Abstract

Transmission spectroscopy over large spectral ranges (>100cm1) generally requires a reference measurement to be taken separately from the sample scan. The ratio of the two measurements (i.e., the transmittance) is therefore susceptible to baseline changes that occur between the recording of the two spectra. The origins of relatively strong baseline changes (1%) of a difference-frequency- generation-based laser spectrometer (tuning range 29003144cm1, 150μW average power) were investigated and a method for minimizing them by improving reproducibility and reducing measurement time is presented. The new method was tested for a gas mixture and the sensitivity for broad absorption features was determined as 5×103 minimum measurable absorbance for a total scan duration of 70min.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. I. Schiff, G. I. Mackay, and J. Bechara, “The use of tunable diode-laser absorption-spectroscopy for atmospheric measurements,” Res. Chem. Intermed. 20, 525–556 (1994).
    [CrossRef]
  2. C. L. Schiller, S. Locquiao, T. J. Johnson, and G. W. Harris, “Atmospheric measurements of HONO by tunable diode laser absorption spectroscopy,” J. Atmos. Chem. 40, 275–293 (2001).
    [CrossRef]
  3. R. Grilli, L. Ciaffoni, G. Hancock, R. Peverall, G. A. D. Ritchie, and A. J. Orr-Ewing, “Mid-infrared ethene detection using difference frequency generation in a quasi-phase-matched LiNbO3 waveguide,” Appl. Opt. 48, 5696–5703 (2009).
    [CrossRef] [PubMed]
  4. A. Karpf and G. N. Rao, “Absorption and wavelength modulation spectroscopy of NO2 using a tunable, external cavity continuous wave quantum cascade laser,” Appl. Opt. 48, 408–413 (2009).
    [CrossRef] [PubMed]
  5. D. Richter, B. P. Wert, A. Fried, P. Weibring, J. G. Walega, J. W. C. White, B. H. Vaughn, and F. K. Tittel, “High-precision CO2 isotopologue spectrometer with a difference-frequency-generation laser source,” Opt. Lett. 34, 172–174 (2009).
    [CrossRef] [PubMed]
  6. E. Kerstel and L. Gianfrani, “Advances in laser-based isotope ratio measurements: selected applications,” Appl. Phys. B 92, 439–449 (2008).
    [CrossRef]
  7. H. Waechter, J. Mohn, B. Tuzson, L. Emmenegger, and M. W. Sigrist, “Determination of N2O isotopomers with quantum cascade laser based absorption spectroscopy,” Opt. Express 16, 9239–9244 (2008).
    [CrossRef] [PubMed]
  8. C. Dyroff, D. Fuetterer, and A. Zahn, “Compact diode-laser spectrometer ISOWAT for highly sensitive airborne measurements of water-isotope ratios,” Appl. Phys. B 98, 537–548(2010).
    [CrossRef]
  9. K. R. Parameswaran, D. I. Rosen, M. G. Allen, A. M. Ganz, and T. H. Risby, “Off-axis integrated cavity output spectroscopy with a mid-infrared interband cascade laser for real-time breath ethane measurements,” Appl. Opt. 48, B73–B79(2009).
    [CrossRef] [PubMed]
  10. M. Nägele and M. W. Sigrist, “Mobile laser spectrometer with novel resonant multipass photoacoustic cell for trace-gas sensing,” Appl. Phys. B 70, 895–901 (2000).
  11. A. Elia, P. M. Lugarà, C. Di Franco, and V. Spagnolo, “Photoacoustic techniques for trace gas sensing based on semiconductor laser sources,” Sensors 9, 9616–9628 (2009).
    [CrossRef]
  12. B. G. Ageev, Y. N. Ponomarev, and V. A. Sapozhnikova, “Photoacoustic analysis of CO2 content in annual tree rings,” J. Appl. Spectrosc. 76, 452–455 (2009).
    [CrossRef]
  13. S. Schilt, A. A. Kosterev, and F. K. Tittel, “Performance evaluation of a near infrared QEPAS based ethylene sensor,” Appl. Phys. B 95, 813–824 (2009).
    [CrossRef]
  14. D. S. Bomse, A. C. Stanton, and J. A. Silver, “Frequency-modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992).
    [CrossRef] [PubMed]
  15. K. L. McNesby, R. R. Skaggs, A. W. Miziolek, M. Clay, S. H. Hoke, and C. S. Miser, “Diode-laser-based measurements of hydrogen fluoride gas during chemical suppression of fires,” Appl. Phys. B 67, 443–447 (1998).
    [CrossRef]
  16. M. E. Trudeau, P. Chen, G. D. Garcia, L. W. Hollberg, and P. P. Tans, “Stable isotopic analysis of atmospheric methane by infrared spectroscopy by use of diode laser difference-frequency generation,” Appl. Opt. 45, 4136–4141 (2006).
    [CrossRef] [PubMed]
  17. Y. He and B. J. Orr, “Detection of trace gases by rapidly-swept continuous-wave cavity ringdown spectroscopy: pushing the limits of sensitivity,” Appl. Phys. B 85, 355–364 (2006).
    [CrossRef]
  18. M. W. Sigrist, R. Bartlome, D. Marinov, J. M. Rey, D. E. Vogler, and H. Waechter, “Trace gas monitoring with infrared laser-based detection schemes,” Appl. Phys. B 90, 289–300 (2008).
    [CrossRef]
  19. K. Stamyr, O. Vaittinen, J. Jaakola, J. Guss, M. Metsala, G. Johanson, and L. Halonen, “Background levels of hydrogen cyanide in human breath measured by infrared cavity ring down spectroscopy,” Biomarkers 14, 285–291 (2009).
    [CrossRef] [PubMed]
  20. S. D. Saliba and R. E. Scholten, “Linewidths below 100 kHz with external cavity diode lasers,” Appl. Opt. 48, 6961–6966(2009).
    [CrossRef] [PubMed]
  21. V. V. Vassiliev, S. A. Zibrov, and V. L. Velichansky, “Compact extended-cavity diode laser for atomic spectroscopy and metrology,” Rev. Sci. Instrum. 77, 013102 (2006).
    [CrossRef]
  22. M. C. Phillips, M. S. Taubman, B. E. Bernacki, B. D. Cannon, J. T. Schiffern, and T. L. Myers, “Design and performance of a sensor system for detection of multiple chemicals using an external cavity quantum cascade laser,” Proc. SPIE 7608, 76080D (2010).
    [CrossRef]
  23. T. Day, M. Weida, D. Arnone, and M. Pushkarsky, “Recent advances in compact broadly tunable external-cavity quantum cascade lasers (ECqcL),” Proc. SPIE 7319, 73190F (2009).
    [CrossRef]
  24. A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95, 061103 (2009).
    [CrossRef]
  25. G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hope free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92, 305–311 (2008).
    [CrossRef]
  26. D. J. M. Stothard, C. F. Rae, and M. H. Dunn, “An intracavity optical parametric oscillator with very high repetition rate and broad tunability based upon room temperature periodically poled MgO:LiNbO3 with fanned grating design,” IEEE J. Quantum Electron. 45, 256–263 (2009).
    [CrossRef]
  27. M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, “Singly resonant cw OPO with simple wavelength tuning,” Opt. Express 16, 11141–11146 (2008).
    [CrossRef] [PubMed]
  28. A. Berrou, M. Raybaut, A. Godard, and M. Lefebvre, “High-resolution photoacoustic and direct absorption spectroscopy of main greenhouse gases by use of a pulsed entangled cavity doubly resonant OPO,” Appl. Phys. B 98, 217–230 (2010).
    [CrossRef]
  29. R. Bartlome, J. M. Rey, and M. W. Sigrist, “Vapor phase infrared laser spectroscopy: from gas sensing to forensic urinalysis,” Anal. Chem. 80, 5334–5341 (2008).
    [CrossRef] [PubMed]
  30. J. Cousin, W. Chen, D. Bigourd, M. Formentin, and S. Kassi, “Telecom-grade fiber laser-based difference-frequency generation and ppb-level detection of benzene vapor in air around 3 μm,” Appl. Phys. B 97, 919–929 (2009).
    [CrossRef]
  31. V. L. Kasyutich, R. J. Holdsworth, and P. A. Martin, “Mid-infrared laser absorption spectrometers based upon all-diode laser difference frequency generation and a room temperature quantum cascade laser for the detection of CO, N2O and NO,” Appl. Phys. B 92, 271–279 (2008).
    [CrossRef]
  32. W. Denzer, G. Hancock, A. Hutchinson, M. Munday, R. Peverall, and G. A. D. Ritchie, “Mid-infrared generation and spectroscopy with a PPLN ridge waveguide,” Appl. Phys. B 86, 437–441(2007).
    [CrossRef]
  33. I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys. 11, 125015 (2009).
    [CrossRef]
  34. S. Y. Zhang, D. G. Revin, J. W. Cockburn, K. Kennedy, A. B. Krysa, and M. Hopkinson, “λ∼3.1 μm room temperature InGaAs/AlAsSb/InP quantum cascade lasers,” Appl. Phys. Lett. 94, 031106 (2009).
    [CrossRef]
  35. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
    [CrossRef]
  36. M. J. Weber, Handbook of Optical Materials (CRC Press, 2003).
  37. D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical-crystals—a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057–2074 (1992).
    [CrossRef]
  38. C. Fischer and M. W. Sigrist, “Mid-IR difference frequency generation,” in Solid-State Mid-Infrared Laser Sources, I.T.Sorokina and K.L.Vodopyanov, eds. (Springer, 2003), pp. 97–140.
  39. D. J. Bamford, D. J. Cook, S. J. Sharpe, and A. D. Van Pelt, “Widely tunable rapid-scanning mid-infrared laser spectrometer for industrial gas process stream analysis,” Appl. Opt. 46, 3958–3968 (2007).
    [CrossRef] [PubMed]
  40. P. Werle, R. Muecke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption-spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
    [CrossRef]
  41. R. Bartlome, M. Baer, and M. W. Sigrist, “High-temperature multipass cell for infrared spectroscopy of heated gases and vapors,” Rev. Sci. Instrum. 78, 013110 (2007).
    [CrossRef] [PubMed]
  42. A. J. Phillips and P. A. Hamilton, “Improved detection limits in Fourier transform spectroscopy from a maximum entropy approach to baseline estimation,” Anal. Chem. 68, 4020–4025 (1996).
    [CrossRef]
  43. M. Asobe, O. Tadanaga, T. Yanagawa, H. Itoh, and H. Suzuki, “Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters,” Appl. Phys. Lett. 78, 3163–3165 (2001).
    [CrossRef]
  44. Y. Kong, J. Wen, and H. Wang, “New doped lithium niobate crystal with high resistance to photorefraction—LiNbO3:In,” Appl. Phys. Lett. 66, 280–281 (1995).
    [CrossRef]
  45. J. M. Rey, D. Schramm, D. Hahnloser, D. Marinov, and M. W. Sigrist, “Spectroscopic investigation of volatile compounds produced during thermal and radiofrequency bipolar cautery on porcine liver,” Meas. Sci. Technol. 19, 075602 (2008).
    [CrossRef]
  46. M. Gianella and M. W. Sigrist, “Infrared spectroscopy on smoke produced by cauterization of animal tissue,” Sensors 10, 2694–2708 (2010).
    [CrossRef]
  47. W. L. Barrett and S. M. Garber, “Surgical smoke—a review of the literature—Is this just a lot of hot air?,” Surg. Endosc. 17, 979–987 (2003).
    [CrossRef] [PubMed]
  48. T. Katoh and K. Ikeda, “The minimum alveolar concentration (MAC) of sevoflurane in humans,” Anesthesiology 66, 301–303 (1987).
    [CrossRef] [PubMed]
  49. A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol. 25, 083001 (2010).
    [CrossRef]
  50. J. Devenson, O. Cathabard, R. Teissier, and A. N. Baranov, “High temperature operation of λ≈3.3 μm quantum cascade lasers,” Appl. Phys. Lett. 91, 141106 (2007).
    [CrossRef]

2010

C. Dyroff, D. Fuetterer, and A. Zahn, “Compact diode-laser spectrometer ISOWAT for highly sensitive airborne measurements of water-isotope ratios,” Appl. Phys. B 98, 537–548(2010).
[CrossRef]

M. C. Phillips, M. S. Taubman, B. E. Bernacki, B. D. Cannon, J. T. Schiffern, and T. L. Myers, “Design and performance of a sensor system for detection of multiple chemicals using an external cavity quantum cascade laser,” Proc. SPIE 7608, 76080D (2010).
[CrossRef]

A. Berrou, M. Raybaut, A. Godard, and M. Lefebvre, “High-resolution photoacoustic and direct absorption spectroscopy of main greenhouse gases by use of a pulsed entangled cavity doubly resonant OPO,” Appl. Phys. B 98, 217–230 (2010).
[CrossRef]

M. Gianella and M. W. Sigrist, “Infrared spectroscopy on smoke produced by cauterization of animal tissue,” Sensors 10, 2694–2708 (2010).
[CrossRef]

A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol. 25, 083001 (2010).
[CrossRef]

2009

J. Cousin, W. Chen, D. Bigourd, M. Formentin, and S. Kassi, “Telecom-grade fiber laser-based difference-frequency generation and ppb-level detection of benzene vapor in air around 3 μm,” Appl. Phys. B 97, 919–929 (2009).
[CrossRef]

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys. 11, 125015 (2009).
[CrossRef]

S. Y. Zhang, D. G. Revin, J. W. Cockburn, K. Kennedy, A. B. Krysa, and M. Hopkinson, “λ∼3.1 μm room temperature InGaAs/AlAsSb/InP quantum cascade lasers,” Appl. Phys. Lett. 94, 031106 (2009).
[CrossRef]

T. Day, M. Weida, D. Arnone, and M. Pushkarsky, “Recent advances in compact broadly tunable external-cavity quantum cascade lasers (ECqcL),” Proc. SPIE 7319, 73190F (2009).
[CrossRef]

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95, 061103 (2009).
[CrossRef]

K. Stamyr, O. Vaittinen, J. Jaakola, J. Guss, M. Metsala, G. Johanson, and L. Halonen, “Background levels of hydrogen cyanide in human breath measured by infrared cavity ring down spectroscopy,” Biomarkers 14, 285–291 (2009).
[CrossRef] [PubMed]

S. D. Saliba and R. E. Scholten, “Linewidths below 100 kHz with external cavity diode lasers,” Appl. Opt. 48, 6961–6966(2009).
[CrossRef] [PubMed]

D. J. M. Stothard, C. F. Rae, and M. H. Dunn, “An intracavity optical parametric oscillator with very high repetition rate and broad tunability based upon room temperature periodically poled MgO:LiNbO3 with fanned grating design,” IEEE J. Quantum Electron. 45, 256–263 (2009).
[CrossRef]

K. R. Parameswaran, D. I. Rosen, M. G. Allen, A. M. Ganz, and T. H. Risby, “Off-axis integrated cavity output spectroscopy with a mid-infrared interband cascade laser for real-time breath ethane measurements,” Appl. Opt. 48, B73–B79(2009).
[CrossRef] [PubMed]

R. Grilli, L. Ciaffoni, G. Hancock, R. Peverall, G. A. D. Ritchie, and A. J. Orr-Ewing, “Mid-infrared ethene detection using difference frequency generation in a quasi-phase-matched LiNbO3 waveguide,” Appl. Opt. 48, 5696–5703 (2009).
[CrossRef] [PubMed]

A. Karpf and G. N. Rao, “Absorption and wavelength modulation spectroscopy of NO2 using a tunable, external cavity continuous wave quantum cascade laser,” Appl. Opt. 48, 408–413 (2009).
[CrossRef] [PubMed]

D. Richter, B. P. Wert, A. Fried, P. Weibring, J. G. Walega, J. W. C. White, B. H. Vaughn, and F. K. Tittel, “High-precision CO2 isotopologue spectrometer with a difference-frequency-generation laser source,” Opt. Lett. 34, 172–174 (2009).
[CrossRef] [PubMed]

A. Elia, P. M. Lugarà, C. Di Franco, and V. Spagnolo, “Photoacoustic techniques for trace gas sensing based on semiconductor laser sources,” Sensors 9, 9616–9628 (2009).
[CrossRef]

B. G. Ageev, Y. N. Ponomarev, and V. A. Sapozhnikova, “Photoacoustic analysis of CO2 content in annual tree rings,” J. Appl. Spectrosc. 76, 452–455 (2009).
[CrossRef]

S. Schilt, A. A. Kosterev, and F. K. Tittel, “Performance evaluation of a near infrared QEPAS based ethylene sensor,” Appl. Phys. B 95, 813–824 (2009).
[CrossRef]

2008

M. W. Sigrist, R. Bartlome, D. Marinov, J. M. Rey, D. E. Vogler, and H. Waechter, “Trace gas monitoring with infrared laser-based detection schemes,” Appl. Phys. B 90, 289–300 (2008).
[CrossRef]

E. Kerstel and L. Gianfrani, “Advances in laser-based isotope ratio measurements: selected applications,” Appl. Phys. B 92, 439–449 (2008).
[CrossRef]

H. Waechter, J. Mohn, B. Tuzson, L. Emmenegger, and M. W. Sigrist, “Determination of N2O isotopomers with quantum cascade laser based absorption spectroscopy,” Opt. Express 16, 9239–9244 (2008).
[CrossRef] [PubMed]

M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, “Singly resonant cw OPO with simple wavelength tuning,” Opt. Express 16, 11141–11146 (2008).
[CrossRef] [PubMed]

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hope free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92, 305–311 (2008).
[CrossRef]

V. L. Kasyutich, R. J. Holdsworth, and P. A. Martin, “Mid-infrared laser absorption spectrometers based upon all-diode laser difference frequency generation and a room temperature quantum cascade laser for the detection of CO, N2O and NO,” Appl. Phys. B 92, 271–279 (2008).
[CrossRef]

R. Bartlome, J. M. Rey, and M. W. Sigrist, “Vapor phase infrared laser spectroscopy: from gas sensing to forensic urinalysis,” Anal. Chem. 80, 5334–5341 (2008).
[CrossRef] [PubMed]

J. M. Rey, D. Schramm, D. Hahnloser, D. Marinov, and M. W. Sigrist, “Spectroscopic investigation of volatile compounds produced during thermal and radiofrequency bipolar cautery on porcine liver,” Meas. Sci. Technol. 19, 075602 (2008).
[CrossRef]

2007

R. Bartlome, M. Baer, and M. W. Sigrist, “High-temperature multipass cell for infrared spectroscopy of heated gases and vapors,” Rev. Sci. Instrum. 78, 013110 (2007).
[CrossRef] [PubMed]

J. Devenson, O. Cathabard, R. Teissier, and A. N. Baranov, “High temperature operation of λ≈3.3 μm quantum cascade lasers,” Appl. Phys. Lett. 91, 141106 (2007).
[CrossRef]

W. Denzer, G. Hancock, A. Hutchinson, M. Munday, R. Peverall, and G. A. D. Ritchie, “Mid-infrared generation and spectroscopy with a PPLN ridge waveguide,” Appl. Phys. B 86, 437–441(2007).
[CrossRef]

D. J. Bamford, D. J. Cook, S. J. Sharpe, and A. D. Van Pelt, “Widely tunable rapid-scanning mid-infrared laser spectrometer for industrial gas process stream analysis,” Appl. Opt. 46, 3958–3968 (2007).
[CrossRef] [PubMed]

2006

V. V. Vassiliev, S. A. Zibrov, and V. L. Velichansky, “Compact extended-cavity diode laser for atomic spectroscopy and metrology,” Rev. Sci. Instrum. 77, 013102 (2006).
[CrossRef]

M. E. Trudeau, P. Chen, G. D. Garcia, L. W. Hollberg, and P. P. Tans, “Stable isotopic analysis of atmospheric methane by infrared spectroscopy by use of diode laser difference-frequency generation,” Appl. Opt. 45, 4136–4141 (2006).
[CrossRef] [PubMed]

Y. He and B. J. Orr, “Detection of trace gases by rapidly-swept continuous-wave cavity ringdown spectroscopy: pushing the limits of sensitivity,” Appl. Phys. B 85, 355–364 (2006).
[CrossRef]

2003

W. L. Barrett and S. M. Garber, “Surgical smoke—a review of the literature—Is this just a lot of hot air?,” Surg. Endosc. 17, 979–987 (2003).
[CrossRef] [PubMed]

2001

M. Asobe, O. Tadanaga, T. Yanagawa, H. Itoh, and H. Suzuki, “Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters,” Appl. Phys. Lett. 78, 3163–3165 (2001).
[CrossRef]

C. L. Schiller, S. Locquiao, T. J. Johnson, and G. W. Harris, “Atmospheric measurements of HONO by tunable diode laser absorption spectroscopy,” J. Atmos. Chem. 40, 275–293 (2001).
[CrossRef]

2000

M. Nägele and M. W. Sigrist, “Mobile laser spectrometer with novel resonant multipass photoacoustic cell for trace-gas sensing,” Appl. Phys. B 70, 895–901 (2000).

1998

K. L. McNesby, R. R. Skaggs, A. W. Miziolek, M. Clay, S. H. Hoke, and C. S. Miser, “Diode-laser-based measurements of hydrogen fluoride gas during chemical suppression of fires,” Appl. Phys. B 67, 443–447 (1998).
[CrossRef]

1996

A. J. Phillips and P. A. Hamilton, “Improved detection limits in Fourier transform spectroscopy from a maximum entropy approach to baseline estimation,” Anal. Chem. 68, 4020–4025 (1996).
[CrossRef]

1995

Y. Kong, J. Wen, and H. Wang, “New doped lithium niobate crystal with high resistance to photorefraction—LiNbO3:In,” Appl. Phys. Lett. 66, 280–281 (1995).
[CrossRef]

1994

H. I. Schiff, G. I. Mackay, and J. Bechara, “The use of tunable diode-laser absorption-spectroscopy for atmospheric measurements,” Res. Chem. Intermed. 20, 525–556 (1994).
[CrossRef]

1993

P. Werle, R. Muecke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption-spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
[CrossRef]

1992

D. S. Bomse, A. C. Stanton, and J. A. Silver, “Frequency-modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992).
[CrossRef] [PubMed]

D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical-crystals—a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057–2074 (1992).
[CrossRef]

1987

T. Katoh and K. Ikeda, “The minimum alveolar concentration (MAC) of sevoflurane in humans,” Anesthesiology 66, 301–303 (1987).
[CrossRef] [PubMed]

1962

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Abell, J.

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys. 11, 125015 (2009).
[CrossRef]

Ageev, B. G.

B. G. Ageev, Y. N. Ponomarev, and V. A. Sapozhnikova, “Photoacoustic analysis of CO2 content in annual tree rings,” J. Appl. Spectrosc. 76, 452–455 (2009).
[CrossRef]

Allen, M. G.

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Arnone, D.

T. Day, M. Weida, D. Arnone, and M. Pushkarsky, “Recent advances in compact broadly tunable external-cavity quantum cascade lasers (ECqcL),” Proc. SPIE 7319, 73190F (2009).
[CrossRef]

Asobe, M.

M. Asobe, O. Tadanaga, T. Yanagawa, H. Itoh, and H. Suzuki, “Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters,” Appl. Phys. Lett. 78, 3163–3165 (2001).
[CrossRef]

Baer, M.

R. Bartlome, M. Baer, and M. W. Sigrist, “High-temperature multipass cell for infrared spectroscopy of heated gases and vapors,” Rev. Sci. Instrum. 78, 013110 (2007).
[CrossRef] [PubMed]

Bamford, D. J.

Baranov, A. N.

J. Devenson, O. Cathabard, R. Teissier, and A. N. Baranov, “High temperature operation of λ≈3.3 μm quantum cascade lasers,” Appl. Phys. Lett. 91, 141106 (2007).
[CrossRef]

Barrett, W. L.

W. L. Barrett and S. M. Garber, “Surgical smoke—a review of the literature—Is this just a lot of hot air?,” Surg. Endosc. 17, 979–987 (2003).
[CrossRef] [PubMed]

Bartlome, R.

M. W. Sigrist, R. Bartlome, D. Marinov, J. M. Rey, D. E. Vogler, and H. Waechter, “Trace gas monitoring with infrared laser-based detection schemes,” Appl. Phys. B 90, 289–300 (2008).
[CrossRef]

R. Bartlome, J. M. Rey, and M. W. Sigrist, “Vapor phase infrared laser spectroscopy: from gas sensing to forensic urinalysis,” Anal. Chem. 80, 5334–5341 (2008).
[CrossRef] [PubMed]

R. Bartlome, M. Baer, and M. W. Sigrist, “High-temperature multipass cell for infrared spectroscopy of heated gases and vapors,” Rev. Sci. Instrum. 78, 013110 (2007).
[CrossRef] [PubMed]

Bechara, J.

H. I. Schiff, G. I. Mackay, and J. Bechara, “The use of tunable diode-laser absorption-spectroscopy for atmospheric measurements,” Res. Chem. Intermed. 20, 525–556 (1994).
[CrossRef]

Beck, M.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95, 061103 (2009).
[CrossRef]

Bernacki, B. E.

M. C. Phillips, M. S. Taubman, B. E. Bernacki, B. D. Cannon, J. T. Schiffern, and T. L. Myers, “Design and performance of a sensor system for detection of multiple chemicals using an external cavity quantum cascade laser,” Proc. SPIE 7608, 76080D (2010).
[CrossRef]

Berrou, A.

A. Berrou, M. Raybaut, A. Godard, and M. Lefebvre, “High-resolution photoacoustic and direct absorption spectroscopy of main greenhouse gases by use of a pulsed entangled cavity doubly resonant OPO,” Appl. Phys. B 98, 217–230 (2010).
[CrossRef]

Bewley, W. W.

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys. 11, 125015 (2009).
[CrossRef]

Bigourd, D.

J. Cousin, W. Chen, D. Bigourd, M. Formentin, and S. Kassi, “Telecom-grade fiber laser-based difference-frequency generation and ppb-level detection of benzene vapor in air around 3 μm,” Appl. Phys. B 97, 919–929 (2009).
[CrossRef]

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Bomse, D. S.

Bonetti, Y.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95, 061103 (2009).
[CrossRef]

Bour, D.

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hope free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92, 305–311 (2008).
[CrossRef]

Canedy, C. L.

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys. 11, 125015 (2009).
[CrossRef]

Cannon, B. D.

M. C. Phillips, M. S. Taubman, B. E. Bernacki, B. D. Cannon, J. T. Schiffern, and T. L. Myers, “Design and performance of a sensor system for detection of multiple chemicals using an external cavity quantum cascade laser,” Proc. SPIE 7608, 76080D (2010).
[CrossRef]

Capasso, F.

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hope free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92, 305–311 (2008).
[CrossRef]

Cathabard, O.

J. Devenson, O. Cathabard, R. Teissier, and A. N. Baranov, “High temperature operation of λ≈3.3 μm quantum cascade lasers,” Appl. Phys. Lett. 91, 141106 (2007).
[CrossRef]

Chen, P.

Chen, W.

J. Cousin, W. Chen, D. Bigourd, M. Formentin, and S. Kassi, “Telecom-grade fiber laser-based difference-frequency generation and ppb-level detection of benzene vapor in air around 3 μm,” Appl. Phys. B 97, 919–929 (2009).
[CrossRef]

Ciaffoni, L.

Clay, M.

K. L. McNesby, R. R. Skaggs, A. W. Miziolek, M. Clay, S. H. Hoke, and C. S. Miser, “Diode-laser-based measurements of hydrogen fluoride gas during chemical suppression of fires,” Appl. Phys. B 67, 443–447 (1998).
[CrossRef]

Cockburn, J. W.

S. Y. Zhang, D. G. Revin, J. W. Cockburn, K. Kennedy, A. B. Krysa, and M. Hopkinson, “λ∼3.1 μm room temperature InGaAs/AlAsSb/InP quantum cascade lasers,” Appl. Phys. Lett. 94, 031106 (2009).
[CrossRef]

Cook, D. J.

Corzine, S.

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hope free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92, 305–311 (2008).
[CrossRef]

Cousin, J.

J. Cousin, W. Chen, D. Bigourd, M. Formentin, and S. Kassi, “Telecom-grade fiber laser-based difference-frequency generation and ppb-level detection of benzene vapor in air around 3 μm,” Appl. Phys. B 97, 919–929 (2009).
[CrossRef]

Curl, R. F.

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hope free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92, 305–311 (2008).
[CrossRef]

Day, T.

T. Day, M. Weida, D. Arnone, and M. Pushkarsky, “Recent advances in compact broadly tunable external-cavity quantum cascade lasers (ECqcL),” Proc. SPIE 7319, 73190F (2009).
[CrossRef]

Denzer, W.

W. Denzer, G. Hancock, A. Hutchinson, M. Munday, R. Peverall, and G. A. D. Ritchie, “Mid-infrared generation and spectroscopy with a PPLN ridge waveguide,” Appl. Phys. B 86, 437–441(2007).
[CrossRef]

Devenson, J.

J. Devenson, O. Cathabard, R. Teissier, and A. N. Baranov, “High temperature operation of λ≈3.3 μm quantum cascade lasers,” Appl. Phys. Lett. 91, 141106 (2007).
[CrossRef]

Di Franco, C.

A. Elia, P. M. Lugarà, C. Di Franco, and V. Spagnolo, “Photoacoustic techniques for trace gas sensing based on semiconductor laser sources,” Sensors 9, 9616–9628 (2009).
[CrossRef]

Diehl, L.

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hope free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92, 305–311 (2008).
[CrossRef]

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Dunn, M. H.

D. J. M. Stothard, C. F. Rae, and M. H. Dunn, “An intracavity optical parametric oscillator with very high repetition rate and broad tunability based upon room temperature periodically poled MgO:LiNbO3 with fanned grating design,” IEEE J. Quantum Electron. 45, 256–263 (2009).
[CrossRef]

Dyroff, C.

C. Dyroff, D. Fuetterer, and A. Zahn, “Compact diode-laser spectrometer ISOWAT for highly sensitive airborne measurements of water-isotope ratios,” Appl. Phys. B 98, 537–548(2010).
[CrossRef]

Elia, A.

A. Elia, P. M. Lugarà, C. Di Franco, and V. Spagnolo, “Photoacoustic techniques for trace gas sensing based on semiconductor laser sources,” Sensors 9, 9616–9628 (2009).
[CrossRef]

Emmenegger, L.

Faist, J.

A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol. 25, 083001 (2010).
[CrossRef]

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95, 061103 (2009).
[CrossRef]

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hope free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92, 305–311 (2008).
[CrossRef]

Fischer, C.

C. Fischer and M. W. Sigrist, “Mid-IR difference frequency generation,” in Solid-State Mid-Infrared Laser Sources, I.T.Sorokina and K.L.Vodopyanov, eds. (Springer, 2003), pp. 97–140.

Fischer, M.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95, 061103 (2009).
[CrossRef]

Formentin, M.

J. Cousin, W. Chen, D. Bigourd, M. Formentin, and S. Kassi, “Telecom-grade fiber laser-based difference-frequency generation and ppb-level detection of benzene vapor in air around 3 μm,” Appl. Phys. B 97, 919–929 (2009).
[CrossRef]

Fried, A.

Fuetterer, D.

C. Dyroff, D. Fuetterer, and A. Zahn, “Compact diode-laser spectrometer ISOWAT for highly sensitive airborne measurements of water-isotope ratios,” Appl. Phys. B 98, 537–548(2010).
[CrossRef]

Ganz, A. M.

Garber, S. M.

W. L. Barrett and S. M. Garber, “Surgical smoke—a review of the literature—Is this just a lot of hot air?,” Surg. Endosc. 17, 979–987 (2003).
[CrossRef] [PubMed]

Garcia, G. D.

Gianella, M.

M. Gianella and M. W. Sigrist, “Infrared spectroscopy on smoke produced by cauterization of animal tissue,” Sensors 10, 2694–2708 (2010).
[CrossRef]

Gianfrani, L.

E. Kerstel and L. Gianfrani, “Advances in laser-based isotope ratio measurements: selected applications,” Appl. Phys. B 92, 439–449 (2008).
[CrossRef]

Gini, E.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95, 061103 (2009).
[CrossRef]

Giovannini, M.

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hope free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92, 305–311 (2008).
[CrossRef]

Godard, A.

A. Berrou, M. Raybaut, A. Godard, and M. Lefebvre, “High-resolution photoacoustic and direct absorption spectroscopy of main greenhouse gases by use of a pulsed entangled cavity doubly resonant OPO,” Appl. Phys. B 98, 217–230 (2010).
[CrossRef]

Grilli, R.

Guss, J.

K. Stamyr, O. Vaittinen, J. Jaakola, J. Guss, M. Metsala, G. Johanson, and L. Halonen, “Background levels of hydrogen cyanide in human breath measured by infrared cavity ring down spectroscopy,” Biomarkers 14, 285–291 (2009).
[CrossRef] [PubMed]

Hahnloser, D.

J. M. Rey, D. Schramm, D. Hahnloser, D. Marinov, and M. W. Sigrist, “Spectroscopic investigation of volatile compounds produced during thermal and radiofrequency bipolar cautery on porcine liver,” Meas. Sci. Technol. 19, 075602 (2008).
[CrossRef]

Halonen, L.

K. Stamyr, O. Vaittinen, J. Jaakola, J. Guss, M. Metsala, G. Johanson, and L. Halonen, “Background levels of hydrogen cyanide in human breath measured by infrared cavity ring down spectroscopy,” Biomarkers 14, 285–291 (2009).
[CrossRef] [PubMed]

M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, “Singly resonant cw OPO with simple wavelength tuning,” Opt. Express 16, 11141–11146 (2008).
[CrossRef] [PubMed]

Hamilton, P. A.

A. J. Phillips and P. A. Hamilton, “Improved detection limits in Fourier transform spectroscopy from a maximum entropy approach to baseline estimation,” Anal. Chem. 68, 4020–4025 (1996).
[CrossRef]

Hancock, G.

R. Grilli, L. Ciaffoni, G. Hancock, R. Peverall, G. A. D. Ritchie, and A. J. Orr-Ewing, “Mid-infrared ethene detection using difference frequency generation in a quasi-phase-matched LiNbO3 waveguide,” Appl. Opt. 48, 5696–5703 (2009).
[CrossRef] [PubMed]

W. Denzer, G. Hancock, A. Hutchinson, M. Munday, R. Peverall, and G. A. D. Ritchie, “Mid-infrared generation and spectroscopy with a PPLN ridge waveguide,” Appl. Phys. B 86, 437–441(2007).
[CrossRef]

Harren, F. J. M.

Harris, G. W.

C. L. Schiller, S. Locquiao, T. J. Johnson, and G. W. Harris, “Atmospheric measurements of HONO by tunable diode laser absorption spectroscopy,” J. Atmos. Chem. 40, 275–293 (2001).
[CrossRef]

He, Y.

Y. He and B. J. Orr, “Detection of trace gases by rapidly-swept continuous-wave cavity ringdown spectroscopy: pushing the limits of sensitivity,” Appl. Phys. B 85, 355–364 (2006).
[CrossRef]

Hofler, G.

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hope free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92, 305–311 (2008).
[CrossRef]

Hoke, S. H.

K. L. McNesby, R. R. Skaggs, A. W. Miziolek, M. Clay, S. H. Hoke, and C. S. Miser, “Diode-laser-based measurements of hydrogen fluoride gas during chemical suppression of fires,” Appl. Phys. B 67, 443–447 (1998).
[CrossRef]

Holdsworth, R. J.

V. L. Kasyutich, R. J. Holdsworth, and P. A. Martin, “Mid-infrared laser absorption spectrometers based upon all-diode laser difference frequency generation and a room temperature quantum cascade laser for the detection of CO, N2O and NO,” Appl. Phys. B 92, 271–279 (2008).
[CrossRef]

Hollberg, L. W.

Hopkinson, M.

S. Y. Zhang, D. G. Revin, J. W. Cockburn, K. Kennedy, A. B. Krysa, and M. Hopkinson, “λ∼3.1 μm room temperature InGaAs/AlAsSb/InP quantum cascade lasers,” Appl. Phys. Lett. 94, 031106 (2009).
[CrossRef]

Hugi, A.

A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol. 25, 083001 (2010).
[CrossRef]

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95, 061103 (2009).
[CrossRef]

Hutchinson, A.

W. Denzer, G. Hancock, A. Hutchinson, M. Munday, R. Peverall, and G. A. D. Ritchie, “Mid-infrared generation and spectroscopy with a PPLN ridge waveguide,” Appl. Phys. B 86, 437–441(2007).
[CrossRef]

Ikeda, K.

T. Katoh and K. Ikeda, “The minimum alveolar concentration (MAC) of sevoflurane in humans,” Anesthesiology 66, 301–303 (1987).
[CrossRef] [PubMed]

Itoh, H.

M. Asobe, O. Tadanaga, T. Yanagawa, H. Itoh, and H. Suzuki, “Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters,” Appl. Phys. Lett. 78, 3163–3165 (2001).
[CrossRef]

Jaakola, J.

K. Stamyr, O. Vaittinen, J. Jaakola, J. Guss, M. Metsala, G. Johanson, and L. Halonen, “Background levels of hydrogen cyanide in human breath measured by infrared cavity ring down spectroscopy,” Biomarkers 14, 285–291 (2009).
[CrossRef] [PubMed]

Johanson, G.

K. Stamyr, O. Vaittinen, J. Jaakola, J. Guss, M. Metsala, G. Johanson, and L. Halonen, “Background levels of hydrogen cyanide in human breath measured by infrared cavity ring down spectroscopy,” Biomarkers 14, 285–291 (2009).
[CrossRef] [PubMed]

Johnson, T. J.

C. L. Schiller, S. Locquiao, T. J. Johnson, and G. W. Harris, “Atmospheric measurements of HONO by tunable diode laser absorption spectroscopy,” J. Atmos. Chem. 40, 275–293 (2001).
[CrossRef]

Karpf, A.

Kassi, S.

J. Cousin, W. Chen, D. Bigourd, M. Formentin, and S. Kassi, “Telecom-grade fiber laser-based difference-frequency generation and ppb-level detection of benzene vapor in air around 3 μm,” Appl. Phys. B 97, 919–929 (2009).
[CrossRef]

Kasyutich, V. L.

V. L. Kasyutich, R. J. Holdsworth, and P. A. Martin, “Mid-infrared laser absorption spectrometers based upon all-diode laser difference frequency generation and a room temperature quantum cascade laser for the detection of CO, N2O and NO,” Appl. Phys. B 92, 271–279 (2008).
[CrossRef]

Katoh, T.

T. Katoh and K. Ikeda, “The minimum alveolar concentration (MAC) of sevoflurane in humans,” Anesthesiology 66, 301–303 (1987).
[CrossRef] [PubMed]

Kennedy, K.

S. Y. Zhang, D. G. Revin, J. W. Cockburn, K. Kennedy, A. B. Krysa, and M. Hopkinson, “λ∼3.1 μm room temperature InGaAs/AlAsSb/InP quantum cascade lasers,” Appl. Phys. Lett. 94, 031106 (2009).
[CrossRef]

Kerstel, E.

E. Kerstel and L. Gianfrani, “Advances in laser-based isotope ratio measurements: selected applications,” Appl. Phys. B 92, 439–449 (2008).
[CrossRef]

Kim, C. S.

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys. 11, 125015 (2009).
[CrossRef]

Kim, M.

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys. 11, 125015 (2009).
[CrossRef]

Kong, Y.

Y. Kong, J. Wen, and H. Wang, “New doped lithium niobate crystal with high resistance to photorefraction—LiNbO3:In,” Appl. Phys. Lett. 66, 280–281 (1995).
[CrossRef]

Kosterev, A. A.

S. Schilt, A. A. Kosterev, and F. K. Tittel, “Performance evaluation of a near infrared QEPAS based ethylene sensor,” Appl. Phys. B 95, 813–824 (2009).
[CrossRef]

Krysa, A. B.

S. Y. Zhang, D. G. Revin, J. W. Cockburn, K. Kennedy, A. B. Krysa, and M. Hopkinson, “λ∼3.1 μm room temperature InGaAs/AlAsSb/InP quantum cascade lasers,” Appl. Phys. Lett. 94, 031106 (2009).
[CrossRef]

Lefebvre, M.

A. Berrou, M. Raybaut, A. Godard, and M. Lefebvre, “High-resolution photoacoustic and direct absorption spectroscopy of main greenhouse gases by use of a pulsed entangled cavity doubly resonant OPO,” Appl. Phys. B 98, 217–230 (2010).
[CrossRef]

Lewicki, R.

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hope free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92, 305–311 (2008).
[CrossRef]

Lindle, J. R.

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys. 11, 125015 (2009).
[CrossRef]

Locquiao, S.

C. L. Schiller, S. Locquiao, T. J. Johnson, and G. W. Harris, “Atmospheric measurements of HONO by tunable diode laser absorption spectroscopy,” J. Atmos. Chem. 40, 275–293 (2001).
[CrossRef]

Lugarà, P. M.

A. Elia, P. M. Lugarà, C. Di Franco, and V. Spagnolo, “Photoacoustic techniques for trace gas sensing based on semiconductor laser sources,” Sensors 9, 9616–9628 (2009).
[CrossRef]

Mackay, G. I.

H. I. Schiff, G. I. Mackay, and J. Bechara, “The use of tunable diode-laser absorption-spectroscopy for atmospheric measurements,” Res. Chem. Intermed. 20, 525–556 (1994).
[CrossRef]

Marinov, D.

M. W. Sigrist, R. Bartlome, D. Marinov, J. M. Rey, D. E. Vogler, and H. Waechter, “Trace gas monitoring with infrared laser-based detection schemes,” Appl. Phys. B 90, 289–300 (2008).
[CrossRef]

J. M. Rey, D. Schramm, D. Hahnloser, D. Marinov, and M. W. Sigrist, “Spectroscopic investigation of volatile compounds produced during thermal and radiofrequency bipolar cautery on porcine liver,” Meas. Sci. Technol. 19, 075602 (2008).
[CrossRef]

Martin, P. A.

V. L. Kasyutich, R. J. Holdsworth, and P. A. Martin, “Mid-infrared laser absorption spectrometers based upon all-diode laser difference frequency generation and a room temperature quantum cascade laser for the detection of CO, N2O and NO,” Appl. Phys. B 92, 271–279 (2008).
[CrossRef]

Maulini, R.

A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol. 25, 083001 (2010).
[CrossRef]

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hope free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92, 305–311 (2008).
[CrossRef]

McNesby, K. L.

K. L. McNesby, R. R. Skaggs, A. W. Miziolek, M. Clay, S. H. Hoke, and C. S. Miser, “Diode-laser-based measurements of hydrogen fluoride gas during chemical suppression of fires,” Appl. Phys. B 67, 443–447 (1998).
[CrossRef]

Metsala, M.

K. Stamyr, O. Vaittinen, J. Jaakola, J. Guss, M. Metsala, G. Johanson, and L. Halonen, “Background levels of hydrogen cyanide in human breath measured by infrared cavity ring down spectroscopy,” Biomarkers 14, 285–291 (2009).
[CrossRef] [PubMed]

Meyer, J. R.

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys. 11, 125015 (2009).
[CrossRef]

Miser, C. S.

K. L. McNesby, R. R. Skaggs, A. W. Miziolek, M. Clay, S. H. Hoke, and C. S. Miser, “Diode-laser-based measurements of hydrogen fluoride gas during chemical suppression of fires,” Appl. Phys. B 67, 443–447 (1998).
[CrossRef]

Miziolek, A. W.

K. L. McNesby, R. R. Skaggs, A. W. Miziolek, M. Clay, S. H. Hoke, and C. S. Miser, “Diode-laser-based measurements of hydrogen fluoride gas during chemical suppression of fires,” Appl. Phys. B 67, 443–447 (1998).
[CrossRef]

Mohn, J.

Muecke, R.

P. Werle, R. Muecke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption-spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
[CrossRef]

Munday, M.

W. Denzer, G. Hancock, A. Hutchinson, M. Munday, R. Peverall, and G. A. D. Ritchie, “Mid-infrared generation and spectroscopy with a PPLN ridge waveguide,” Appl. Phys. B 86, 437–441(2007).
[CrossRef]

Myers, T. L.

M. C. Phillips, M. S. Taubman, B. E. Bernacki, B. D. Cannon, J. T. Schiffern, and T. L. Myers, “Design and performance of a sensor system for detection of multiple chemicals using an external cavity quantum cascade laser,” Proc. SPIE 7608, 76080D (2010).
[CrossRef]

Nägele, M.

M. Nägele and M. W. Sigrist, “Mobile laser spectrometer with novel resonant multipass photoacoustic cell for trace-gas sensing,” Appl. Phys. B 70, 895–901 (2000).

Orr, B. J.

Y. He and B. J. Orr, “Detection of trace gases by rapidly-swept continuous-wave cavity ringdown spectroscopy: pushing the limits of sensitivity,” Appl. Phys. B 85, 355–364 (2006).
[CrossRef]

Orr-Ewing, A. J.

Parameswaran, K. R.

Peltola, J.

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Persijn, S.

Peverall, R.

R. Grilli, L. Ciaffoni, G. Hancock, R. Peverall, G. A. D. Ritchie, and A. J. Orr-Ewing, “Mid-infrared ethene detection using difference frequency generation in a quasi-phase-matched LiNbO3 waveguide,” Appl. Opt. 48, 5696–5703 (2009).
[CrossRef] [PubMed]

W. Denzer, G. Hancock, A. Hutchinson, M. Munday, R. Peverall, and G. A. D. Ritchie, “Mid-infrared generation and spectroscopy with a PPLN ridge waveguide,” Appl. Phys. B 86, 437–441(2007).
[CrossRef]

Phillips, A. J.

A. J. Phillips and P. A. Hamilton, “Improved detection limits in Fourier transform spectroscopy from a maximum entropy approach to baseline estimation,” Anal. Chem. 68, 4020–4025 (1996).
[CrossRef]

Phillips, M. C.

M. C. Phillips, M. S. Taubman, B. E. Bernacki, B. D. Cannon, J. T. Schiffern, and T. L. Myers, “Design and performance of a sensor system for detection of multiple chemicals using an external cavity quantum cascade laser,” Proc. SPIE 7608, 76080D (2010).
[CrossRef]

Ponomarev, Y. N.

B. G. Ageev, Y. N. Ponomarev, and V. A. Sapozhnikova, “Photoacoustic analysis of CO2 content in annual tree rings,” J. Appl. Spectrosc. 76, 452–455 (2009).
[CrossRef]

Pushkarsky, M.

T. Day, M. Weida, D. Arnone, and M. Pushkarsky, “Recent advances in compact broadly tunable external-cavity quantum cascade lasers (ECqcL),” Proc. SPIE 7319, 73190F (2009).
[CrossRef]

Rae, C. F.

D. J. M. Stothard, C. F. Rae, and M. H. Dunn, “An intracavity optical parametric oscillator with very high repetition rate and broad tunability based upon room temperature periodically poled MgO:LiNbO3 with fanned grating design,” IEEE J. Quantum Electron. 45, 256–263 (2009).
[CrossRef]

Rao, G. N.

Raybaut, M.

A. Berrou, M. Raybaut, A. Godard, and M. Lefebvre, “High-resolution photoacoustic and direct absorption spectroscopy of main greenhouse gases by use of a pulsed entangled cavity doubly resonant OPO,” Appl. Phys. B 98, 217–230 (2010).
[CrossRef]

Revin, D. G.

S. Y. Zhang, D. G. Revin, J. W. Cockburn, K. Kennedy, A. B. Krysa, and M. Hopkinson, “λ∼3.1 μm room temperature InGaAs/AlAsSb/InP quantum cascade lasers,” Appl. Phys. Lett. 94, 031106 (2009).
[CrossRef]

Rey, J. M.

J. M. Rey, D. Schramm, D. Hahnloser, D. Marinov, and M. W. Sigrist, “Spectroscopic investigation of volatile compounds produced during thermal and radiofrequency bipolar cautery on porcine liver,” Meas. Sci. Technol. 19, 075602 (2008).
[CrossRef]

R. Bartlome, J. M. Rey, and M. W. Sigrist, “Vapor phase infrared laser spectroscopy: from gas sensing to forensic urinalysis,” Anal. Chem. 80, 5334–5341 (2008).
[CrossRef] [PubMed]

M. W. Sigrist, R. Bartlome, D. Marinov, J. M. Rey, D. E. Vogler, and H. Waechter, “Trace gas monitoring with infrared laser-based detection schemes,” Appl. Phys. B 90, 289–300 (2008).
[CrossRef]

Richter, D.

Risby, T. H.

Ritchie, G. A. D.

R. Grilli, L. Ciaffoni, G. Hancock, R. Peverall, G. A. D. Ritchie, and A. J. Orr-Ewing, “Mid-infrared ethene detection using difference frequency generation in a quasi-phase-matched LiNbO3 waveguide,” Appl. Opt. 48, 5696–5703 (2009).
[CrossRef] [PubMed]

W. Denzer, G. Hancock, A. Hutchinson, M. Munday, R. Peverall, and G. A. D. Ritchie, “Mid-infrared generation and spectroscopy with a PPLN ridge waveguide,” Appl. Phys. B 86, 437–441(2007).
[CrossRef]

Roberts, D. A.

D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical-crystals—a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057–2074 (1992).
[CrossRef]

Rosen, D. I.

Saliba, S. D.

Sapozhnikova, V. A.

B. G. Ageev, Y. N. Ponomarev, and V. A. Sapozhnikova, “Photoacoustic analysis of CO2 content in annual tree rings,” J. Appl. Spectrosc. 76, 452–455 (2009).
[CrossRef]

Schiff, H. I.

H. I. Schiff, G. I. Mackay, and J. Bechara, “The use of tunable diode-laser absorption-spectroscopy for atmospheric measurements,” Res. Chem. Intermed. 20, 525–556 (1994).
[CrossRef]

Schiffern, J. T.

M. C. Phillips, M. S. Taubman, B. E. Bernacki, B. D. Cannon, J. T. Schiffern, and T. L. Myers, “Design and performance of a sensor system for detection of multiple chemicals using an external cavity quantum cascade laser,” Proc. SPIE 7608, 76080D (2010).
[CrossRef]

Schiller, C. L.

C. L. Schiller, S. Locquiao, T. J. Johnson, and G. W. Harris, “Atmospheric measurements of HONO by tunable diode laser absorption spectroscopy,” J. Atmos. Chem. 40, 275–293 (2001).
[CrossRef]

Schilt, S.

S. Schilt, A. A. Kosterev, and F. K. Tittel, “Performance evaluation of a near infrared QEPAS based ethylene sensor,” Appl. Phys. B 95, 813–824 (2009).
[CrossRef]

Scholten, R. E.

Schramm, D.

J. M. Rey, D. Schramm, D. Hahnloser, D. Marinov, and M. W. Sigrist, “Spectroscopic investigation of volatile compounds produced during thermal and radiofrequency bipolar cautery on porcine liver,” Meas. Sci. Technol. 19, 075602 (2008).
[CrossRef]

Sharpe, S. J.

Sigrist, M. W.

M. Gianella and M. W. Sigrist, “Infrared spectroscopy on smoke produced by cauterization of animal tissue,” Sensors 10, 2694–2708 (2010).
[CrossRef]

J. M. Rey, D. Schramm, D. Hahnloser, D. Marinov, and M. W. Sigrist, “Spectroscopic investigation of volatile compounds produced during thermal and radiofrequency bipolar cautery on porcine liver,” Meas. Sci. Technol. 19, 075602 (2008).
[CrossRef]

R. Bartlome, J. M. Rey, and M. W. Sigrist, “Vapor phase infrared laser spectroscopy: from gas sensing to forensic urinalysis,” Anal. Chem. 80, 5334–5341 (2008).
[CrossRef] [PubMed]

M. W. Sigrist, R. Bartlome, D. Marinov, J. M. Rey, D. E. Vogler, and H. Waechter, “Trace gas monitoring with infrared laser-based detection schemes,” Appl. Phys. B 90, 289–300 (2008).
[CrossRef]

H. Waechter, J. Mohn, B. Tuzson, L. Emmenegger, and M. W. Sigrist, “Determination of N2O isotopomers with quantum cascade laser based absorption spectroscopy,” Opt. Express 16, 9239–9244 (2008).
[CrossRef] [PubMed]

R. Bartlome, M. Baer, and M. W. Sigrist, “High-temperature multipass cell for infrared spectroscopy of heated gases and vapors,” Rev. Sci. Instrum. 78, 013110 (2007).
[CrossRef] [PubMed]

M. Nägele and M. W. Sigrist, “Mobile laser spectrometer with novel resonant multipass photoacoustic cell for trace-gas sensing,” Appl. Phys. B 70, 895–901 (2000).

C. Fischer and M. W. Sigrist, “Mid-IR difference frequency generation,” in Solid-State Mid-Infrared Laser Sources, I.T.Sorokina and K.L.Vodopyanov, eds. (Springer, 2003), pp. 97–140.

Silver, J. A.

Skaggs, R. R.

K. L. McNesby, R. R. Skaggs, A. W. Miziolek, M. Clay, S. H. Hoke, and C. S. Miser, “Diode-laser-based measurements of hydrogen fluoride gas during chemical suppression of fires,” Appl. Phys. B 67, 443–447 (1998).
[CrossRef]

Slemr, F.

P. Werle, R. Muecke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption-spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
[CrossRef]

Spagnolo, V.

A. Elia, P. M. Lugarà, C. Di Franco, and V. Spagnolo, “Photoacoustic techniques for trace gas sensing based on semiconductor laser sources,” Sensors 9, 9616–9628 (2009).
[CrossRef]

Stamyr, K.

K. Stamyr, O. Vaittinen, J. Jaakola, J. Guss, M. Metsala, G. Johanson, and L. Halonen, “Background levels of hydrogen cyanide in human breath measured by infrared cavity ring down spectroscopy,” Biomarkers 14, 285–291 (2009).
[CrossRef] [PubMed]

Stanton, A. C.

Stothard, D. J. M.

D. J. M. Stothard, C. F. Rae, and M. H. Dunn, “An intracavity optical parametric oscillator with very high repetition rate and broad tunability based upon room temperature periodically poled MgO:LiNbO3 with fanned grating design,” IEEE J. Quantum Electron. 45, 256–263 (2009).
[CrossRef]

Suzuki, H.

M. Asobe, O. Tadanaga, T. Yanagawa, H. Itoh, and H. Suzuki, “Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters,” Appl. Phys. Lett. 78, 3163–3165 (2001).
[CrossRef]

Tadanaga, O.

M. Asobe, O. Tadanaga, T. Yanagawa, H. Itoh, and H. Suzuki, “Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters,” Appl. Phys. Lett. 78, 3163–3165 (2001).
[CrossRef]

Tans, P. P.

Taubman, M. S.

M. C. Phillips, M. S. Taubman, B. E. Bernacki, B. D. Cannon, J. T. Schiffern, and T. L. Myers, “Design and performance of a sensor system for detection of multiple chemicals using an external cavity quantum cascade laser,” Proc. SPIE 7608, 76080D (2010).
[CrossRef]

Teissier, R.

J. Devenson, O. Cathabard, R. Teissier, and A. N. Baranov, “High temperature operation of λ≈3.3 μm quantum cascade lasers,” Appl. Phys. Lett. 91, 141106 (2007).
[CrossRef]

Terazzi, R.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95, 061103 (2009).
[CrossRef]

Tittel, F. K.

S. Schilt, A. A. Kosterev, and F. K. Tittel, “Performance evaluation of a near infrared QEPAS based ethylene sensor,” Appl. Phys. B 95, 813–824 (2009).
[CrossRef]

D. Richter, B. P. Wert, A. Fried, P. Weibring, J. G. Walega, J. W. C. White, B. H. Vaughn, and F. K. Tittel, “High-precision CO2 isotopologue spectrometer with a difference-frequency-generation laser source,” Opt. Lett. 34, 172–174 (2009).
[CrossRef] [PubMed]

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hope free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92, 305–311 (2008).
[CrossRef]

Troccoli, M.

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hope free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92, 305–311 (2008).
[CrossRef]

Trudeau, M. E.

Tuzson, B.

Vainio, M.

Vaittinen, O.

K. Stamyr, O. Vaittinen, J. Jaakola, J. Guss, M. Metsala, G. Johanson, and L. Halonen, “Background levels of hydrogen cyanide in human breath measured by infrared cavity ring down spectroscopy,” Biomarkers 14, 285–291 (2009).
[CrossRef] [PubMed]

Van Pelt, A. D.

Vassiliev, V. V.

V. V. Vassiliev, S. A. Zibrov, and V. L. Velichansky, “Compact extended-cavity diode laser for atomic spectroscopy and metrology,” Rev. Sci. Instrum. 77, 013102 (2006).
[CrossRef]

Vaughn, B. H.

Velichansky, V. L.

V. V. Vassiliev, S. A. Zibrov, and V. L. Velichansky, “Compact extended-cavity diode laser for atomic spectroscopy and metrology,” Rev. Sci. Instrum. 77, 013102 (2006).
[CrossRef]

Vogler, D. E.

M. W. Sigrist, R. Bartlome, D. Marinov, J. M. Rey, D. E. Vogler, and H. Waechter, “Trace gas monitoring with infrared laser-based detection schemes,” Appl. Phys. B 90, 289–300 (2008).
[CrossRef]

Vurgaftman, I.

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys. 11, 125015 (2009).
[CrossRef]

Waechter, H.

M. W. Sigrist, R. Bartlome, D. Marinov, J. M. Rey, D. E. Vogler, and H. Waechter, “Trace gas monitoring with infrared laser-based detection schemes,” Appl. Phys. B 90, 289–300 (2008).
[CrossRef]

H. Waechter, J. Mohn, B. Tuzson, L. Emmenegger, and M. W. Sigrist, “Determination of N2O isotopomers with quantum cascade laser based absorption spectroscopy,” Opt. Express 16, 9239–9244 (2008).
[CrossRef] [PubMed]

Walega, J. G.

Wang, H.

Y. Kong, J. Wen, and H. Wang, “New doped lithium niobate crystal with high resistance to photorefraction—LiNbO3:In,” Appl. Phys. Lett. 66, 280–281 (1995).
[CrossRef]

Weber, M. J.

M. J. Weber, Handbook of Optical Materials (CRC Press, 2003).

Weibring, P.

Weida, M.

T. Day, M. Weida, D. Arnone, and M. Pushkarsky, “Recent advances in compact broadly tunable external-cavity quantum cascade lasers (ECqcL),” Proc. SPIE 7319, 73190F (2009).
[CrossRef]

Wen, J.

Y. Kong, J. Wen, and H. Wang, “New doped lithium niobate crystal with high resistance to photorefraction—LiNbO3:In,” Appl. Phys. Lett. 66, 280–281 (1995).
[CrossRef]

Werle, P.

P. Werle, R. Muecke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption-spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
[CrossRef]

Wert, B. P.

White, J. W. C.

Wittmann, A.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95, 061103 (2009).
[CrossRef]

Wysocki, G.

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hope free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92, 305–311 (2008).
[CrossRef]

Yanagawa, T.

M. Asobe, O. Tadanaga, T. Yanagawa, H. Itoh, and H. Suzuki, “Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters,” Appl. Phys. Lett. 78, 3163–3165 (2001).
[CrossRef]

Zahn, A.

C. Dyroff, D. Fuetterer, and A. Zahn, “Compact diode-laser spectrometer ISOWAT for highly sensitive airborne measurements of water-isotope ratios,” Appl. Phys. B 98, 537–548(2010).
[CrossRef]

Zhang, S. Y.

S. Y. Zhang, D. G. Revin, J. W. Cockburn, K. Kennedy, A. B. Krysa, and M. Hopkinson, “λ∼3.1 μm room temperature InGaAs/AlAsSb/InP quantum cascade lasers,” Appl. Phys. Lett. 94, 031106 (2009).
[CrossRef]

Zibrov, S. A.

V. V. Vassiliev, S. A. Zibrov, and V. L. Velichansky, “Compact extended-cavity diode laser for atomic spectroscopy and metrology,” Rev. Sci. Instrum. 77, 013102 (2006).
[CrossRef]

Anal. Chem.

R. Bartlome, J. M. Rey, and M. W. Sigrist, “Vapor phase infrared laser spectroscopy: from gas sensing to forensic urinalysis,” Anal. Chem. 80, 5334–5341 (2008).
[CrossRef] [PubMed]

A. J. Phillips and P. A. Hamilton, “Improved detection limits in Fourier transform spectroscopy from a maximum entropy approach to baseline estimation,” Anal. Chem. 68, 4020–4025 (1996).
[CrossRef]

Anesthesiology

T. Katoh and K. Ikeda, “The minimum alveolar concentration (MAC) of sevoflurane in humans,” Anesthesiology 66, 301–303 (1987).
[CrossRef] [PubMed]

Appl. Opt.

D. J. Bamford, D. J. Cook, S. J. Sharpe, and A. D. Van Pelt, “Widely tunable rapid-scanning mid-infrared laser spectrometer for industrial gas process stream analysis,” Appl. Opt. 46, 3958–3968 (2007).
[CrossRef] [PubMed]

S. D. Saliba and R. E. Scholten, “Linewidths below 100 kHz with external cavity diode lasers,” Appl. Opt. 48, 6961–6966(2009).
[CrossRef] [PubMed]

R. Grilli, L. Ciaffoni, G. Hancock, R. Peverall, G. A. D. Ritchie, and A. J. Orr-Ewing, “Mid-infrared ethene detection using difference frequency generation in a quasi-phase-matched LiNbO3 waveguide,” Appl. Opt. 48, 5696–5703 (2009).
[CrossRef] [PubMed]

A. Karpf and G. N. Rao, “Absorption and wavelength modulation spectroscopy of NO2 using a tunable, external cavity continuous wave quantum cascade laser,” Appl. Opt. 48, 408–413 (2009).
[CrossRef] [PubMed]

K. R. Parameswaran, D. I. Rosen, M. G. Allen, A. M. Ganz, and T. H. Risby, “Off-axis integrated cavity output spectroscopy with a mid-infrared interband cascade laser for real-time breath ethane measurements,” Appl. Opt. 48, B73–B79(2009).
[CrossRef] [PubMed]

D. S. Bomse, A. C. Stanton, and J. A. Silver, “Frequency-modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992).
[CrossRef] [PubMed]

M. E. Trudeau, P. Chen, G. D. Garcia, L. W. Hollberg, and P. P. Tans, “Stable isotopic analysis of atmospheric methane by infrared spectroscopy by use of diode laser difference-frequency generation,” Appl. Opt. 45, 4136–4141 (2006).
[CrossRef] [PubMed]

Appl. Phys. B

Y. He and B. J. Orr, “Detection of trace gases by rapidly-swept continuous-wave cavity ringdown spectroscopy: pushing the limits of sensitivity,” Appl. Phys. B 85, 355–364 (2006).
[CrossRef]

M. W. Sigrist, R. Bartlome, D. Marinov, J. M. Rey, D. E. Vogler, and H. Waechter, “Trace gas monitoring with infrared laser-based detection schemes,” Appl. Phys. B 90, 289–300 (2008).
[CrossRef]

K. L. McNesby, R. R. Skaggs, A. W. Miziolek, M. Clay, S. H. Hoke, and C. S. Miser, “Diode-laser-based measurements of hydrogen fluoride gas during chemical suppression of fires,” Appl. Phys. B 67, 443–447 (1998).
[CrossRef]

C. Dyroff, D. Fuetterer, and A. Zahn, “Compact diode-laser spectrometer ISOWAT for highly sensitive airborne measurements of water-isotope ratios,” Appl. Phys. B 98, 537–548(2010).
[CrossRef]

M. Nägele and M. W. Sigrist, “Mobile laser spectrometer with novel resonant multipass photoacoustic cell for trace-gas sensing,” Appl. Phys. B 70, 895–901 (2000).

E. Kerstel and L. Gianfrani, “Advances in laser-based isotope ratio measurements: selected applications,” Appl. Phys. B 92, 439–449 (2008).
[CrossRef]

S. Schilt, A. A. Kosterev, and F. K. Tittel, “Performance evaluation of a near infrared QEPAS based ethylene sensor,” Appl. Phys. B 95, 813–824 (2009).
[CrossRef]

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hope free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92, 305–311 (2008).
[CrossRef]

J. Cousin, W. Chen, D. Bigourd, M. Formentin, and S. Kassi, “Telecom-grade fiber laser-based difference-frequency generation and ppb-level detection of benzene vapor in air around 3 μm,” Appl. Phys. B 97, 919–929 (2009).
[CrossRef]

V. L. Kasyutich, R. J. Holdsworth, and P. A. Martin, “Mid-infrared laser absorption spectrometers based upon all-diode laser difference frequency generation and a room temperature quantum cascade laser for the detection of CO, N2O and NO,” Appl. Phys. B 92, 271–279 (2008).
[CrossRef]

W. Denzer, G. Hancock, A. Hutchinson, M. Munday, R. Peverall, and G. A. D. Ritchie, “Mid-infrared generation and spectroscopy with a PPLN ridge waveguide,” Appl. Phys. B 86, 437–441(2007).
[CrossRef]

P. Werle, R. Muecke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption-spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
[CrossRef]

A. Berrou, M. Raybaut, A. Godard, and M. Lefebvre, “High-resolution photoacoustic and direct absorption spectroscopy of main greenhouse gases by use of a pulsed entangled cavity doubly resonant OPO,” Appl. Phys. B 98, 217–230 (2010).
[CrossRef]

Appl. Phys. Lett.

J. Devenson, O. Cathabard, R. Teissier, and A. N. Baranov, “High temperature operation of λ≈3.3 μm quantum cascade lasers,” Appl. Phys. Lett. 91, 141106 (2007).
[CrossRef]

M. Asobe, O. Tadanaga, T. Yanagawa, H. Itoh, and H. Suzuki, “Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters,” Appl. Phys. Lett. 78, 3163–3165 (2001).
[CrossRef]

Y. Kong, J. Wen, and H. Wang, “New doped lithium niobate crystal with high resistance to photorefraction—LiNbO3:In,” Appl. Phys. Lett. 66, 280–281 (1995).
[CrossRef]

S. Y. Zhang, D. G. Revin, J. W. Cockburn, K. Kennedy, A. B. Krysa, and M. Hopkinson, “λ∼3.1 μm room temperature InGaAs/AlAsSb/InP quantum cascade lasers,” Appl. Phys. Lett. 94, 031106 (2009).
[CrossRef]

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95, 061103 (2009).
[CrossRef]

Biomarkers

K. Stamyr, O. Vaittinen, J. Jaakola, J. Guss, M. Metsala, G. Johanson, and L. Halonen, “Background levels of hydrogen cyanide in human breath measured by infrared cavity ring down spectroscopy,” Biomarkers 14, 285–291 (2009).
[CrossRef] [PubMed]

IEEE J. Quantum Electron.

D. J. M. Stothard, C. F. Rae, and M. H. Dunn, “An intracavity optical parametric oscillator with very high repetition rate and broad tunability based upon room temperature periodically poled MgO:LiNbO3 with fanned grating design,” IEEE J. Quantum Electron. 45, 256–263 (2009).
[CrossRef]

D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical-crystals—a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057–2074 (1992).
[CrossRef]

J. Appl. Spectrosc.

B. G. Ageev, Y. N. Ponomarev, and V. A. Sapozhnikova, “Photoacoustic analysis of CO2 content in annual tree rings,” J. Appl. Spectrosc. 76, 452–455 (2009).
[CrossRef]

J. Atmos. Chem.

C. L. Schiller, S. Locquiao, T. J. Johnson, and G. W. Harris, “Atmospheric measurements of HONO by tunable diode laser absorption spectroscopy,” J. Atmos. Chem. 40, 275–293 (2001).
[CrossRef]

Meas. Sci. Technol.

J. M. Rey, D. Schramm, D. Hahnloser, D. Marinov, and M. W. Sigrist, “Spectroscopic investigation of volatile compounds produced during thermal and radiofrequency bipolar cautery on porcine liver,” Meas. Sci. Technol. 19, 075602 (2008).
[CrossRef]

New J. Phys.

I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, “Mid-infrared interband cascade lasers operating at ambient temperatures,” New J. Phys. 11, 125015 (2009).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Proc. SPIE

M. C. Phillips, M. S. Taubman, B. E. Bernacki, B. D. Cannon, J. T. Schiffern, and T. L. Myers, “Design and performance of a sensor system for detection of multiple chemicals using an external cavity quantum cascade laser,” Proc. SPIE 7608, 76080D (2010).
[CrossRef]

T. Day, M. Weida, D. Arnone, and M. Pushkarsky, “Recent advances in compact broadly tunable external-cavity quantum cascade lasers (ECqcL),” Proc. SPIE 7319, 73190F (2009).
[CrossRef]

Res. Chem. Intermed.

H. I. Schiff, G. I. Mackay, and J. Bechara, “The use of tunable diode-laser absorption-spectroscopy for atmospheric measurements,” Res. Chem. Intermed. 20, 525–556 (1994).
[CrossRef]

Rev. Sci. Instrum.

V. V. Vassiliev, S. A. Zibrov, and V. L. Velichansky, “Compact extended-cavity diode laser for atomic spectroscopy and metrology,” Rev. Sci. Instrum. 77, 013102 (2006).
[CrossRef]

R. Bartlome, M. Baer, and M. W. Sigrist, “High-temperature multipass cell for infrared spectroscopy of heated gases and vapors,” Rev. Sci. Instrum. 78, 013110 (2007).
[CrossRef] [PubMed]

Semicond. Sci. Technol.

A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol. 25, 083001 (2010).
[CrossRef]

Sensors

M. Gianella and M. W. Sigrist, “Infrared spectroscopy on smoke produced by cauterization of animal tissue,” Sensors 10, 2694–2708 (2010).
[CrossRef]

A. Elia, P. M. Lugarà, C. Di Franco, and V. Spagnolo, “Photoacoustic techniques for trace gas sensing based on semiconductor laser sources,” Sensors 9, 9616–9628 (2009).
[CrossRef]

Surg. Endosc.

W. L. Barrett and S. M. Garber, “Surgical smoke—a review of the literature—Is this just a lot of hot air?,” Surg. Endosc. 17, 979–987 (2003).
[CrossRef] [PubMed]

Other

M. J. Weber, Handbook of Optical Materials (CRC Press, 2003).

C. Fischer and M. W. Sigrist, “Mid-IR difference frequency generation,” in Solid-State Mid-Infrared Laser Sources, I.T.Sorokina and K.L.Vodopyanov, eds. (Springer, 2003), pp. 97–140.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic representation of our DFG spectrometer with a multipass cell (MPC). WM, wavemeter; PM, polarization-maintaining fiber; HWP, half-wave plate; Q + HWP : quarter- and half-wave plates; L 1 L 8 , lenses; DM, dichroic mirror; PPLN, periodically poled lithium niobate crystal; F, Ge filter; P, pinhole; BS, beam splitter; D T and D R , transmission and reference detectors, respectively.

Fig. 2
Fig. 2

Optimal temperature of the PPLN crystal as a function of the signal wavelength (pump wavelength λ p = 1064.5 nm ) for the poling period Λ = 29.9 μm .

Fig. 3
Fig. 3

Top, two consecutive baselines for a scan from 2900 to 3144 cm 1 recorded with a DFG laser spectrometer and a 35 m multipass gas cell. The gas in the cell is (nonabsorbing) nitrogen with purity 5.0. Bottom, ratio of the two baselines.

Fig. 4
Fig. 4

Top, power of the idler while consecutively scanning the wavelength of the signal laser from 1540 to 1600 nm (red solid circles) and from 1600 to 1540 nm (blue open circles). Bottom, detector signal ratio Q for the two scan directions: low-to-high temperature (red solid curve) and high-to-low temperature (blue dashed curve). The fringes visible throughout the spectrum are etalon effects due to the uncoated BaF 2 windows of the detectors. The gas in the multipass cell was argon with purity 4.8 at 200 mbar .

Fig. 5
Fig. 5

Power of the idler beam and PPLN temperature recorded while tuning the signal laser from 1540 to 1570 nm and simultaneously increasing the PPLN temperature. From t = 42 min on, the wavelength and PPLN temperature were kept constant. The idler power decreases exponentially in time with a time constant of τ = 220 s . Inset, relative deviation of the detector signal ratio Q from its initial value at t = 42 min .

Fig. 6
Fig. 6

Changes in the detector signal ratio Q as a function of the PPLN temperature without aperture along the path of the idler (triangles) and with aperture (circles). All wavelengths are kept constant.

Fig. 7
Fig. 7

(a) Relative deviations δ Q of measurements 2 (top), 3 (middle), and 4 (bottom) from measurement 1 (not shown) when using the timetable tuning method ( μ = average , σ = standard deviation ). (b) Relative deviations δ Q of measurements 2 (top), 3 (middle), and 4 (bottom) from measurement 1 (not shown) when increasing stepwise the signal wavelength and matching the PPLN temperature (conventional tuning).

Fig. 8
Fig. 8

Spectrum of a surgical smoke sample (upper part) and its essential two components, water vapor and sevoflurane (lower part).

Fig. 9
Fig. 9

Top, phase mismatch Δ k versus idler wavenumber for a PPLN crystal at 150 ° C with a poling period of 30.83 μm and a fixed signal wavelength of 1679 nm . Bottom, normalized conversion efficiencies for three crystal lengths: 0.5 (solid curve), 2.0 (dashed curve), and 5.0 cm (dotted curve).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

1 Λ = n p λ p n s λ s n i λ i ,
Q = A T A R ,
A T = P T bs k T T T T ,
A R = P R bs k R T R .
T ( λ ) = Q ( λ ) Q ( λ ) .
δ Q = Q / Q 1 1 ,
ζ k = S k 1 S k S k 2 , k = 2 , 3 , 4 ,

Metrics