the laser-induced incandescence (LII) technique to large-scale fire testing. The construction of an LII instrument for fire measurements is presented in detail. Soot volume fraction imaging from 2m diameter pool fires burning blended toluene/methanol liquid fuels is demonstrated along with a detailed report of measurement uncertainty in the challenging pool fire environment. Our LII instrument relies upon remotely located laser, optical, and detection systems and the insertion of water-cooled, fiber-bundle-coupled collection optics into the fire plume. Calibration of the instrument was performed using an ethylene/air laminar diffusion flame produced by a Santoro-type burner, which allowed for the extraction of absolute soot volume fractions from the LII images. Single-laser-shot two-dimensional images of the soot layer structure are presented with very high volumetric spatial resolution of the order of 105cm3. Probability density functions of the soot volume fraction fluctuations are constructed from the large LII image ensembles. The results illustrate a highly intermittent soot fluctuation field with potentially large macroscale soot structures and clipped soot probability densities.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. A. Jensen, J. M. Suo-Anttila, and L. G. Blevins, “Measurement of soot morphology, chemistry, and optical properties in the visible and near-infrared spectrum in the flame zone and overfire region of large JP-8 pool fires,” Combust. Sci. Technol. 179, 2453–2487 (2007).
    [CrossRef]
  2. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon & Breach, 1996).
  3. K. Kohse-Höinghaus and J. B. Jeffries, Applied Combustion Diagnostics (Taylor & Francis, 2002).
  4. S. R. Tieszen, T. J. O’Hern, E. J. Weckman, and R. W. Schefer, “Experimental study of the effect of fuel mass flux on a 1 m-diameter methane fire and comparison with a hydrogen fire,” Combust. Flame 139, 126–141 (2004).
    [CrossRef]
  5. L. A. Gritzo, Y. R. Sivathanu, and W. Gill, “Transient measurement of radiative properties, soot volume fraction, and soot temperature in a large pool fire,” Combust. Sci. Technol. 139, 113–136 (1998).
    [CrossRef]
  6. J. J. Murphy and C. R. Shaddix, “Soot property measurements in a two-meter diameter JP-8 pool fire,” Combust. Sci. Technol. 178, 865–894 (2006).
    [CrossRef]
  7. S. P. Kearney, “Temporally resolved radiation spectra from a sooting turbulent pool fire,” in Proceedings of the International Mechanical Engineering Congress and Exposition (ASME, 2001), pp. 137–140.
  8. S. P. Kearney, K. Frederickson, and T. W. Grasser, “Dual-pump coherent anti-Stokes Raman scattering thermometry in a sooting turbulent pool fire,” Proc. Combust. Inst. 32, 871–878(2009).
    [CrossRef]
  9. K. Frederickson, S. P. Kearney, A. Luketa, J. C. Hewson, and T. W. Grasser, “Dual-pump CARS measurements of temperature and oxygen in a turbulent methanol-fueled pool fire,” Combust. Sci. Technol. 182, 941–959 (2010).
    [CrossRef]
  10. R. J. Santoro and C. R. Shaddix, “Laser-induced incandescence,” in Applied Combustion Diagnostics, K.K.Höinghaus and J.B.Jeffries, eds. (Taylor & Francis, 2002), pp. 252–286.
  11. B. Quay, T. W. Lee, T. Ni, and R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
    [CrossRef]
  12. R. L. VanderWal and K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–452(1994).
    [CrossRef]
  13. R. L. VanderWal, K. A. Jensen, and M. Y. Choi, “Simultaneous laser-induced emission of soot and polycyclic aromatic hydrocarbons within a gas-jet diffusion flame,” Combust. Flame 109, 399–414 (1997).
    [CrossRef]
  14. C. R. Shaddix and K. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
    [CrossRef]
  15. P. O. Witze, S. Hochgreb, D. Kayes, H. A. Michelsen, and C. R. Shaddix, “Time-resolved laser-induced incandescence and laser elastic-scattering measurements in a propane diffusion flame,” Appl. Opt. 40, 2443–2452 (2001).
    [CrossRef]
  16. T. Ni, J. A. Pinson, S. Gupta, and R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091(1995).
    [CrossRef] [PubMed]
  17. M. A. Mikofski, T. C. Williams, C. R. Shaddix, A. C. Fernandez-Pello, and L. G. Blevins, “Structure of laminar sooting inverse diffusion flames,” Combust. Flame 149, 463–478 (2007).
    [CrossRef]
  18. T. L. Henriksen, G. J. Nathan, Z. T. Alwahabi, N. Qamar, T. A. Ring, and E. G. Eddings, “Planar measurements of soot volume fraction and OH in a JP-8 pool fire,” Combust. Flame 156, 1480–1492 (2009).
    [CrossRef]
  19. Y. Xin and J. P. Gore, “Two-dimensional soot distributions in buoyant turbulent fires,” Proc. Combust. Inst. 30, 719–726(2005).
    [CrossRef]
  20. T. J. O’Hern, E. J. Weckman, A. L. Gerhart, S. R. Tieszen, and R. W. Schefer, “Experimental study of a turbulent buoyant helium plume,” J. Fluid Mech. 544, 143–171 (2005).
    [CrossRef]
  21. F. Goulay, L. Nemes, P. E. Schrader, and H. A. Michelsen, “Spontaneous emission from C2(dΠ3g) and C3(AΠ1u) during laser irradiation of soot particles,” Mol. Phys. 108, 1013–1025 (2010).
    [CrossRef]
  22. R. J. Santoro, H. G. Semerjian, and R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983).
    [CrossRef]
  23. P. S. Greenberg and J. C. Ku, “Soot volume fraction imaging,” Appl. Opt. 36, 5514–5522 (1997).
    [CrossRef] [PubMed]
  24. N. H. Qamar, Z. T. Alwahabi, Q. N. Chan, G. J. Nathan, D. Roekaerts, and K. D. King, “Soot volume fraction in a piloted turbulent jet nonpremixed flame of natural gas,” Combust. Flame 156, 1339–1347 (2009).
    [CrossRef]
  25. J. Zerbs, K. P. Geigle, O. Lammel, J. Hader, R. Stirn, R. Hadef, and W. Meier, “The influence of wavelength in extinction measurements and beam steering in laser-induced incandescence measurements in sooting flames,” Appl. Phys. B 96, 683–694(2009).
    [CrossRef]
  26. T. C. Williams, C. R. Shaddix, K. A. Jensen, and J. M. Suo-Anttila, “Measurements of the dimensionless extinction coefficient of soot within laminar diffusion flames,” Int. J. Heat Mass Transfer 50, 1616–1630 (2007).
    [CrossRef]
  27. W. H. Dalzell and A. F. Sarofim, “Optical constants of soot and their application to heat-flux calculations,” J. Heat Transfer 91, 100–104 (1969).
    [CrossRef]
  28. C. M. Sorensen, W. Kim, D. Fry, D. Shi, and A. Chakrabarti, “Observation of soot superaggregates with a fractal dimension of 2.6 in laminar acetylene/air diffusion flames,” Langmuir 19, 7560–7563 (2003).
    [CrossRef]
  29. A. J. Ricks, J. C. Hewson, A. R. Kerstein, J. P. Gore, S. R. Tieszen, and W. T. Ashhurst, “A spatially developing one-dimensional turbulence (ODT) study of soot and enthalpy evolution in meter-scale buoyant turbulent flames,” Combust. Sci. Technol. 182, 60–101 (2010).
    [CrossRef]
  30. R. J. Moffat, “Describing the uncertainties in experimental results,” Exp. Therm. Fluid Sci. 1, 3–17 (1988).
    [CrossRef]
  31. K. Frederickson, S. P. Kearney, and T. W. Grasser, “Quantitative laser-induced incandescence measurements of soot in turbulent pool fires,” in 48th AIAA Aerospace Sciences Meeting, (AIAA, 2010), paper AIAA-2010-300.

2010 (3)

K. Frederickson, S. P. Kearney, A. Luketa, J. C. Hewson, and T. W. Grasser, “Dual-pump CARS measurements of temperature and oxygen in a turbulent methanol-fueled pool fire,” Combust. Sci. Technol. 182, 941–959 (2010).
[CrossRef]

F. Goulay, L. Nemes, P. E. Schrader, and H. A. Michelsen, “Spontaneous emission from C2(dΠ3g) and C3(AΠ1u) during laser irradiation of soot particles,” Mol. Phys. 108, 1013–1025 (2010).
[CrossRef]

A. J. Ricks, J. C. Hewson, A. R. Kerstein, J. P. Gore, S. R. Tieszen, and W. T. Ashhurst, “A spatially developing one-dimensional turbulence (ODT) study of soot and enthalpy evolution in meter-scale buoyant turbulent flames,” Combust. Sci. Technol. 182, 60–101 (2010).
[CrossRef]

2009 (4)

N. H. Qamar, Z. T. Alwahabi, Q. N. Chan, G. J. Nathan, D. Roekaerts, and K. D. King, “Soot volume fraction in a piloted turbulent jet nonpremixed flame of natural gas,” Combust. Flame 156, 1339–1347 (2009).
[CrossRef]

J. Zerbs, K. P. Geigle, O. Lammel, J. Hader, R. Stirn, R. Hadef, and W. Meier, “The influence of wavelength in extinction measurements and beam steering in laser-induced incandescence measurements in sooting flames,” Appl. Phys. B 96, 683–694(2009).
[CrossRef]

T. L. Henriksen, G. J. Nathan, Z. T. Alwahabi, N. Qamar, T. A. Ring, and E. G. Eddings, “Planar measurements of soot volume fraction and OH in a JP-8 pool fire,” Combust. Flame 156, 1480–1492 (2009).
[CrossRef]

S. P. Kearney, K. Frederickson, and T. W. Grasser, “Dual-pump coherent anti-Stokes Raman scattering thermometry in a sooting turbulent pool fire,” Proc. Combust. Inst. 32, 871–878(2009).
[CrossRef]

2007 (3)

K. A. Jensen, J. M. Suo-Anttila, and L. G. Blevins, “Measurement of soot morphology, chemistry, and optical properties in the visible and near-infrared spectrum in the flame zone and overfire region of large JP-8 pool fires,” Combust. Sci. Technol. 179, 2453–2487 (2007).
[CrossRef]

M. A. Mikofski, T. C. Williams, C. R. Shaddix, A. C. Fernandez-Pello, and L. G. Blevins, “Structure of laminar sooting inverse diffusion flames,” Combust. Flame 149, 463–478 (2007).
[CrossRef]

T. C. Williams, C. R. Shaddix, K. A. Jensen, and J. M. Suo-Anttila, “Measurements of the dimensionless extinction coefficient of soot within laminar diffusion flames,” Int. J. Heat Mass Transfer 50, 1616–1630 (2007).
[CrossRef]

2006 (1)

J. J. Murphy and C. R. Shaddix, “Soot property measurements in a two-meter diameter JP-8 pool fire,” Combust. Sci. Technol. 178, 865–894 (2006).
[CrossRef]

2005 (2)

Y. Xin and J. P. Gore, “Two-dimensional soot distributions in buoyant turbulent fires,” Proc. Combust. Inst. 30, 719–726(2005).
[CrossRef]

T. J. O’Hern, E. J. Weckman, A. L. Gerhart, S. R. Tieszen, and R. W. Schefer, “Experimental study of a turbulent buoyant helium plume,” J. Fluid Mech. 544, 143–171 (2005).
[CrossRef]

2004 (1)

S. R. Tieszen, T. J. O’Hern, E. J. Weckman, and R. W. Schefer, “Experimental study of the effect of fuel mass flux on a 1 m-diameter methane fire and comparison with a hydrogen fire,” Combust. Flame 139, 126–141 (2004).
[CrossRef]

2003 (1)

C. M. Sorensen, W. Kim, D. Fry, D. Shi, and A. Chakrabarti, “Observation of soot superaggregates with a fractal dimension of 2.6 in laminar acetylene/air diffusion flames,” Langmuir 19, 7560–7563 (2003).
[CrossRef]

2001 (1)

1998 (1)

L. A. Gritzo, Y. R. Sivathanu, and W. Gill, “Transient measurement of radiative properties, soot volume fraction, and soot temperature in a large pool fire,” Combust. Sci. Technol. 139, 113–136 (1998).
[CrossRef]

1997 (2)

R. L. VanderWal, K. A. Jensen, and M. Y. Choi, “Simultaneous laser-induced emission of soot and polycyclic aromatic hydrocarbons within a gas-jet diffusion flame,” Combust. Flame 109, 399–414 (1997).
[CrossRef]

P. S. Greenberg and J. C. Ku, “Soot volume fraction imaging,” Appl. Opt. 36, 5514–5522 (1997).
[CrossRef] [PubMed]

1996 (1)

C. R. Shaddix and K. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[CrossRef]

1995 (1)

1994 (2)

B. Quay, T. W. Lee, T. Ni, and R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

R. L. VanderWal and K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–452(1994).
[CrossRef]

1988 (1)

R. J. Moffat, “Describing the uncertainties in experimental results,” Exp. Therm. Fluid Sci. 1, 3–17 (1988).
[CrossRef]

1983 (1)

R. J. Santoro, H. G. Semerjian, and R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983).
[CrossRef]

1969 (1)

W. H. Dalzell and A. F. Sarofim, “Optical constants of soot and their application to heat-flux calculations,” J. Heat Transfer 91, 100–104 (1969).
[CrossRef]

Alwahabi, Z. T.

N. H. Qamar, Z. T. Alwahabi, Q. N. Chan, G. J. Nathan, D. Roekaerts, and K. D. King, “Soot volume fraction in a piloted turbulent jet nonpremixed flame of natural gas,” Combust. Flame 156, 1339–1347 (2009).
[CrossRef]

T. L. Henriksen, G. J. Nathan, Z. T. Alwahabi, N. Qamar, T. A. Ring, and E. G. Eddings, “Planar measurements of soot volume fraction and OH in a JP-8 pool fire,” Combust. Flame 156, 1480–1492 (2009).
[CrossRef]

Ashhurst, W. T.

A. J. Ricks, J. C. Hewson, A. R. Kerstein, J. P. Gore, S. R. Tieszen, and W. T. Ashhurst, “A spatially developing one-dimensional turbulence (ODT) study of soot and enthalpy evolution in meter-scale buoyant turbulent flames,” Combust. Sci. Technol. 182, 60–101 (2010).
[CrossRef]

Blevins, L. G.

K. A. Jensen, J. M. Suo-Anttila, and L. G. Blevins, “Measurement of soot morphology, chemistry, and optical properties in the visible and near-infrared spectrum in the flame zone and overfire region of large JP-8 pool fires,” Combust. Sci. Technol. 179, 2453–2487 (2007).
[CrossRef]

M. A. Mikofski, T. C. Williams, C. R. Shaddix, A. C. Fernandez-Pello, and L. G. Blevins, “Structure of laminar sooting inverse diffusion flames,” Combust. Flame 149, 463–478 (2007).
[CrossRef]

Chakrabarti, A.

C. M. Sorensen, W. Kim, D. Fry, D. Shi, and A. Chakrabarti, “Observation of soot superaggregates with a fractal dimension of 2.6 in laminar acetylene/air diffusion flames,” Langmuir 19, 7560–7563 (2003).
[CrossRef]

Chan, Q. N.

N. H. Qamar, Z. T. Alwahabi, Q. N. Chan, G. J. Nathan, D. Roekaerts, and K. D. King, “Soot volume fraction in a piloted turbulent jet nonpremixed flame of natural gas,” Combust. Flame 156, 1339–1347 (2009).
[CrossRef]

Choi, M. Y.

R. L. VanderWal, K. A. Jensen, and M. Y. Choi, “Simultaneous laser-induced emission of soot and polycyclic aromatic hydrocarbons within a gas-jet diffusion flame,” Combust. Flame 109, 399–414 (1997).
[CrossRef]

Dalzell, W. H.

W. H. Dalzell and A. F. Sarofim, “Optical constants of soot and their application to heat-flux calculations,” J. Heat Transfer 91, 100–104 (1969).
[CrossRef]

Dobbins, R. A.

R. J. Santoro, H. G. Semerjian, and R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983).
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon & Breach, 1996).

Eddings, E. G.

T. L. Henriksen, G. J. Nathan, Z. T. Alwahabi, N. Qamar, T. A. Ring, and E. G. Eddings, “Planar measurements of soot volume fraction and OH in a JP-8 pool fire,” Combust. Flame 156, 1480–1492 (2009).
[CrossRef]

Fernandez-Pello, A. C.

M. A. Mikofski, T. C. Williams, C. R. Shaddix, A. C. Fernandez-Pello, and L. G. Blevins, “Structure of laminar sooting inverse diffusion flames,” Combust. Flame 149, 463–478 (2007).
[CrossRef]

Frederickson, K.

K. Frederickson, S. P. Kearney, A. Luketa, J. C. Hewson, and T. W. Grasser, “Dual-pump CARS measurements of temperature and oxygen in a turbulent methanol-fueled pool fire,” Combust. Sci. Technol. 182, 941–959 (2010).
[CrossRef]

S. P. Kearney, K. Frederickson, and T. W. Grasser, “Dual-pump coherent anti-Stokes Raman scattering thermometry in a sooting turbulent pool fire,” Proc. Combust. Inst. 32, 871–878(2009).
[CrossRef]

K. Frederickson, S. P. Kearney, and T. W. Grasser, “Quantitative laser-induced incandescence measurements of soot in turbulent pool fires,” in 48th AIAA Aerospace Sciences Meeting, (AIAA, 2010), paper AIAA-2010-300.

Fry, D.

C. M. Sorensen, W. Kim, D. Fry, D. Shi, and A. Chakrabarti, “Observation of soot superaggregates with a fractal dimension of 2.6 in laminar acetylene/air diffusion flames,” Langmuir 19, 7560–7563 (2003).
[CrossRef]

Geigle, K. P.

J. Zerbs, K. P. Geigle, O. Lammel, J. Hader, R. Stirn, R. Hadef, and W. Meier, “The influence of wavelength in extinction measurements and beam steering in laser-induced incandescence measurements in sooting flames,” Appl. Phys. B 96, 683–694(2009).
[CrossRef]

Gerhart, A. L.

T. J. O’Hern, E. J. Weckman, A. L. Gerhart, S. R. Tieszen, and R. W. Schefer, “Experimental study of a turbulent buoyant helium plume,” J. Fluid Mech. 544, 143–171 (2005).
[CrossRef]

Gill, W.

L. A. Gritzo, Y. R. Sivathanu, and W. Gill, “Transient measurement of radiative properties, soot volume fraction, and soot temperature in a large pool fire,” Combust. Sci. Technol. 139, 113–136 (1998).
[CrossRef]

Gore, J. P.

A. J. Ricks, J. C. Hewson, A. R. Kerstein, J. P. Gore, S. R. Tieszen, and W. T. Ashhurst, “A spatially developing one-dimensional turbulence (ODT) study of soot and enthalpy evolution in meter-scale buoyant turbulent flames,” Combust. Sci. Technol. 182, 60–101 (2010).
[CrossRef]

Y. Xin and J. P. Gore, “Two-dimensional soot distributions in buoyant turbulent fires,” Proc. Combust. Inst. 30, 719–726(2005).
[CrossRef]

Goulay, F.

F. Goulay, L. Nemes, P. E. Schrader, and H. A. Michelsen, “Spontaneous emission from C2(dΠ3g) and C3(AΠ1u) during laser irradiation of soot particles,” Mol. Phys. 108, 1013–1025 (2010).
[CrossRef]

Grasser, T. W.

K. Frederickson, S. P. Kearney, A. Luketa, J. C. Hewson, and T. W. Grasser, “Dual-pump CARS measurements of temperature and oxygen in a turbulent methanol-fueled pool fire,” Combust. Sci. Technol. 182, 941–959 (2010).
[CrossRef]

S. P. Kearney, K. Frederickson, and T. W. Grasser, “Dual-pump coherent anti-Stokes Raman scattering thermometry in a sooting turbulent pool fire,” Proc. Combust. Inst. 32, 871–878(2009).
[CrossRef]

K. Frederickson, S. P. Kearney, and T. W. Grasser, “Quantitative laser-induced incandescence measurements of soot in turbulent pool fires,” in 48th AIAA Aerospace Sciences Meeting, (AIAA, 2010), paper AIAA-2010-300.

Greenberg, P. S.

Gritzo, L. A.

L. A. Gritzo, Y. R. Sivathanu, and W. Gill, “Transient measurement of radiative properties, soot volume fraction, and soot temperature in a large pool fire,” Combust. Sci. Technol. 139, 113–136 (1998).
[CrossRef]

Gupta, S.

Hadef, R.

J. Zerbs, K. P. Geigle, O. Lammel, J. Hader, R. Stirn, R. Hadef, and W. Meier, “The influence of wavelength in extinction measurements and beam steering in laser-induced incandescence measurements in sooting flames,” Appl. Phys. B 96, 683–694(2009).
[CrossRef]

Hader, J.

J. Zerbs, K. P. Geigle, O. Lammel, J. Hader, R. Stirn, R. Hadef, and W. Meier, “The influence of wavelength in extinction measurements and beam steering in laser-induced incandescence measurements in sooting flames,” Appl. Phys. B 96, 683–694(2009).
[CrossRef]

Henriksen, T. L.

T. L. Henriksen, G. J. Nathan, Z. T. Alwahabi, N. Qamar, T. A. Ring, and E. G. Eddings, “Planar measurements of soot volume fraction and OH in a JP-8 pool fire,” Combust. Flame 156, 1480–1492 (2009).
[CrossRef]

Hewson, J. C.

A. J. Ricks, J. C. Hewson, A. R. Kerstein, J. P. Gore, S. R. Tieszen, and W. T. Ashhurst, “A spatially developing one-dimensional turbulence (ODT) study of soot and enthalpy evolution in meter-scale buoyant turbulent flames,” Combust. Sci. Technol. 182, 60–101 (2010).
[CrossRef]

K. Frederickson, S. P. Kearney, A. Luketa, J. C. Hewson, and T. W. Grasser, “Dual-pump CARS measurements of temperature and oxygen in a turbulent methanol-fueled pool fire,” Combust. Sci. Technol. 182, 941–959 (2010).
[CrossRef]

Hochgreb, S.

Jeffries, J. B.

K. Kohse-Höinghaus and J. B. Jeffries, Applied Combustion Diagnostics (Taylor & Francis, 2002).

Jensen, K. A.

K. A. Jensen, J. M. Suo-Anttila, and L. G. Blevins, “Measurement of soot morphology, chemistry, and optical properties in the visible and near-infrared spectrum in the flame zone and overfire region of large JP-8 pool fires,” Combust. Sci. Technol. 179, 2453–2487 (2007).
[CrossRef]

T. C. Williams, C. R. Shaddix, K. A. Jensen, and J. M. Suo-Anttila, “Measurements of the dimensionless extinction coefficient of soot within laminar diffusion flames,” Int. J. Heat Mass Transfer 50, 1616–1630 (2007).
[CrossRef]

R. L. VanderWal, K. A. Jensen, and M. Y. Choi, “Simultaneous laser-induced emission of soot and polycyclic aromatic hydrocarbons within a gas-jet diffusion flame,” Combust. Flame 109, 399–414 (1997).
[CrossRef]

Kayes, D.

Kearney, S. P.

K. Frederickson, S. P. Kearney, A. Luketa, J. C. Hewson, and T. W. Grasser, “Dual-pump CARS measurements of temperature and oxygen in a turbulent methanol-fueled pool fire,” Combust. Sci. Technol. 182, 941–959 (2010).
[CrossRef]

S. P. Kearney, K. Frederickson, and T. W. Grasser, “Dual-pump coherent anti-Stokes Raman scattering thermometry in a sooting turbulent pool fire,” Proc. Combust. Inst. 32, 871–878(2009).
[CrossRef]

S. P. Kearney, “Temporally resolved radiation spectra from a sooting turbulent pool fire,” in Proceedings of the International Mechanical Engineering Congress and Exposition (ASME, 2001), pp. 137–140.

K. Frederickson, S. P. Kearney, and T. W. Grasser, “Quantitative laser-induced incandescence measurements of soot in turbulent pool fires,” in 48th AIAA Aerospace Sciences Meeting, (AIAA, 2010), paper AIAA-2010-300.

Kerstein, A. R.

A. J. Ricks, J. C. Hewson, A. R. Kerstein, J. P. Gore, S. R. Tieszen, and W. T. Ashhurst, “A spatially developing one-dimensional turbulence (ODT) study of soot and enthalpy evolution in meter-scale buoyant turbulent flames,” Combust. Sci. Technol. 182, 60–101 (2010).
[CrossRef]

Kim, W.

C. M. Sorensen, W. Kim, D. Fry, D. Shi, and A. Chakrabarti, “Observation of soot superaggregates with a fractal dimension of 2.6 in laminar acetylene/air diffusion flames,” Langmuir 19, 7560–7563 (2003).
[CrossRef]

King, K. D.

N. H. Qamar, Z. T. Alwahabi, Q. N. Chan, G. J. Nathan, D. Roekaerts, and K. D. King, “Soot volume fraction in a piloted turbulent jet nonpremixed flame of natural gas,” Combust. Flame 156, 1339–1347 (2009).
[CrossRef]

Kohse-Höinghaus, K.

K. Kohse-Höinghaus and J. B. Jeffries, Applied Combustion Diagnostics (Taylor & Francis, 2002).

Ku, J. C.

Lammel, O.

J. Zerbs, K. P. Geigle, O. Lammel, J. Hader, R. Stirn, R. Hadef, and W. Meier, “The influence of wavelength in extinction measurements and beam steering in laser-induced incandescence measurements in sooting flames,” Appl. Phys. B 96, 683–694(2009).
[CrossRef]

Lee, T. W.

B. Quay, T. W. Lee, T. Ni, and R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

Luketa, A.

K. Frederickson, S. P. Kearney, A. Luketa, J. C. Hewson, and T. W. Grasser, “Dual-pump CARS measurements of temperature and oxygen in a turbulent methanol-fueled pool fire,” Combust. Sci. Technol. 182, 941–959 (2010).
[CrossRef]

Meier, W.

J. Zerbs, K. P. Geigle, O. Lammel, J. Hader, R. Stirn, R. Hadef, and W. Meier, “The influence of wavelength in extinction measurements and beam steering in laser-induced incandescence measurements in sooting flames,” Appl. Phys. B 96, 683–694(2009).
[CrossRef]

Michelsen, H. A.

F. Goulay, L. Nemes, P. E. Schrader, and H. A. Michelsen, “Spontaneous emission from C2(dΠ3g) and C3(AΠ1u) during laser irradiation of soot particles,” Mol. Phys. 108, 1013–1025 (2010).
[CrossRef]

P. O. Witze, S. Hochgreb, D. Kayes, H. A. Michelsen, and C. R. Shaddix, “Time-resolved laser-induced incandescence and laser elastic-scattering measurements in a propane diffusion flame,” Appl. Opt. 40, 2443–2452 (2001).
[CrossRef]

Mikofski, M. A.

M. A. Mikofski, T. C. Williams, C. R. Shaddix, A. C. Fernandez-Pello, and L. G. Blevins, “Structure of laminar sooting inverse diffusion flames,” Combust. Flame 149, 463–478 (2007).
[CrossRef]

Moffat, R. J.

R. J. Moffat, “Describing the uncertainties in experimental results,” Exp. Therm. Fluid Sci. 1, 3–17 (1988).
[CrossRef]

Murphy, J. J.

J. J. Murphy and C. R. Shaddix, “Soot property measurements in a two-meter diameter JP-8 pool fire,” Combust. Sci. Technol. 178, 865–894 (2006).
[CrossRef]

Nathan, G. J.

N. H. Qamar, Z. T. Alwahabi, Q. N. Chan, G. J. Nathan, D. Roekaerts, and K. D. King, “Soot volume fraction in a piloted turbulent jet nonpremixed flame of natural gas,” Combust. Flame 156, 1339–1347 (2009).
[CrossRef]

T. L. Henriksen, G. J. Nathan, Z. T. Alwahabi, N. Qamar, T. A. Ring, and E. G. Eddings, “Planar measurements of soot volume fraction and OH in a JP-8 pool fire,” Combust. Flame 156, 1480–1492 (2009).
[CrossRef]

Nemes, L.

F. Goulay, L. Nemes, P. E. Schrader, and H. A. Michelsen, “Spontaneous emission from C2(dΠ3g) and C3(AΠ1u) during laser irradiation of soot particles,” Mol. Phys. 108, 1013–1025 (2010).
[CrossRef]

Ni, T.

T. Ni, J. A. Pinson, S. Gupta, and R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091(1995).
[CrossRef] [PubMed]

B. Quay, T. W. Lee, T. Ni, and R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

O’Hern, T. J.

T. J. O’Hern, E. J. Weckman, A. L. Gerhart, S. R. Tieszen, and R. W. Schefer, “Experimental study of a turbulent buoyant helium plume,” J. Fluid Mech. 544, 143–171 (2005).
[CrossRef]

S. R. Tieszen, T. J. O’Hern, E. J. Weckman, and R. W. Schefer, “Experimental study of the effect of fuel mass flux on a 1 m-diameter methane fire and comparison with a hydrogen fire,” Combust. Flame 139, 126–141 (2004).
[CrossRef]

Pinson, J. A.

Qamar, N.

T. L. Henriksen, G. J. Nathan, Z. T. Alwahabi, N. Qamar, T. A. Ring, and E. G. Eddings, “Planar measurements of soot volume fraction and OH in a JP-8 pool fire,” Combust. Flame 156, 1480–1492 (2009).
[CrossRef]

Qamar, N. H.

N. H. Qamar, Z. T. Alwahabi, Q. N. Chan, G. J. Nathan, D. Roekaerts, and K. D. King, “Soot volume fraction in a piloted turbulent jet nonpremixed flame of natural gas,” Combust. Flame 156, 1339–1347 (2009).
[CrossRef]

Quay, B.

B. Quay, T. W. Lee, T. Ni, and R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

Ricks, A. J.

A. J. Ricks, J. C. Hewson, A. R. Kerstein, J. P. Gore, S. R. Tieszen, and W. T. Ashhurst, “A spatially developing one-dimensional turbulence (ODT) study of soot and enthalpy evolution in meter-scale buoyant turbulent flames,” Combust. Sci. Technol. 182, 60–101 (2010).
[CrossRef]

Ring, T. A.

T. L. Henriksen, G. J. Nathan, Z. T. Alwahabi, N. Qamar, T. A. Ring, and E. G. Eddings, “Planar measurements of soot volume fraction and OH in a JP-8 pool fire,” Combust. Flame 156, 1480–1492 (2009).
[CrossRef]

Roekaerts, D.

N. H. Qamar, Z. T. Alwahabi, Q. N. Chan, G. J. Nathan, D. Roekaerts, and K. D. King, “Soot volume fraction in a piloted turbulent jet nonpremixed flame of natural gas,” Combust. Flame 156, 1339–1347 (2009).
[CrossRef]

Santoro, R. J.

T. Ni, J. A. Pinson, S. Gupta, and R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091(1995).
[CrossRef] [PubMed]

B. Quay, T. W. Lee, T. Ni, and R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

R. J. Santoro, H. G. Semerjian, and R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983).
[CrossRef]

R. J. Santoro and C. R. Shaddix, “Laser-induced incandescence,” in Applied Combustion Diagnostics, K.K.Höinghaus and J.B.Jeffries, eds. (Taylor & Francis, 2002), pp. 252–286.

Sarofim, A. F.

W. H. Dalzell and A. F. Sarofim, “Optical constants of soot and their application to heat-flux calculations,” J. Heat Transfer 91, 100–104 (1969).
[CrossRef]

Schefer, R. W.

T. J. O’Hern, E. J. Weckman, A. L. Gerhart, S. R. Tieszen, and R. W. Schefer, “Experimental study of a turbulent buoyant helium plume,” J. Fluid Mech. 544, 143–171 (2005).
[CrossRef]

S. R. Tieszen, T. J. O’Hern, E. J. Weckman, and R. W. Schefer, “Experimental study of the effect of fuel mass flux on a 1 m-diameter methane fire and comparison with a hydrogen fire,” Combust. Flame 139, 126–141 (2004).
[CrossRef]

Schrader, P. E.

F. Goulay, L. Nemes, P. E. Schrader, and H. A. Michelsen, “Spontaneous emission from C2(dΠ3g) and C3(AΠ1u) during laser irradiation of soot particles,” Mol. Phys. 108, 1013–1025 (2010).
[CrossRef]

Semerjian, H. G.

R. J. Santoro, H. G. Semerjian, and R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983).
[CrossRef]

Shaddix, C. R.

M. A. Mikofski, T. C. Williams, C. R. Shaddix, A. C. Fernandez-Pello, and L. G. Blevins, “Structure of laminar sooting inverse diffusion flames,” Combust. Flame 149, 463–478 (2007).
[CrossRef]

T. C. Williams, C. R. Shaddix, K. A. Jensen, and J. M. Suo-Anttila, “Measurements of the dimensionless extinction coefficient of soot within laminar diffusion flames,” Int. J. Heat Mass Transfer 50, 1616–1630 (2007).
[CrossRef]

J. J. Murphy and C. R. Shaddix, “Soot property measurements in a two-meter diameter JP-8 pool fire,” Combust. Sci. Technol. 178, 865–894 (2006).
[CrossRef]

P. O. Witze, S. Hochgreb, D. Kayes, H. A. Michelsen, and C. R. Shaddix, “Time-resolved laser-induced incandescence and laser elastic-scattering measurements in a propane diffusion flame,” Appl. Opt. 40, 2443–2452 (2001).
[CrossRef]

C. R. Shaddix and K. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[CrossRef]

R. J. Santoro and C. R. Shaddix, “Laser-induced incandescence,” in Applied Combustion Diagnostics, K.K.Höinghaus and J.B.Jeffries, eds. (Taylor & Francis, 2002), pp. 252–286.

Shi, D.

C. M. Sorensen, W. Kim, D. Fry, D. Shi, and A. Chakrabarti, “Observation of soot superaggregates with a fractal dimension of 2.6 in laminar acetylene/air diffusion flames,” Langmuir 19, 7560–7563 (2003).
[CrossRef]

Sivathanu, Y. R.

L. A. Gritzo, Y. R. Sivathanu, and W. Gill, “Transient measurement of radiative properties, soot volume fraction, and soot temperature in a large pool fire,” Combust. Sci. Technol. 139, 113–136 (1998).
[CrossRef]

Smyth, K. C.

C. R. Shaddix and K. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[CrossRef]

Sorensen, C. M.

C. M. Sorensen, W. Kim, D. Fry, D. Shi, and A. Chakrabarti, “Observation of soot superaggregates with a fractal dimension of 2.6 in laminar acetylene/air diffusion flames,” Langmuir 19, 7560–7563 (2003).
[CrossRef]

Stirn, R.

J. Zerbs, K. P. Geigle, O. Lammel, J. Hader, R. Stirn, R. Hadef, and W. Meier, “The influence of wavelength in extinction measurements and beam steering in laser-induced incandescence measurements in sooting flames,” Appl. Phys. B 96, 683–694(2009).
[CrossRef]

Suo-Anttila, J. M.

T. C. Williams, C. R. Shaddix, K. A. Jensen, and J. M. Suo-Anttila, “Measurements of the dimensionless extinction coefficient of soot within laminar diffusion flames,” Int. J. Heat Mass Transfer 50, 1616–1630 (2007).
[CrossRef]

K. A. Jensen, J. M. Suo-Anttila, and L. G. Blevins, “Measurement of soot morphology, chemistry, and optical properties in the visible and near-infrared spectrum in the flame zone and overfire region of large JP-8 pool fires,” Combust. Sci. Technol. 179, 2453–2487 (2007).
[CrossRef]

Tieszen, S. R.

A. J. Ricks, J. C. Hewson, A. R. Kerstein, J. P. Gore, S. R. Tieszen, and W. T. Ashhurst, “A spatially developing one-dimensional turbulence (ODT) study of soot and enthalpy evolution in meter-scale buoyant turbulent flames,” Combust. Sci. Technol. 182, 60–101 (2010).
[CrossRef]

T. J. O’Hern, E. J. Weckman, A. L. Gerhart, S. R. Tieszen, and R. W. Schefer, “Experimental study of a turbulent buoyant helium plume,” J. Fluid Mech. 544, 143–171 (2005).
[CrossRef]

S. R. Tieszen, T. J. O’Hern, E. J. Weckman, and R. W. Schefer, “Experimental study of the effect of fuel mass flux on a 1 m-diameter methane fire and comparison with a hydrogen fire,” Combust. Flame 139, 126–141 (2004).
[CrossRef]

VanderWal, R. L.

R. L. VanderWal, K. A. Jensen, and M. Y. Choi, “Simultaneous laser-induced emission of soot and polycyclic aromatic hydrocarbons within a gas-jet diffusion flame,” Combust. Flame 109, 399–414 (1997).
[CrossRef]

R. L. VanderWal and K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–452(1994).
[CrossRef]

Weckman, E. J.

T. J. O’Hern, E. J. Weckman, A. L. Gerhart, S. R. Tieszen, and R. W. Schefer, “Experimental study of a turbulent buoyant helium plume,” J. Fluid Mech. 544, 143–171 (2005).
[CrossRef]

S. R. Tieszen, T. J. O’Hern, E. J. Weckman, and R. W. Schefer, “Experimental study of the effect of fuel mass flux on a 1 m-diameter methane fire and comparison with a hydrogen fire,” Combust. Flame 139, 126–141 (2004).
[CrossRef]

Weiland, K. J.

R. L. VanderWal and K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–452(1994).
[CrossRef]

Williams, T. C.

M. A. Mikofski, T. C. Williams, C. R. Shaddix, A. C. Fernandez-Pello, and L. G. Blevins, “Structure of laminar sooting inverse diffusion flames,” Combust. Flame 149, 463–478 (2007).
[CrossRef]

T. C. Williams, C. R. Shaddix, K. A. Jensen, and J. M. Suo-Anttila, “Measurements of the dimensionless extinction coefficient of soot within laminar diffusion flames,” Int. J. Heat Mass Transfer 50, 1616–1630 (2007).
[CrossRef]

Witze, P. O.

Xin, Y.

Y. Xin and J. P. Gore, “Two-dimensional soot distributions in buoyant turbulent fires,” Proc. Combust. Inst. 30, 719–726(2005).
[CrossRef]

Zerbs, J.

J. Zerbs, K. P. Geigle, O. Lammel, J. Hader, R. Stirn, R. Hadef, and W. Meier, “The influence of wavelength in extinction measurements and beam steering in laser-induced incandescence measurements in sooting flames,” Appl. Phys. B 96, 683–694(2009).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B (2)

J. Zerbs, K. P. Geigle, O. Lammel, J. Hader, R. Stirn, R. Hadef, and W. Meier, “The influence of wavelength in extinction measurements and beam steering in laser-induced incandescence measurements in sooting flames,” Appl. Phys. B 96, 683–694(2009).
[CrossRef]

R. L. VanderWal and K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–452(1994).
[CrossRef]

Combust. Flame (8)

R. L. VanderWal, K. A. Jensen, and M. Y. Choi, “Simultaneous laser-induced emission of soot and polycyclic aromatic hydrocarbons within a gas-jet diffusion flame,” Combust. Flame 109, 399–414 (1997).
[CrossRef]

C. R. Shaddix and K. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[CrossRef]

B. Quay, T. W. Lee, T. Ni, and R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

M. A. Mikofski, T. C. Williams, C. R. Shaddix, A. C. Fernandez-Pello, and L. G. Blevins, “Structure of laminar sooting inverse diffusion flames,” Combust. Flame 149, 463–478 (2007).
[CrossRef]

T. L. Henriksen, G. J. Nathan, Z. T. Alwahabi, N. Qamar, T. A. Ring, and E. G. Eddings, “Planar measurements of soot volume fraction and OH in a JP-8 pool fire,” Combust. Flame 156, 1480–1492 (2009).
[CrossRef]

S. R. Tieszen, T. J. O’Hern, E. J. Weckman, and R. W. Schefer, “Experimental study of the effect of fuel mass flux on a 1 m-diameter methane fire and comparison with a hydrogen fire,” Combust. Flame 139, 126–141 (2004).
[CrossRef]

N. H. Qamar, Z. T. Alwahabi, Q. N. Chan, G. J. Nathan, D. Roekaerts, and K. D. King, “Soot volume fraction in a piloted turbulent jet nonpremixed flame of natural gas,” Combust. Flame 156, 1339–1347 (2009).
[CrossRef]

R. J. Santoro, H. G. Semerjian, and R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983).
[CrossRef]

Combust. Sci. Technol. (5)

A. J. Ricks, J. C. Hewson, A. R. Kerstein, J. P. Gore, S. R. Tieszen, and W. T. Ashhurst, “A spatially developing one-dimensional turbulence (ODT) study of soot and enthalpy evolution in meter-scale buoyant turbulent flames,” Combust. Sci. Technol. 182, 60–101 (2010).
[CrossRef]

L. A. Gritzo, Y. R. Sivathanu, and W. Gill, “Transient measurement of radiative properties, soot volume fraction, and soot temperature in a large pool fire,” Combust. Sci. Technol. 139, 113–136 (1998).
[CrossRef]

J. J. Murphy and C. R. Shaddix, “Soot property measurements in a two-meter diameter JP-8 pool fire,” Combust. Sci. Technol. 178, 865–894 (2006).
[CrossRef]

K. A. Jensen, J. M. Suo-Anttila, and L. G. Blevins, “Measurement of soot morphology, chemistry, and optical properties in the visible and near-infrared spectrum in the flame zone and overfire region of large JP-8 pool fires,” Combust. Sci. Technol. 179, 2453–2487 (2007).
[CrossRef]

K. Frederickson, S. P. Kearney, A. Luketa, J. C. Hewson, and T. W. Grasser, “Dual-pump CARS measurements of temperature and oxygen in a turbulent methanol-fueled pool fire,” Combust. Sci. Technol. 182, 941–959 (2010).
[CrossRef]

Exp. Therm. Fluid Sci. (1)

R. J. Moffat, “Describing the uncertainties in experimental results,” Exp. Therm. Fluid Sci. 1, 3–17 (1988).
[CrossRef]

Int. J. Heat Mass Transfer (1)

T. C. Williams, C. R. Shaddix, K. A. Jensen, and J. M. Suo-Anttila, “Measurements of the dimensionless extinction coefficient of soot within laminar diffusion flames,” Int. J. Heat Mass Transfer 50, 1616–1630 (2007).
[CrossRef]

J. Fluid Mech. (1)

T. J. O’Hern, E. J. Weckman, A. L. Gerhart, S. R. Tieszen, and R. W. Schefer, “Experimental study of a turbulent buoyant helium plume,” J. Fluid Mech. 544, 143–171 (2005).
[CrossRef]

J. Heat Transfer (1)

W. H. Dalzell and A. F. Sarofim, “Optical constants of soot and their application to heat-flux calculations,” J. Heat Transfer 91, 100–104 (1969).
[CrossRef]

Langmuir (1)

C. M. Sorensen, W. Kim, D. Fry, D. Shi, and A. Chakrabarti, “Observation of soot superaggregates with a fractal dimension of 2.6 in laminar acetylene/air diffusion flames,” Langmuir 19, 7560–7563 (2003).
[CrossRef]

Mol. Phys. (1)

F. Goulay, L. Nemes, P. E. Schrader, and H. A. Michelsen, “Spontaneous emission from C2(dΠ3g) and C3(AΠ1u) during laser irradiation of soot particles,” Mol. Phys. 108, 1013–1025 (2010).
[CrossRef]

Proc. Combust. Inst. (2)

Y. Xin and J. P. Gore, “Two-dimensional soot distributions in buoyant turbulent fires,” Proc. Combust. Inst. 30, 719–726(2005).
[CrossRef]

S. P. Kearney, K. Frederickson, and T. W. Grasser, “Dual-pump coherent anti-Stokes Raman scattering thermometry in a sooting turbulent pool fire,” Proc. Combust. Inst. 32, 871–878(2009).
[CrossRef]

Other (5)

R. J. Santoro and C. R. Shaddix, “Laser-induced incandescence,” in Applied Combustion Diagnostics, K.K.Höinghaus and J.B.Jeffries, eds. (Taylor & Francis, 2002), pp. 252–286.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon & Breach, 1996).

K. Kohse-Höinghaus and J. B. Jeffries, Applied Combustion Diagnostics (Taylor & Francis, 2002).

S. P. Kearney, “Temporally resolved radiation spectra from a sooting turbulent pool fire,” in Proceedings of the International Mechanical Engineering Congress and Exposition (ASME, 2001), pp. 137–140.

K. Frederickson, S. P. Kearney, and T. W. Grasser, “Quantitative laser-induced incandescence measurements of soot in turbulent pool fires,” in 48th AIAA Aerospace Sciences Meeting, (AIAA, 2010), paper AIAA-2010-300.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

FLAME facility test bay rendered view and plan view of the main test bay level.

Fig. 2
Fig. 2

Digital photographs of 10% and 30% toluene in methanol pool fire experiments.

Fig. 3
Fig. 3

Diagram of the LII laser beam transmission and sheet-forming optical elements.

Fig. 4
Fig. 4

Exploded view detail of LII collection optics assembly.

Fig. 5
Fig. 5

(a) Image of Rayleigh scattering from the 532 nm extinction probe beam and (b) calibrated LII image of the ethylene/air flame produced by the Santoro burner.

Fig. 6
Fig. 6

LII signal intensity scaling factor as a function of height in the laser sheet. Y is the distance from the sheet edge in mm.

Fig. 7
Fig. 7

LII laser fluence response curves for 1064 nm laser illumination and two detector gate widths.

Fig. 8
Fig. 8

Representative LII images acquired from a 30% toluene/methanol pool fire.

Fig. 9
Fig. 9

Probability density functions for the 10% and 30% toluene/methanol blended fuel pool fires.

Tables (2)

Tables Icon

Table 1 Sources of Systematic Error in the LII Measurements

Tables Icon

Table 2 Composite Uncertainty Estimates for the Soot Volume Fraction Data

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I I o = exp ( K e λ 0 L f v d x ) ,
C = λ K e ln I / I o o L S d x .
f v ( i , j ) = C G V j ( LII i , j B i , j F i , j ) ,
δ f v f v = ( f v S δ S ) 2 + ( f v C δ C ) 2 ,
δ f v f v = ( δ S S ) 2 + ( δ C C ) 2 .
δ C C = ( δ I / I o I / I o ln I / I o ) 2 + ( δ K e K e ) 2 .

Metrics