Abstract

Since the first quantum cascade laser (QCL) was demonstrated approximately 16 years ago, we have witnessed an explosion of interesting developments in QCL technology and QCL-based trace gas sensors. QCLs operate in the mid-IR region (324μm) and can directly access the rotational vibrational bands of most molecular species and, therefore, are ideally suited for trace gas detection with high specificity and sensitivity. These sensors have applications in a wide range of fields, including environmental monitoring, atmospheric chemistry, medical diagnostics, homeland security, detection of explosive compounds, and industrial process control, to name a few. Tunable external cavity (EC)-QCLs in particular offer narrow linewidths, wide ranges of tunability, and stable power outputs, which open up new possibilities for sensor development. These features allow for the simultaneous detection of multiple species and the study of large molecules, free radicals, ions, and reaction kinetics. In this article, we review the cur rent status of EC-QCLs and sensor developments based on them and speculate on possible future developments.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
    [CrossRef] [PubMed]
  2. C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64, 1533–1601 (2001).
    [CrossRef]
  3. F. J. Aellen, T. Gresch, T. Beck, and M. Giovannini, “Mid-infrared coherent sources and applications progress,” in Quantum Cascade Lasers (Springer, 2007), pp. 171–192.
  4. R. Paiella, Intersubband Transitions in Quantum Structures (McGraw-Hill, 2006).
  5. J. Cockburn, “Mid-infrared semiconductor optoelectronics,” in Mid-Infrared Quantum Cascade Lasers (Springer, 2006), Vol. 118, pp. 323–355.
  6. J. Faist and C. Sirtori, “Long-wave length infrared semiconductor lasers InP,” in GaAs-Based Quantum Cascade Lasers (Wiley, 2004), pp. 217–278.
  7. A. A. Kosterev, R. F. Curl, F. K. Tittel, M. Rochat, M. Beck, D. Hofstetter, and J. Faist, “Chemical sensing with pulsed QC-DFB lasers operating at 6.6 μm,” Appl. Phys. B 75, 351–357 (2002).
    [CrossRef]
  8. F. K. Tittel, Y. Bakhirkin, A. Kosterev, and G. Wysocki, “Recent advances in trace gas detection using quantum and interband cascade lasers,” Rev. Laser Eng. 34, 275–282 (2006).
  9. A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90, 165–176 (2007).
    [CrossRef]
  10. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
    [CrossRef]
  11.  U.S. Environmental Protection Agency, “Primary national ambient air quality standards for nitrogen dioxide; final rule,” Federal register 75, 6474–6537 (2010).
  12. U.S. Environmental Protection Agency, “National air quality status and trends through 2007,” EPA-454/R-08-006, (Environmental Protection Agency, 2008).
  13. J. Hildenbrand, J. Herbst, J. Wöllenstein, and A. Lambrecht, “Explosive detection using infrared laser spectroscopy,” Proc. SPIE 7222, 72220B (2009).
    [CrossRef]
  14. T. H. Risby and S. F. Solga, “Current status of clinical breath analysis,” Appl. Phys. B 85, 421–426 (2006).
    [CrossRef]
  15. G. M. Mitchell, V. Vorsa, and G. L. Ryals, “Trace impurity detection in ammonia for the compound semiconductor market,” presented at SEMICON West, San Francisco, California, 17–21 July 2002.
  16. A. Arnold, H. Becker, R. Hemberger, W. Hentschel, W. Ketterle, M. Kollner, W. Meienburg, P. Monkhouse, H. Neckel, M. Schafer, K. P. Schindler, V. Sick, R. Suntz, and J. Wolfrum, “Laser in situ monitoring of combustion processes,” Appl. Opt. 29, 4860–4872 (1990).
    [CrossRef] [PubMed]
  17. P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta A 54, 197–236 (1998).
    [CrossRef]
  18. F. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” in Solid-State Mid-Infrared Laser Sources, I.T.Sorokina and K.L.Vodopyanov, eds., Topics in Applied Physics (Springer, 2003), pp. 445–516.
  19. P. Werle, “Analytical applications of infrared semiconductor lasers in atmospheric trace gas monitoring,” J. Phys. IV 4, C4-9–C4-12 (1994).
    [CrossRef]
  20. G. Wysocki, R. Curl, F. Tittel, R. Maulini, J. Billiard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81, 769–777 (2005).
    [CrossRef]
  21. A. Karpf and G. N. Rao, “Absorption and wavelength modulation spectroscopy of NO2 using a tunable, external cavity continuous wave quantum cascade laser,” Appl. Opt. 48, 408–413 (2009).
    [CrossRef] [PubMed]
  22. M. J. Weida, P. Buerki, E. Takeuchi, and T. Day, “External-cavity QCLs broaden capabilities for molecular detection,” Laser Focus World 46, 1–7 (2010).
  23. L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
    [CrossRef]
  24. C. N. Mikhailenko, Y. L. Babikov, and V. F. Golovko, “Information-calculating system spectroscopy of atmospheric gases. The structure and main functions,” Atmos. Oceanic Opt. 18, 685–695 (2005).
  25. S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett. 104, 083904 (2010).
    [CrossRef] [PubMed]
  26. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556(1994).
    [CrossRef] [PubMed]
  27. A. L. Schawlow and C. H. Towens, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
    [CrossRef]
  28. M. Kim, C. L. Canedy, W. W. Bewley, C. S. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade laser emitting at λ=3.75 μm in continuous wave above room temperature,” Appl. Phys. Lett. 92, 191110–191112 (2008).
    [CrossRef]
  29. M. Kim, W. W. Bewley, J. R. Lindle, C. S. Kim, C. L. Canedy, J. Abell, I. Vurgaftman, and J. R. Meyer, “Single-mode room-temperature CW interband cascade lasers covering the λ=3–4 μm spectral band,” in Laser Applications to Chemical, Security and Environmental Analysis, OSA Technical Digest Series (CD) Optical Society of America, 2010), paper LMA2.
  30. M. Kim, C. L. Canedy, C. S. Kim, W. W. Bewley, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Room temperature interband cascade lasers,” Phys. Proced. 3, 1195–1200 (2010).
    [CrossRef]
  31. J. A. Gupta, B. F. Ventrudo, P. Waldron, and P. J. Barrios, “External cavity tunable type-I diode laser with continuous-wave singlemode operation at 3.24 μm,” Electron. Lett. 46, 1218–1220 (2010).
    [CrossRef]
  32. M. Beck, D. Hofstetter, T. Aellen, T. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2001).
    [CrossRef]
  33. A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable, high performance quantum cascade laser,” Appl. Phys. Lett. 96, 141105 (2010).
    [CrossRef]
  34. A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95, 061103 (2009).
    [CrossRef]
  35. B. S. Williams, “Terahertz quantum cascade lasers,” Nat. Photon. 1, 517–525 (2007).
    [CrossRef]
  36. J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett. 91, 121104 (2007).
    [CrossRef]
  37. U. Willer, A. Pohlkotter, W. Schade, J. Xu, T. Losco, R. P. Green, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “Resonant tuning fork detector for THz radiation,” Opt. Express 17, 14069–14074 (2009).
    [CrossRef] [PubMed]
  38. G. Scalari, M. I. Amanti, C. Walther, R. Terazzi, M. Beck, and J. Faist, “Broadband THz lasing from a photon-phonon quantum cascade structure,” Opt. Express 18, 8043–8052(2010).
    [CrossRef] [PubMed]
  39. A. W. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Tunable terahertz quantum cascade lasers with external gratings,” Opt. Lett. 35, 910–912 (2010).
    [CrossRef] [PubMed]
  40. C. Walther, G. Scalari, M. I. Amanti, M. Beck, and J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science 327, 1495–1497 (2010).
    [CrossRef] [PubMed]
  41. M. I. Amanti, G. Scalari, F. Castellano, M. Beck, and J. Faist, “Low divergence terahertz photonic-wire laser,” Opt. Express 18, 6390–6395 (2010).
    [CrossRef] [PubMed]
  42. M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photon. 3, 586–590 (2009).
    [CrossRef]
  43. L. Mahler, M. I. Amanti, C. Walther, A. Tredicucci, F. Beltram, J. Faist, H. E. Beere, and D. A. Ritchie, “Distributed feedback ring resonators for vertically emitting terahertz quantum cascade lasers,” Opt. Express 17, 13031–13039 (2009).
    [CrossRef] [PubMed]
  44. J. Faist, J. C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
    [CrossRef]
  45. C. Gmachl, J. Faist, J. N. Baillargeon, F. Capasso, C. Sirtori, D. L. Sivco, S. G. Chu, and A. Y. Cho, “Complex-coupled quantum cascade distributed-feedback laser,” IEEE Photon. Technol. Lett. 9, 1090–1092 (1997).
    [CrossRef]
  46. A. Hugi, R. Maulini, and J. Faist, “Topical review—external cavity quantum cascade laser,” Semicond. Sci. Technol. 25, 083001 (2010).
    [CrossRef]
  47. A. A. Kosterev, R. F. Curl, F. K. Tittel, M. Rochat, M. Beck, D. Hofstetter, and J. Faist, “Chemical sensing with pulsed QC-DFB lasers operating at 15.6 μm,” Appl. Phys. B 75, 351–357 (2002).
    [CrossRef]
  48. B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91, 231101 (2007).
    [CrossRef]
  49. B. G. Lee, J. Kansky, A. K. Goyal, C. Pflügl, L. Diehl, M. A. Belkin, A. Sanchez, and F. Capasso, “Wavelength beam combining of quantum cascade laser arrays for remote sensing,” Proc. SPIE 7460, 746004 (2009).
    [CrossRef]
  50. G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, and C.-H. Lin,” Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78, 2834–2836 (2001).
    [CrossRef]
  51. G. Totschnig, F. Winter, V. Pustogov, J. Faist, and A. Müller, “Mid-infrared external cavity quantum cascade laser,” Opt. Lett. 27, 1788–1790 (2002).
    [CrossRef]
  52. G. Luo, C. Peng, H. Q. Le, S. Pei, H. Lee, W. Hwang, B. Ishaug, and J. Zheng, “Broadly wavelength-tunable external cavity mid-infrared quantum cascade lasers,” IEEE J. Quantum Electron. 38, 486–494 (2002).
    [CrossRef]
  53. R. Maulini, D. A. Yarekha, J. Bulliard, M. Giovannini, J. Faist, and E. Gini, “Continuous-wave operation of a broadly tunable thermoelectrically cooled external cavity quantum-cascade laser,” Opt. Lett. 30, 2584–2586 (2005).
    [CrossRef] [PubMed]
  54. A. Mohan, A. Wittmann, A. Hugi, S. Blaser, M. Giovannini, and J. Faist, “Room-temperature continuous-wave operation of an external-cavity cascade laser,” Opt. Lett. 32, 2792–2794(2007).
    [CrossRef] [PubMed]
  55. M. Pusharsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers,” Proc. Natl. Acad. Sci. USA 103, 10846–10849 (2006).
    [CrossRef]
  56. M. Pushkarsky, I. G. Dunayevskiy, M. Prasanna, A. G. Tsekoun, R. Go, and C. K. N. Patel, “High sensitivity detection of TNT,” Proc. Natl. Acad. Sci. USA 103, 19630–19634 (2006).
    [CrossRef] [PubMed]
  57. D. Caffey, T. Day, C. S. Kim, M. Kim, I. Vurgaftman, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. Abell, and J. R. Meyer, “Performance characteristics of a continuous wave compact widely tunable external cavity interband cascade lasers,” Opt. Express 18, 15691–15696 (2010).
    [CrossRef] [PubMed]
  58. G. Hancock, J. H. van Helden, R. Peverall, G. A. D. Ritchie, and R. J. Walker, “Direct and wavelength modulation spectroscopy using a cw external cavity quantum cascade laser,” Appl. Phys. Lett. 94, 201110 (2009).
    [CrossRef]
  59. C. Young, S.-S. Kim, Y. Luzinova, M. Weida, D. Arnone, E. Takeuchi, T. Day, and B. Mizaikoff, “External cavity widely tunable quantum cascade laser based hollow waveguide gas sensors for multianalyte detection,” Sens. Actuators B Chem. 140, 24–28 (2009).
    [CrossRef]
  60. R. Furstenberg, C. A. Kendziora, J. Stepnowski, S. V. Stepnowski, M. Rake, M. R. Papantonakis, V. Nguyen, G. K. Hubler, and R. A. McGill, “Stand-off detection of trace explosives via resonant infrared photothermal imaging,” Appl. Phys. Lett. 93, 224103 (2008).
    [CrossRef]
  61. J. Reid and D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
    [CrossRef]
  62. G. N. Rao, C. Gudipaty, and D. Martin, “Higher harmonic detection employing wavelength modulation spectroscopy and near infrared diode lasers: an undergraduate experiment,” Am. J. Phys. 77, 821–825 (2009).
    [CrossRef]
  63. S. Borri, S. Bartalini, P. De Natale, M. Inguscio, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Frequency modulation spectroscopy by means of quantum-cascade lasers,” Appl. Phys. B 85, 223–229 (2006).
    [CrossRef]
  64. A. Karpf and G. N. Rao, “Enhanced sensitivity for the detection of trace gases using multiple line integrated absorption spectroscopy,” Appl. Opt. 48, 5061–5066 (2009).
    [CrossRef] [PubMed]
  65. A. Karpf and G. N. Rao, “Enhancement of trace gas detection by integrating wavelength modulated spectra across multiple lines,” Appl. Opt. 49, 1406–1413 (2010).
    [CrossRef] [PubMed]
  66. G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
    [CrossRef]
  67. A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2554 (1988).
    [CrossRef]
  68. K. W. Busch and M. Busch, “Introduction to cavity ringdown spectroscopy,” in Cavity Ringdown Spectroscopy, K.W.Busch and M.A.Busch, eds. (American Chemical Society, 1999), pp. 7–19.
    [CrossRef]
  69. K. K. Lehmann, G. Berden, and R. Engeln, “An introduction to cavity ringdown spectroscopy,” in Cavity Ringdown Spectroscopy Techniques and Applications, G.Berden and R.Engeln, eds. (Wiley, 2009), pp. 1–26.
  70. G. N. Rao and A. Karpf, “High sensitivity detection of NO2 employing cavity ring-down spectroscopy and an external cavity continuously tunable quantum cascade laser,” Appl. Opt. 49, 4906–4914 (2010).
    [CrossRef] [PubMed]
  71. G. N. Rao and A. Karpf, “Extremely sensitive detection of NO2 employing off-axis integrated cavity output spectroscopy coupled with multiple line integrated absorption spectroscopy,” Appl. Opt. , to be published.
    [PubMed]
  72. D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
    [CrossRef]
  73. A. O’Keefe, J. J. Scherer, and J. B. Paul, “CW integrated cavity output spectroscopy,” Chem. Phys. Lett. 307, 343–349 (1999).
    [CrossRef]
  74. R. Engeln, G. Berden, R. Peters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
    [CrossRef]
  75. J. B. Paul, L. Lapson, and J. G. Anderson, “Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment,” Appl. Opt. 40, 4904–4910 (2001).
    [CrossRef]
  76. J. H. Van Helden, R. Peverall, and G. A. D. Ritchie, “Cavity enhanced techniques using continuous wave lasers,” in Cavity Ring-Down Spectroscopy, G.Berden and R.Engeln, eds. (Wiley, 2009), pp. 27–56.
  77. Y. A. Bakhirkin, A. A. Kosterev, R. F. Curl, F. K. Tittel, D. A. Yarekha, L. Hvozdara, M. Giovannini, and F. Faist, “Sub-ppbv nitric oxide concentration measurements using CW thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82, 149–154(2005).
    [CrossRef]
  78. M. L. Silva, D. M. Sonnenfroh, D. I. Rosen, M. G. Allen, and A. O’Keefe, “Integrated cavity output spectroscopy measurements of nitric oxide levels in breath with a pulsed room-temperature quantum cascade laser,” Appl. Phys. B 81, 705–710 (2005).
    [CrossRef]
  79. K. W. Busch, A. Hennequin, and M. A. Busch, “Introduction to optical cavities,” in Cavity Ringdown Spectroscopy, K.W.Busch and M.A.Busch, eds. (American Chemical Society, 1999), pp. 20–33.
    [CrossRef]
  80. R. Lewicki, A. Kosterev, D. M. Thomazy, L. Gong, R. Griffin, T. Day, and F. Tittel, “Ammonia sensor for environmental monitoring based on a 10.4 μm external-cavity quantum cascade laser,” in Laser Applications to Chemical, Security and Environmental Analysis, OSA Technical Digest Series (Optical Society of America, 2010), paper LTuD2.
  81. I. Dunayevskiy, A. Tsekoun, M. Prasanna, R. Go, and C. K. N. Patel, “High-sensitivity detection of triacetone triperoxide (TATP) and its precursor acetone,” Appl. Opt. 46, 6397–6404(2007).
    [CrossRef] [PubMed]
  82. V. Spagnolo, A. A. Kosterev, L. Dong, R. Lewicki, and F. K. Tittel, “NO trace gas sensor based on quartz enhanced photoacoustic spectroscopy and external cavity quantum cascade laser,” Appl. Phys. B 100, 125–130 (2010).
    [CrossRef]
  83. R. Lewicki, G. Wysocki, A. A. Kosterev, and F. K. Tittel, “QEPAS based detection of broadband absorbing molecules using a widely tunable, cw quantum cascade laser at 8.4 μm,” Opt. Express 15, 7357–7366 (2007).
    [CrossRef] [PubMed]
  84. C. Bauer, U. Willer, R. Lewicki, A. Pohlkotter, A. A. Kosterev, D. Kosynkin, F. K. Tittel, and W. Schade, “A mid-infrared QEPAS sensor device for TATP detection,” J. Phys.: Conf. Ser. 157, 012002 (2009).
    [CrossRef]
  85. C. W. Van Neste, L. R. Senesac, and T. Thundat, “Standoff spectroscopy of surface adsorbed chemicals,” Anal. Chem. 81, 1952–1956 (2009).
    [CrossRef] [PubMed]
  86. R. Lewicki, J. H. Doty III, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultra-sensitive detection of nitric oxide at 5.33 by using external cavity quantum cascade laser based magnetic rotation spectroscopy,” Proc. Natl. Acad. Sci. USA 106, 12587–12592 (2009).
    [CrossRef] [PubMed]
  87. R. Lewicki, G. Wysocki, J. Doty, R. F. Curl Jr., and F. K. Tittel, “Ultra-sensitive detection of nitric oxide at 5.33 μm using an external cavity QCL based Faraday rotation spectroscopic sensor platform,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (Optical Society of America, 2008), paper CMH5.
    [PubMed]

2010 (16)

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

 U.S. Environmental Protection Agency, “Primary national ambient air quality standards for nitrogen dioxide; final rule,” Federal register 75, 6474–6537 (2010).

M. J. Weida, P. Buerki, E. Takeuchi, and T. Day, “External-cavity QCLs broaden capabilities for molecular detection,” Laser Focus World 46, 1–7 (2010).

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett. 104, 083904 (2010).
[CrossRef] [PubMed]

M. Kim, C. L. Canedy, C. S. Kim, W. W. Bewley, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Room temperature interband cascade lasers,” Phys. Proced. 3, 1195–1200 (2010).
[CrossRef]

J. A. Gupta, B. F. Ventrudo, P. Waldron, and P. J. Barrios, “External cavity tunable type-I diode laser with continuous-wave singlemode operation at 3.24 μm,” Electron. Lett. 46, 1218–1220 (2010).
[CrossRef]

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable, high performance quantum cascade laser,” Appl. Phys. Lett. 96, 141105 (2010).
[CrossRef]

G. Scalari, M. I. Amanti, C. Walther, R. Terazzi, M. Beck, and J. Faist, “Broadband THz lasing from a photon-phonon quantum cascade structure,” Opt. Express 18, 8043–8052(2010).
[CrossRef] [PubMed]

A. W. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Tunable terahertz quantum cascade lasers with external gratings,” Opt. Lett. 35, 910–912 (2010).
[CrossRef] [PubMed]

C. Walther, G. Scalari, M. I. Amanti, M. Beck, and J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science 327, 1495–1497 (2010).
[CrossRef] [PubMed]

M. I. Amanti, G. Scalari, F. Castellano, M. Beck, and J. Faist, “Low divergence terahertz photonic-wire laser,” Opt. Express 18, 6390–6395 (2010).
[CrossRef] [PubMed]

A. Hugi, R. Maulini, and J. Faist, “Topical review—external cavity quantum cascade laser,” Semicond. Sci. Technol. 25, 083001 (2010).
[CrossRef]

D. Caffey, T. Day, C. S. Kim, M. Kim, I. Vurgaftman, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. Abell, and J. R. Meyer, “Performance characteristics of a continuous wave compact widely tunable external cavity interband cascade lasers,” Opt. Express 18, 15691–15696 (2010).
[CrossRef] [PubMed]

A. Karpf and G. N. Rao, “Enhancement of trace gas detection by integrating wavelength modulated spectra across multiple lines,” Appl. Opt. 49, 1406–1413 (2010).
[CrossRef] [PubMed]

G. N. Rao and A. Karpf, “High sensitivity detection of NO2 employing cavity ring-down spectroscopy and an external cavity continuously tunable quantum cascade laser,” Appl. Opt. 49, 4906–4914 (2010).
[CrossRef] [PubMed]

V. Spagnolo, A. A. Kosterev, L. Dong, R. Lewicki, and F. K. Tittel, “NO trace gas sensor based on quartz enhanced photoacoustic spectroscopy and external cavity quantum cascade laser,” Appl. Phys. B 100, 125–130 (2010).
[CrossRef]

2009 (14)

C. Bauer, U. Willer, R. Lewicki, A. Pohlkotter, A. A. Kosterev, D. Kosynkin, F. K. Tittel, and W. Schade, “A mid-infrared QEPAS sensor device for TATP detection,” J. Phys.: Conf. Ser. 157, 012002 (2009).
[CrossRef]

C. W. Van Neste, L. R. Senesac, and T. Thundat, “Standoff spectroscopy of surface adsorbed chemicals,” Anal. Chem. 81, 1952–1956 (2009).
[CrossRef] [PubMed]

R. Lewicki, J. H. Doty III, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultra-sensitive detection of nitric oxide at 5.33 by using external cavity quantum cascade laser based magnetic rotation spectroscopy,” Proc. Natl. Acad. Sci. USA 106, 12587–12592 (2009).
[CrossRef] [PubMed]

A. Karpf and G. N. Rao, “Enhanced sensitivity for the detection of trace gases using multiple line integrated absorption spectroscopy,” Appl. Opt. 48, 5061–5066 (2009).
[CrossRef] [PubMed]

G. Hancock, J. H. van Helden, R. Peverall, G. A. D. Ritchie, and R. J. Walker, “Direct and wavelength modulation spectroscopy using a cw external cavity quantum cascade laser,” Appl. Phys. Lett. 94, 201110 (2009).
[CrossRef]

C. Young, S.-S. Kim, Y. Luzinova, M. Weida, D. Arnone, E. Takeuchi, T. Day, and B. Mizaikoff, “External cavity widely tunable quantum cascade laser based hollow waveguide gas sensors for multianalyte detection,” Sens. Actuators B Chem. 140, 24–28 (2009).
[CrossRef]

G. N. Rao, C. Gudipaty, and D. Martin, “Higher harmonic detection employing wavelength modulation spectroscopy and near infrared diode lasers: an undergraduate experiment,” Am. J. Phys. 77, 821–825 (2009).
[CrossRef]

U. Willer, A. Pohlkotter, W. Schade, J. Xu, T. Losco, R. P. Green, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “Resonant tuning fork detector for THz radiation,” Opt. Express 17, 14069–14074 (2009).
[CrossRef] [PubMed]

B. G. Lee, J. Kansky, A. K. Goyal, C. Pflügl, L. Diehl, M. A. Belkin, A. Sanchez, and F. Capasso, “Wavelength beam combining of quantum cascade laser arrays for remote sensing,” Proc. SPIE 7460, 746004 (2009).
[CrossRef]

M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photon. 3, 586–590 (2009).
[CrossRef]

L. Mahler, M. I. Amanti, C. Walther, A. Tredicucci, F. Beltram, J. Faist, H. E. Beere, and D. A. Ritchie, “Distributed feedback ring resonators for vertically emitting terahertz quantum cascade lasers,” Opt. Express 17, 13031–13039 (2009).
[CrossRef] [PubMed]

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95, 061103 (2009).
[CrossRef]

A. Karpf and G. N. Rao, “Absorption and wavelength modulation spectroscopy of NO2 using a tunable, external cavity continuous wave quantum cascade laser,” Appl. Opt. 48, 408–413 (2009).
[CrossRef] [PubMed]

J. Hildenbrand, J. Herbst, J. Wöllenstein, and A. Lambrecht, “Explosive detection using infrared laser spectroscopy,” Proc. SPIE 7222, 72220B (2009).
[CrossRef]

2008 (2)

M. Kim, C. L. Canedy, W. W. Bewley, C. S. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade laser emitting at λ=3.75 μm in continuous wave above room temperature,” Appl. Phys. Lett. 92, 191110–191112 (2008).
[CrossRef]

R. Furstenberg, C. A. Kendziora, J. Stepnowski, S. V. Stepnowski, M. Rake, M. R. Papantonakis, V. Nguyen, G. K. Hubler, and R. A. McGill, “Stand-off detection of trace explosives via resonant infrared photothermal imaging,” Appl. Phys. Lett. 93, 224103 (2008).
[CrossRef]

2007 (7)

A. Mohan, A. Wittmann, A. Hugi, S. Blaser, M. Giovannini, and J. Faist, “Room-temperature continuous-wave operation of an external-cavity cascade laser,” Opt. Lett. 32, 2792–2794(2007).
[CrossRef] [PubMed]

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

R. Lewicki, G. Wysocki, A. A. Kosterev, and F. K. Tittel, “QEPAS based detection of broadband absorbing molecules using a widely tunable, cw quantum cascade laser at 8.4 μm,” Opt. Express 15, 7357–7366 (2007).
[CrossRef] [PubMed]

I. Dunayevskiy, A. Tsekoun, M. Prasanna, R. Go, and C. K. N. Patel, “High-sensitivity detection of triacetone triperoxide (TATP) and its precursor acetone,” Appl. Opt. 46, 6397–6404(2007).
[CrossRef] [PubMed]

B. S. Williams, “Terahertz quantum cascade lasers,” Nat. Photon. 1, 517–525 (2007).
[CrossRef]

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett. 91, 121104 (2007).
[CrossRef]

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90, 165–176 (2007).
[CrossRef]

2006 (5)

T. H. Risby and S. F. Solga, “Current status of clinical breath analysis,” Appl. Phys. B 85, 421–426 (2006).
[CrossRef]

F. K. Tittel, Y. Bakhirkin, A. Kosterev, and G. Wysocki, “Recent advances in trace gas detection using quantum and interband cascade lasers,” Rev. Laser Eng. 34, 275–282 (2006).

M. Pusharsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers,” Proc. Natl. Acad. Sci. USA 103, 10846–10849 (2006).
[CrossRef]

M. Pushkarsky, I. G. Dunayevskiy, M. Prasanna, A. G. Tsekoun, R. Go, and C. K. N. Patel, “High sensitivity detection of TNT,” Proc. Natl. Acad. Sci. USA 103, 19630–19634 (2006).
[CrossRef] [PubMed]

S. Borri, S. Bartalini, P. De Natale, M. Inguscio, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Frequency modulation spectroscopy by means of quantum-cascade lasers,” Appl. Phys. B 85, 223–229 (2006).
[CrossRef]

2005 (6)

Y. A. Bakhirkin, A. A. Kosterev, R. F. Curl, F. K. Tittel, D. A. Yarekha, L. Hvozdara, M. Giovannini, and F. Faist, “Sub-ppbv nitric oxide concentration measurements using CW thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82, 149–154(2005).
[CrossRef]

M. L. Silva, D. M. Sonnenfroh, D. I. Rosen, M. G. Allen, and A. O’Keefe, “Integrated cavity output spectroscopy measurements of nitric oxide levels in breath with a pulsed room-temperature quantum cascade laser,” Appl. Phys. B 81, 705–710 (2005).
[CrossRef]

R. Maulini, D. A. Yarekha, J. Bulliard, M. Giovannini, J. Faist, and E. Gini, “Continuous-wave operation of a broadly tunable thermoelectrically cooled external cavity quantum-cascade laser,” Opt. Lett. 30, 2584–2586 (2005).
[CrossRef] [PubMed]

G. Wysocki, R. Curl, F. Tittel, R. Maulini, J. Billiard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81, 769–777 (2005).
[CrossRef]

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

C. N. Mikhailenko, Y. L. Babikov, and V. F. Golovko, “Information-calculating system spectroscopy of atmospheric gases. The structure and main functions,” Atmos. Oceanic Opt. 18, 685–695 (2005).

2002 (4)

A. A. Kosterev, R. F. Curl, F. K. Tittel, M. Rochat, M. Beck, D. Hofstetter, and J. Faist, “Chemical sensing with pulsed QC-DFB lasers operating at 6.6 μm,” Appl. Phys. B 75, 351–357 (2002).
[CrossRef]

A. A. Kosterev, R. F. Curl, F. K. Tittel, M. Rochat, M. Beck, D. Hofstetter, and J. Faist, “Chemical sensing with pulsed QC-DFB lasers operating at 15.6 μm,” Appl. Phys. B 75, 351–357 (2002).
[CrossRef]

G. Totschnig, F. Winter, V. Pustogov, J. Faist, and A. Müller, “Mid-infrared external cavity quantum cascade laser,” Opt. Lett. 27, 1788–1790 (2002).
[CrossRef]

G. Luo, C. Peng, H. Q. Le, S. Pei, H. Lee, W. Hwang, B. Ishaug, and J. Zheng, “Broadly wavelength-tunable external cavity mid-infrared quantum cascade lasers,” IEEE J. Quantum Electron. 38, 486–494 (2002).
[CrossRef]

2001 (4)

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, and C.-H. Lin,” Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78, 2834–2836 (2001).
[CrossRef]

J. B. Paul, L. Lapson, and J. G. Anderson, “Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment,” Appl. Opt. 40, 4904–4910 (2001).
[CrossRef]

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64, 1533–1601 (2001).
[CrossRef]

M. Beck, D. Hofstetter, T. Aellen, T. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2001).
[CrossRef]

2000 (2)

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

1999 (1)

A. O’Keefe, J. J. Scherer, and J. B. Paul, “CW integrated cavity output spectroscopy,” Chem. Phys. Lett. 307, 343–349 (1999).
[CrossRef]

1998 (2)

R. Engeln, G. Berden, R. Peters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
[CrossRef]

P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta A 54, 197–236 (1998).
[CrossRef]

1997 (2)

J. Faist, J. C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[CrossRef]

C. Gmachl, J. Faist, J. N. Baillargeon, F. Capasso, C. Sirtori, D. L. Sivco, S. G. Chu, and A. Y. Cho, “Complex-coupled quantum cascade distributed-feedback laser,” IEEE Photon. Technol. Lett. 9, 1090–1092 (1997).
[CrossRef]

1994 (3)

P. Werle, “Analytical applications of infrared semiconductor lasers in atmospheric trace gas monitoring,” J. Phys. IV 4, C4-9–C4-12 (1994).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556(1994).
[CrossRef] [PubMed]

J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

1990 (1)

1988 (1)

A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2554 (1988).
[CrossRef]

1981 (1)

J. Reid and D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

1958 (1)

A. L. Schawlow and C. H. Towens, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
[CrossRef]

Abell, J.

M. Kim, C. L. Canedy, C. S. Kim, W. W. Bewley, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Room temperature interband cascade lasers,” Phys. Proced. 3, 1195–1200 (2010).
[CrossRef]

D. Caffey, T. Day, C. S. Kim, M. Kim, I. Vurgaftman, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. Abell, and J. R. Meyer, “Performance characteristics of a continuous wave compact widely tunable external cavity interband cascade lasers,” Opt. Express 18, 15691–15696 (2010).
[CrossRef] [PubMed]

M. Kim, C. L. Canedy, W. W. Bewley, C. S. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade laser emitting at λ=3.75 μm in continuous wave above room temperature,” Appl. Phys. Lett. 92, 191110–191112 (2008).
[CrossRef]

M. Kim, W. W. Bewley, J. R. Lindle, C. S. Kim, C. L. Canedy, J. Abell, I. Vurgaftman, and J. R. Meyer, “Single-mode room-temperature CW interband cascade lasers covering the λ=3–4 μm spectral band,” in Laser Applications to Chemical, Security and Environmental Analysis, OSA Technical Digest Series (CD) Optical Society of America, 2010), paper LMA2.

Aellen, F. J.

F. J. Aellen, T. Gresch, T. Beck, and M. Giovannini, “Mid-infrared coherent sources and applications progress,” in Quantum Cascade Lasers (Springer, 2007), pp. 171–192.

Aellen, T.

M. Beck, D. Hofstetter, T. Aellen, T. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2001).
[CrossRef]

Allen, M. G.

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett. 91, 121104 (2007).
[CrossRef]

M. L. Silva, D. M. Sonnenfroh, D. I. Rosen, M. G. Allen, and A. O’Keefe, “Integrated cavity output spectroscopy measurements of nitric oxide levels in breath with a pulsed room-temperature quantum cascade laser,” Appl. Phys. B 81, 705–710 (2005).
[CrossRef]

Amanti, M. I.

Anderson, J. G.

Arnold, A.

Arnone, D.

C. Young, S.-S. Kim, Y. Luzinova, M. Weida, D. Arnone, E. Takeuchi, T. Day, and B. Mizaikoff, “External cavity widely tunable quantum cascade laser based hollow waveguide gas sensors for multianalyte detection,” Sens. Actuators B Chem. 140, 24–28 (2009).
[CrossRef]

Audet, R.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

Auwera, J. Vander

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Babikov, Y. L.

C. N. Mikhailenko, Y. L. Babikov, and V. F. Golovko, “Information-calculating system spectroscopy of atmospheric gases. The structure and main functions,” Atmos. Oceanic Opt. 18, 685–695 (2005).

Baillargeon, J. N.

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, and C.-H. Lin,” Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78, 2834–2836 (2001).
[CrossRef]

J. Faist, J. C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[CrossRef]

C. Gmachl, J. Faist, J. N. Baillargeon, F. Capasso, C. Sirtori, D. L. Sivco, S. G. Chu, and A. Y. Cho, “Complex-coupled quantum cascade distributed-feedback laser,” IEEE Photon. Technol. Lett. 9, 1090–1092 (1997).
[CrossRef]

Bakhirkin, Y.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90, 165–176 (2007).
[CrossRef]

F. K. Tittel, Y. Bakhirkin, A. Kosterev, and G. Wysocki, “Recent advances in trace gas detection using quantum and interband cascade lasers,” Rev. Laser Eng. 34, 275–282 (2006).

Bakhirkin, Y. A.

Y. A. Bakhirkin, A. A. Kosterev, R. F. Curl, F. K. Tittel, D. A. Yarekha, L. Hvozdara, M. Giovannini, and F. Faist, “Sub-ppbv nitric oxide concentration measurements using CW thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82, 149–154(2005).
[CrossRef]

Barbe, A.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Barrios, P. J.

J. A. Gupta, B. F. Ventrudo, P. Waldron, and P. J. Barrios, “External cavity tunable type-I diode laser with continuous-wave singlemode operation at 3.24 μm,” Electron. Lett. 46, 1218–1220 (2010).
[CrossRef]

Bartalini, S.

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett. 104, 083904 (2010).
[CrossRef] [PubMed]

S. Borri, S. Bartalini, P. De Natale, M. Inguscio, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Frequency modulation spectroscopy by means of quantum-cascade lasers,” Appl. Phys. B 85, 223–229 (2006).
[CrossRef]

Bauer, C.

C. Bauer, U. Willer, R. Lewicki, A. Pohlkotter, A. A. Kosterev, D. Kosynkin, F. K. Tittel, and W. Schade, “A mid-infrared QEPAS sensor device for TATP detection,” J. Phys.: Conf. Ser. 157, 012002 (2009).
[CrossRef]

Beck, M.

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable, high performance quantum cascade laser,” Appl. Phys. Lett. 96, 141105 (2010).
[CrossRef]

M. I. Amanti, G. Scalari, F. Castellano, M. Beck, and J. Faist, “Low divergence terahertz photonic-wire laser,” Opt. Express 18, 6390–6395 (2010).
[CrossRef] [PubMed]

C. Walther, G. Scalari, M. I. Amanti, M. Beck, and J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science 327, 1495–1497 (2010).
[CrossRef] [PubMed]

G. Scalari, M. I. Amanti, C. Walther, R. Terazzi, M. Beck, and J. Faist, “Broadband THz lasing from a photon-phonon quantum cascade structure,” Opt. Express 18, 8043–8052(2010).
[CrossRef] [PubMed]

M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photon. 3, 586–590 (2009).
[CrossRef]

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95, 061103 (2009).
[CrossRef]

A. A. Kosterev, R. F. Curl, F. K. Tittel, M. Rochat, M. Beck, D. Hofstetter, and J. Faist, “Chemical sensing with pulsed QC-DFB lasers operating at 15.6 μm,” Appl. Phys. B 75, 351–357 (2002).
[CrossRef]

A. A. Kosterev, R. F. Curl, F. K. Tittel, M. Rochat, M. Beck, D. Hofstetter, and J. Faist, “Chemical sensing with pulsed QC-DFB lasers operating at 6.6 μm,” Appl. Phys. B 75, 351–357 (2002).
[CrossRef]

M. Beck, D. Hofstetter, T. Aellen, T. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2001).
[CrossRef]

Beck, T.

F. J. Aellen, T. Gresch, T. Beck, and M. Giovannini, “Mid-infrared coherent sources and applications progress,” in Quantum Cascade Lasers (Springer, 2007), pp. 171–192.

Becker, H.

Beere, H. E.

Belkin, M. A.

B. G. Lee, J. Kansky, A. K. Goyal, C. Pflügl, L. Diehl, M. A. Belkin, A. Sanchez, and F. Capasso, “Wavelength beam combining of quantum cascade laser arrays for remote sensing,” Proc. SPIE 7460, 746004 (2009).
[CrossRef]

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

Beltram, F.

L. Mahler, M. I. Amanti, C. Walther, A. Tredicucci, F. Beltram, J. Faist, H. E. Beere, and D. A. Ritchie, “Distributed feedback ring resonators for vertically emitting terahertz quantum cascade lasers,” Opt. Express 17, 13031–13039 (2009).
[CrossRef] [PubMed]

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett. 91, 121104 (2007).
[CrossRef]

Benner, D. C.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Berden, G.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

R. Engeln, G. Berden, R. Peters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
[CrossRef]

K. K. Lehmann, G. Berden, and R. Engeln, “An introduction to cavity ringdown spectroscopy,” in Cavity Ringdown Spectroscopy Techniques and Applications, G.Berden and R.Engeln, eds. (Wiley, 2009), pp. 1–26.

Bewley, W. W.

D. Caffey, T. Day, C. S. Kim, M. Kim, I. Vurgaftman, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. Abell, and J. R. Meyer, “Performance characteristics of a continuous wave compact widely tunable external cavity interband cascade lasers,” Opt. Express 18, 15691–15696 (2010).
[CrossRef] [PubMed]

M. Kim, C. L. Canedy, C. S. Kim, W. W. Bewley, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Room temperature interband cascade lasers,” Phys. Proced. 3, 1195–1200 (2010).
[CrossRef]

M. Kim, C. L. Canedy, W. W. Bewley, C. S. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade laser emitting at λ=3.75 μm in continuous wave above room temperature,” Appl. Phys. Lett. 92, 191110–191112 (2008).
[CrossRef]

M. Kim, W. W. Bewley, J. R. Lindle, C. S. Kim, C. L. Canedy, J. Abell, I. Vurgaftman, and J. R. Meyer, “Single-mode room-temperature CW interband cascade lasers covering the λ=3–4 μm spectral band,” in Laser Applications to Chemical, Security and Environmental Analysis, OSA Technical Digest Series (CD) Optical Society of America, 2010), paper LMA2.

Billiard, J.

G. Wysocki, R. Curl, F. Tittel, R. Maulini, J. Billiard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81, 769–777 (2005).
[CrossRef]

Birk, M.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Bismuto, A.

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable, high performance quantum cascade laser,” Appl. Phys. Lett. 96, 141105 (2010).
[CrossRef]

Blaser, S.

Bonetti, Y.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95, 061103 (2009).
[CrossRef]

Borri, S.

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett. 104, 083904 (2010).
[CrossRef] [PubMed]

S. Borri, S. Bartalini, P. De Natale, M. Inguscio, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Frequency modulation spectroscopy by means of quantum-cascade lasers,” Appl. Phys. B 85, 223–229 (2006).
[CrossRef]

Bour, D.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

Brown, L. R.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Buerki, P.

M. J. Weida, P. Buerki, E. Takeuchi, and T. Day, “External-cavity QCLs broaden capabilities for molecular detection,” Laser Focus World 46, 1–7 (2010).

Bulliard, J.

Busch, K. W.

K. W. Busch and M. Busch, “Introduction to cavity ringdown spectroscopy,” in Cavity Ringdown Spectroscopy, K.W.Busch and M.A.Busch, eds. (American Chemical Society, 1999), pp. 7–19.
[CrossRef]

K. W. Busch, A. Hennequin, and M. A. Busch, “Introduction to optical cavities,” in Cavity Ringdown Spectroscopy, K.W.Busch and M.A.Busch, eds. (American Chemical Society, 1999), pp. 20–33.
[CrossRef]

Busch, M.

K. W. Busch and M. Busch, “Introduction to cavity ringdown spectroscopy,” in Cavity Ringdown Spectroscopy, K.W.Busch and M.A.Busch, eds. (American Chemical Society, 1999), pp. 7–19.
[CrossRef]

Busch, M. A.

K. W. Busch, A. Hennequin, and M. A. Busch, “Introduction to optical cavities,” in Cavity Ringdown Spectroscopy, K.W.Busch and M.A.Busch, eds. (American Chemical Society, 1999), pp. 20–33.
[CrossRef]

Caffey, D.

Cancio, P.

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett. 104, 083904 (2010).
[CrossRef] [PubMed]

Canedy, C. L.

M. Kim, C. L. Canedy, C. S. Kim, W. W. Bewley, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Room temperature interband cascade lasers,” Phys. Proced. 3, 1195–1200 (2010).
[CrossRef]

D. Caffey, T. Day, C. S. Kim, M. Kim, I. Vurgaftman, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. Abell, and J. R. Meyer, “Performance characteristics of a continuous wave compact widely tunable external cavity interband cascade lasers,” Opt. Express 18, 15691–15696 (2010).
[CrossRef] [PubMed]

M. Kim, C. L. Canedy, W. W. Bewley, C. S. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade laser emitting at λ=3.75 μm in continuous wave above room temperature,” Appl. Phys. Lett. 92, 191110–191112 (2008).
[CrossRef]

M. Kim, W. W. Bewley, J. R. Lindle, C. S. Kim, C. L. Canedy, J. Abell, I. Vurgaftman, and J. R. Meyer, “Single-mode room-temperature CW interband cascade lasers covering the λ=3–4 μm spectral band,” in Laser Applications to Chemical, Security and Environmental Analysis, OSA Technical Digest Series (CD) Optical Society of America, 2010), paper LMA2.

Capasso, F.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

B. G. Lee, J. Kansky, A. K. Goyal, C. Pflügl, L. Diehl, M. A. Belkin, A. Sanchez, and F. Capasso, “Wavelength beam combining of quantum cascade laser arrays for remote sensing,” Proc. SPIE 7460, 746004 (2009).
[CrossRef]

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

S. Borri, S. Bartalini, P. De Natale, M. Inguscio, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Frequency modulation spectroscopy by means of quantum-cascade lasers,” Appl. Phys. B 85, 223–229 (2006).
[CrossRef]

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64, 1533–1601 (2001).
[CrossRef]

C. Gmachl, J. Faist, J. N. Baillargeon, F. Capasso, C. Sirtori, D. L. Sivco, S. G. Chu, and A. Y. Cho, “Complex-coupled quantum cascade distributed-feedback laser,” IEEE Photon. Technol. Lett. 9, 1090–1092 (1997).
[CrossRef]

J. Faist, J. C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556(1994).
[CrossRef] [PubMed]

Carleer, M. R.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Castellano, F.

Castrillo, A.

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett. 104, 083904 (2010).
[CrossRef] [PubMed]

Chackerian, C.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Chance, K.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Chapman, D.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

Cho, A. Y.

S. Borri, S. Bartalini, P. De Natale, M. Inguscio, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Frequency modulation spectroscopy by means of quantum-cascade lasers,” Appl. Phys. B 85, 223–229 (2006).
[CrossRef]

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64, 1533–1601 (2001).
[CrossRef]

J. Faist, J. C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[CrossRef]

C. Gmachl, J. Faist, J. N. Baillargeon, F. Capasso, C. Sirtori, D. L. Sivco, S. G. Chu, and A. Y. Cho, “Complex-coupled quantum cascade distributed-feedback laser,” IEEE Photon. Technol. Lett. 9, 1090–1092 (1997).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556(1994).
[CrossRef] [PubMed]

Chu, S. G.

C. Gmachl, J. Faist, J. N. Baillargeon, F. Capasso, C. Sirtori, D. L. Sivco, S. G. Chu, and A. Y. Cho, “Complex-coupled quantum cascade distributed-feedback laser,” IEEE Photon. Technol. Lett. 9, 1090–1092 (1997).
[CrossRef]

Cockburn, J.

J. Cockburn, “Mid-infrared semiconductor optoelectronics,” in Mid-Infrared Quantum Cascade Lasers (Springer, 2006), Vol. 118, pp. 323–355.

Corzine, S.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

Coudert, L. H.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Curl, R.

G. Wysocki, R. Curl, F. Tittel, R. Maulini, J. Billiard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81, 769–777 (2005).
[CrossRef]

Curl, R. F.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

R. Lewicki, J. H. Doty III, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultra-sensitive detection of nitric oxide at 5.33 by using external cavity quantum cascade laser based magnetic rotation spectroscopy,” Proc. Natl. Acad. Sci. USA 106, 12587–12592 (2009).
[CrossRef] [PubMed]

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90, 165–176 (2007).
[CrossRef]

Y. A. Bakhirkin, A. A. Kosterev, R. F. Curl, F. K. Tittel, D. A. Yarekha, L. Hvozdara, M. Giovannini, and F. Faist, “Sub-ppbv nitric oxide concentration measurements using CW thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82, 149–154(2005).
[CrossRef]

A. A. Kosterev, R. F. Curl, F. K. Tittel, M. Rochat, M. Beck, D. Hofstetter, and J. Faist, “Chemical sensing with pulsed QC-DFB lasers operating at 6.6 μm,” Appl. Phys. B 75, 351–357 (2002).
[CrossRef]

A. A. Kosterev, R. F. Curl, F. K. Tittel, M. Rochat, M. Beck, D. Hofstetter, and J. Faist, “Chemical sensing with pulsed QC-DFB lasers operating at 15.6 μm,” Appl. Phys. B 75, 351–357 (2002).
[CrossRef]

R. Lewicki, G. Wysocki, J. Doty, R. F. Curl Jr., and F. K. Tittel, “Ultra-sensitive detection of nitric oxide at 5.33 μm using an external cavity QCL based Faraday rotation spectroscopic sensor platform,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (Optical Society of America, 2008), paper CMH5.
[PubMed]

Dana, V.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Day, T.

M. J. Weida, P. Buerki, E. Takeuchi, and T. Day, “External-cavity QCLs broaden capabilities for molecular detection,” Laser Focus World 46, 1–7 (2010).

D. Caffey, T. Day, C. S. Kim, M. Kim, I. Vurgaftman, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. Abell, and J. R. Meyer, “Performance characteristics of a continuous wave compact widely tunable external cavity interband cascade lasers,” Opt. Express 18, 15691–15696 (2010).
[CrossRef] [PubMed]

C. Young, S.-S. Kim, Y. Luzinova, M. Weida, D. Arnone, E. Takeuchi, T. Day, and B. Mizaikoff, “External cavity widely tunable quantum cascade laser based hollow waveguide gas sensors for multianalyte detection,” Sens. Actuators B Chem. 140, 24–28 (2009).
[CrossRef]

R. Lewicki, A. Kosterev, D. M. Thomazy, L. Gong, R. Griffin, T. Day, and F. Tittel, “Ammonia sensor for environmental monitoring based on a 10.4 μm external-cavity quantum cascade laser,” in Laser Applications to Chemical, Security and Environmental Analysis, OSA Technical Digest Series (Optical Society of America, 2010), paper LTuD2.

De Natale, P.

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett. 104, 083904 (2010).
[CrossRef] [PubMed]

S. Borri, S. Bartalini, P. De Natale, M. Inguscio, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Frequency modulation spectroscopy by means of quantum-cascade lasers,” Appl. Phys. B 85, 223–229 (2006).
[CrossRef]

Deacon, D. A. G.

A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2554 (1988).
[CrossRef]

Devi, V. M.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Diehl, L.

B. G. Lee, J. Kansky, A. K. Goyal, C. Pflügl, L. Diehl, M. A. Belkin, A. Sanchez, and F. Capasso, “Wavelength beam combining of quantum cascade laser arrays for remote sensing,” Proc. SPIE 7460, 746004 (2009).
[CrossRef]

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

Dong, L.

V. Spagnolo, A. A. Kosterev, L. Dong, R. Lewicki, and F. K. Tittel, “NO trace gas sensor based on quartz enhanced photoacoustic spectroscopy and external cavity quantum cascade laser,” Appl. Phys. B 100, 125–130 (2010).
[CrossRef]

Doty, J.

R. Lewicki, G. Wysocki, J. Doty, R. F. Curl Jr., and F. K. Tittel, “Ultra-sensitive detection of nitric oxide at 5.33 μm using an external cavity QCL based Faraday rotation spectroscopic sensor platform,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (Optical Society of America, 2008), paper CMH5.
[PubMed]

Doty, J. H.

R. Lewicki, J. H. Doty III, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultra-sensitive detection of nitric oxide at 5.33 by using external cavity quantum cascade laser based magnetic rotation spectroscopy,” Proc. Natl. Acad. Sci. USA 106, 12587–12592 (2009).
[CrossRef] [PubMed]

Dunayevskiy, I.

Dunayevskiy, I. G.

M. Pusharsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers,” Proc. Natl. Acad. Sci. USA 103, 10846–10849 (2006).
[CrossRef]

M. Pushkarsky, I. G. Dunayevskiy, M. Prasanna, A. G. Tsekoun, R. Go, and C. K. N. Patel, “High sensitivity detection of TNT,” Proc. Natl. Acad. Sci. USA 103, 19630–19634 (2006).
[CrossRef] [PubMed]

Engeln, R.

R. Engeln, G. Berden, R. Peters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
[CrossRef]

K. K. Lehmann, G. Berden, and R. Engeln, “An introduction to cavity ringdown spectroscopy,” in Cavity Ringdown Spectroscopy Techniques and Applications, G.Berden and R.Engeln, eds. (Wiley, 2009), pp. 1–26.

Faist, F.

Y. A. Bakhirkin, A. A. Kosterev, R. F. Curl, F. K. Tittel, D. A. Yarekha, L. Hvozdara, M. Giovannini, and F. Faist, “Sub-ppbv nitric oxide concentration measurements using CW thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82, 149–154(2005).
[CrossRef]

Faist, J.

A. Hugi, R. Maulini, and J. Faist, “Topical review—external cavity quantum cascade laser,” Semicond. Sci. Technol. 25, 083001 (2010).
[CrossRef]

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable, high performance quantum cascade laser,” Appl. Phys. Lett. 96, 141105 (2010).
[CrossRef]

G. Scalari, M. I. Amanti, C. Walther, R. Terazzi, M. Beck, and J. Faist, “Broadband THz lasing from a photon-phonon quantum cascade structure,” Opt. Express 18, 8043–8052(2010).
[CrossRef] [PubMed]

M. I. Amanti, G. Scalari, F. Castellano, M. Beck, and J. Faist, “Low divergence terahertz photonic-wire laser,” Opt. Express 18, 6390–6395 (2010).
[CrossRef] [PubMed]

C. Walther, G. Scalari, M. I. Amanti, M. Beck, and J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science 327, 1495–1497 (2010).
[CrossRef] [PubMed]

M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photon. 3, 586–590 (2009).
[CrossRef]

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95, 061103 (2009).
[CrossRef]

L. Mahler, M. I. Amanti, C. Walther, A. Tredicucci, F. Beltram, J. Faist, H. E. Beere, and D. A. Ritchie, “Distributed feedback ring resonators for vertically emitting terahertz quantum cascade lasers,” Opt. Express 17, 13031–13039 (2009).
[CrossRef] [PubMed]

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

A. Mohan, A. Wittmann, A. Hugi, S. Blaser, M. Giovannini, and J. Faist, “Room-temperature continuous-wave operation of an external-cavity cascade laser,” Opt. Lett. 32, 2792–2794(2007).
[CrossRef] [PubMed]

R. Maulini, D. A. Yarekha, J. Bulliard, M. Giovannini, J. Faist, and E. Gini, “Continuous-wave operation of a broadly tunable thermoelectrically cooled external cavity quantum-cascade laser,” Opt. Lett. 30, 2584–2586 (2005).
[CrossRef] [PubMed]

G. Wysocki, R. Curl, F. Tittel, R. Maulini, J. Billiard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81, 769–777 (2005).
[CrossRef]

A. A. Kosterev, R. F. Curl, F. K. Tittel, M. Rochat, M. Beck, D. Hofstetter, and J. Faist, “Chemical sensing with pulsed QC-DFB lasers operating at 6.6 μm,” Appl. Phys. B 75, 351–357 (2002).
[CrossRef]

G. Totschnig, F. Winter, V. Pustogov, J. Faist, and A. Müller, “Mid-infrared external cavity quantum cascade laser,” Opt. Lett. 27, 1788–1790 (2002).
[CrossRef]

A. A. Kosterev, R. F. Curl, F. K. Tittel, M. Rochat, M. Beck, D. Hofstetter, and J. Faist, “Chemical sensing with pulsed QC-DFB lasers operating at 15.6 μm,” Appl. Phys. B 75, 351–357 (2002).
[CrossRef]

C. Gmachl, J. Faist, J. N. Baillargeon, F. Capasso, C. Sirtori, D. L. Sivco, S. G. Chu, and A. Y. Cho, “Complex-coupled quantum cascade distributed-feedback laser,” IEEE Photon. Technol. Lett. 9, 1090–1092 (1997).
[CrossRef]

J. Faist, J. C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556(1994).
[CrossRef] [PubMed]

J. Faist and C. Sirtori, “Long-wave length infrared semiconductor lasers InP,” in GaAs-Based Quantum Cascade Lasers (Wiley, 2004), pp. 217–278.

Faist, T.

M. Beck, D. Hofstetter, T. Aellen, T. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2001).
[CrossRef]

Fenner, D. B.

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett. 91, 121104 (2007).
[CrossRef]

Fischer, M.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95, 061103 (2009).
[CrossRef]

M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photon. 3, 586–590 (2009).
[CrossRef]

Flaud, J.-M.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Fraser, M.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90, 165–176 (2007).
[CrossRef]

Fried, A.

F. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” in Solid-State Mid-Infrared Laser Sources, I.T.Sorokina and K.L.Vodopyanov, eds., Topics in Applied Physics (Springer, 2003), pp. 445–516.

Furstenberg, R.

R. Furstenberg, C. A. Kendziora, J. Stepnowski, S. V. Stepnowski, M. Rake, M. R. Papantonakis, V. Nguyen, G. K. Hubler, and R. A. McGill, “Stand-off detection of trace explosives via resonant infrared photothermal imaging,” Appl. Phys. Lett. 93, 224103 (2008).
[CrossRef]

Galli, I.

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett. 104, 083904 (2010).
[CrossRef] [PubMed]

Gamache, R. R.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Gianfrani, L.

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett. 104, 083904 (2010).
[CrossRef] [PubMed]

Gini, E.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95, 061103 (2009).
[CrossRef]

R. Maulini, D. A. Yarekha, J. Bulliard, M. Giovannini, J. Faist, and E. Gini, “Continuous-wave operation of a broadly tunable thermoelectrically cooled external cavity quantum-cascade laser,” Opt. Lett. 30, 2584–2586 (2005).
[CrossRef] [PubMed]

M. Beck, D. Hofstetter, T. Aellen, T. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2001).
[CrossRef]

Giovannini, M.

A. Mohan, A. Wittmann, A. Hugi, S. Blaser, M. Giovannini, and J. Faist, “Room-temperature continuous-wave operation of an external-cavity cascade laser,” Opt. Lett. 32, 2792–2794(2007).
[CrossRef] [PubMed]

R. Maulini, D. A. Yarekha, J. Bulliard, M. Giovannini, J. Faist, and E. Gini, “Continuous-wave operation of a broadly tunable thermoelectrically cooled external cavity quantum-cascade laser,” Opt. Lett. 30, 2584–2586 (2005).
[CrossRef] [PubMed]

Y. A. Bakhirkin, A. A. Kosterev, R. F. Curl, F. K. Tittel, D. A. Yarekha, L. Hvozdara, M. Giovannini, and F. Faist, “Sub-ppbv nitric oxide concentration measurements using CW thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82, 149–154(2005).
[CrossRef]

F. J. Aellen, T. Gresch, T. Beck, and M. Giovannini, “Mid-infrared coherent sources and applications progress,” in Quantum Cascade Lasers (Springer, 2007), pp. 171–192.

Giusfredi, G.

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett. 104, 083904 (2010).
[CrossRef] [PubMed]

Gmachl, C.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

S. Borri, S. Bartalini, P. De Natale, M. Inguscio, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Frequency modulation spectroscopy by means of quantum-cascade lasers,” Appl. Phys. B 85, 223–229 (2006).
[CrossRef]

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64, 1533–1601 (2001).
[CrossRef]

C. Gmachl, J. Faist, J. N. Baillargeon, F. Capasso, C. Sirtori, D. L. Sivco, S. G. Chu, and A. Y. Cho, “Complex-coupled quantum cascade distributed-feedback laser,” IEEE Photon. Technol. Lett. 9, 1090–1092 (1997).
[CrossRef]

Gmachl, J. C.

J. Faist, J. C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[CrossRef]

Go, R.

I. Dunayevskiy, A. Tsekoun, M. Prasanna, R. Go, and C. K. N. Patel, “High-sensitivity detection of triacetone triperoxide (TATP) and its precursor acetone,” Appl. Opt. 46, 6397–6404(2007).
[CrossRef] [PubMed]

M. Pushkarsky, I. G. Dunayevskiy, M. Prasanna, A. G. Tsekoun, R. Go, and C. K. N. Patel, “High sensitivity detection of TNT,” Proc. Natl. Acad. Sci. USA 103, 19630–19634 (2006).
[CrossRef] [PubMed]

M. Pusharsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers,” Proc. Natl. Acad. Sci. USA 103, 10846–10849 (2006).
[CrossRef]

Goldman, A.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Golovko, V. F.

C. N. Mikhailenko, Y. L. Babikov, and V. F. Golovko, “Information-calculating system spectroscopy of atmospheric gases. The structure and main functions,” Atmos. Oceanic Opt. 18, 685–695 (2005).

Gong, L.

R. Lewicki, A. Kosterev, D. M. Thomazy, L. Gong, R. Griffin, T. Day, and F. Tittel, “Ammonia sensor for environmental monitoring based on a 10.4 μm external-cavity quantum cascade laser,” in Laser Applications to Chemical, Security and Environmental Analysis, OSA Technical Digest Series (Optical Society of America, 2010), paper LTuD2.

Goyal, A. K.

B. G. Lee, J. Kansky, A. K. Goyal, C. Pflügl, L. Diehl, M. A. Belkin, A. Sanchez, and F. Capasso, “Wavelength beam combining of quantum cascade laser arrays for remote sensing,” Proc. SPIE 7460, 746004 (2009).
[CrossRef]

Green, R. P.

U. Willer, A. Pohlkotter, W. Schade, J. Xu, T. Losco, R. P. Green, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “Resonant tuning fork detector for THz radiation,” Opt. Express 17, 14069–14074 (2009).
[CrossRef] [PubMed]

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett. 91, 121104 (2007).
[CrossRef]

Gresch, T.

F. J. Aellen, T. Gresch, T. Beck, and M. Giovannini, “Mid-infrared coherent sources and applications progress,” in Quantum Cascade Lasers (Springer, 2007), pp. 171–192.

Griffin, R.

R. Lewicki, A. Kosterev, D. M. Thomazy, L. Gong, R. Griffin, T. Day, and F. Tittel, “Ammonia sensor for environmental monitoring based on a 10.4 μm external-cavity quantum cascade laser,” in Laser Applications to Chemical, Security and Environmental Analysis, OSA Technical Digest Series (Optical Society of America, 2010), paper LTuD2.

Gudipaty, C.

G. N. Rao, C. Gudipaty, and D. Martin, “Higher harmonic detection employing wavelength modulation spectroscopy and near infrared diode lasers: an undergraduate experiment,” Am. J. Phys. 77, 821–825 (2009).
[CrossRef]

Gupta, J. A.

J. A. Gupta, B. F. Ventrudo, P. Waldron, and P. J. Barrios, “External cavity tunable type-I diode laser with continuous-wave singlemode operation at 3.24 μm,” Electron. Lett. 46, 1218–1220 (2010).
[CrossRef]

Hancock, G.

G. Hancock, J. H. van Helden, R. Peverall, G. A. D. Ritchie, and R. J. Walker, “Direct and wavelength modulation spectroscopy using a cw external cavity quantum cascade laser,” Appl. Phys. Lett. 94, 201110 (2009).
[CrossRef]

Hartmann, J.-M.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Hemberger, R.

Hennequin, A.

K. W. Busch, A. Hennequin, and M. A. Busch, “Introduction to optical cavities,” in Cavity Ringdown Spectroscopy, K.W.Busch and M.A.Busch, eds. (American Chemical Society, 1999), pp. 20–33.
[CrossRef]

Hensley, J. M.

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett. 91, 121104 (2007).
[CrossRef]

Hentschel, W.

Herbst, J.

J. Hildenbrand, J. Herbst, J. Wöllenstein, and A. Lambrecht, “Explosive detection using infrared laser spectroscopy,” Proc. SPIE 7222, 72220B (2009).
[CrossRef]

Hildenbrand, J.

J. Hildenbrand, J. Herbst, J. Wöllenstein, and A. Lambrecht, “Explosive detection using infrared laser spectroscopy,” Proc. SPIE 7222, 72220B (2009).
[CrossRef]

Hofler, G.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

Hofstetter, D.

A. A. Kosterev, R. F. Curl, F. K. Tittel, M. Rochat, M. Beck, D. Hofstetter, and J. Faist, “Chemical sensing with pulsed QC-DFB lasers operating at 15.6 μm,” Appl. Phys. B 75, 351–357 (2002).
[CrossRef]

A. A. Kosterev, R. F. Curl, F. K. Tittel, M. Rochat, M. Beck, D. Hofstetter, and J. Faist, “Chemical sensing with pulsed QC-DFB lasers operating at 6.6 μm,” Appl. Phys. B 75, 351–357 (2002).
[CrossRef]

M. Beck, D. Hofstetter, T. Aellen, T. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2001).
[CrossRef]

Hu, Q.

Hubler, G. K.

R. Furstenberg, C. A. Kendziora, J. Stepnowski, S. V. Stepnowski, M. Rake, M. R. Papantonakis, V. Nguyen, G. K. Hubler, and R. A. McGill, “Stand-off detection of trace explosives via resonant infrared photothermal imaging,” Appl. Phys. Lett. 93, 224103 (2008).
[CrossRef]

Hugi, A.

A. Hugi, R. Maulini, and J. Faist, “Topical review—external cavity quantum cascade laser,” Semicond. Sci. Technol. 25, 083001 (2010).
[CrossRef]

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95, 061103 (2009).
[CrossRef]

A. Mohan, A. Wittmann, A. Hugi, S. Blaser, M. Giovannini, and J. Faist, “Room-temperature continuous-wave operation of an external-cavity cascade laser,” Opt. Lett. 32, 2792–2794(2007).
[CrossRef] [PubMed]

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556(1994).
[CrossRef] [PubMed]

Hvozdara, L.

Y. A. Bakhirkin, A. A. Kosterev, R. F. Curl, F. K. Tittel, D. A. Yarekha, L. Hvozdara, M. Giovannini, and F. Faist, “Sub-ppbv nitric oxide concentration measurements using CW thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82, 149–154(2005).
[CrossRef]

Hwang, W.

G. Luo, C. Peng, H. Q. Le, S. Pei, H. Lee, W. Hwang, B. Ishaug, and J. Zheng, “Broadly wavelength-tunable external cavity mid-infrared quantum cascade lasers,” IEEE J. Quantum Electron. 38, 486–494 (2002).
[CrossRef]

Hwang, W.-Y.

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, and C.-H. Lin,” Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78, 2834–2836 (2001).
[CrossRef]

Ilegems, M.

M. Beck, D. Hofstetter, T. Aellen, T. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2001).
[CrossRef]

Inguscio, M.

S. Borri, S. Bartalini, P. De Natale, M. Inguscio, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Frequency modulation spectroscopy by means of quantum-cascade lasers,” Appl. Phys. B 85, 223–229 (2006).
[CrossRef]

Ishaug, B.

G. Luo, C. Peng, H. Q. Le, S. Pei, H. Lee, W. Hwang, B. Ishaug, and J. Zheng, “Broadly wavelength-tunable external cavity mid-infrared quantum cascade lasers,” IEEE J. Quantum Electron. 38, 486–494 (2002).
[CrossRef]

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, and C.-H. Lin,” Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78, 2834–2836 (2001).
[CrossRef]

Jacquemart, D.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Jucks, K. W.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Kachanov, A. A.

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

Kansky, J.

B. G. Lee, J. Kansky, A. K. Goyal, C. Pflügl, L. Diehl, M. A. Belkin, A. Sanchez, and F. Capasso, “Wavelength beam combining of quantum cascade laser arrays for remote sensing,” Proc. SPIE 7460, 746004 (2009).
[CrossRef]

Karpf, A.

Kendziora, C. A.

R. Furstenberg, C. A. Kendziora, J. Stepnowski, S. V. Stepnowski, M. Rake, M. R. Papantonakis, V. Nguyen, G. K. Hubler, and R. A. McGill, “Stand-off detection of trace explosives via resonant infrared photothermal imaging,” Appl. Phys. Lett. 93, 224103 (2008).
[CrossRef]

Ketterle, W.

Kim, C. S.

M. Kim, C. L. Canedy, C. S. Kim, W. W. Bewley, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Room temperature interband cascade lasers,” Phys. Proced. 3, 1195–1200 (2010).
[CrossRef]

D. Caffey, T. Day, C. S. Kim, M. Kim, I. Vurgaftman, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. Abell, and J. R. Meyer, “Performance characteristics of a continuous wave compact widely tunable external cavity interband cascade lasers,” Opt. Express 18, 15691–15696 (2010).
[CrossRef] [PubMed]

M. Kim, C. L. Canedy, W. W. Bewley, C. S. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade laser emitting at λ=3.75 μm in continuous wave above room temperature,” Appl. Phys. Lett. 92, 191110–191112 (2008).
[CrossRef]

M. Kim, W. W. Bewley, J. R. Lindle, C. S. Kim, C. L. Canedy, J. Abell, I. Vurgaftman, and J. R. Meyer, “Single-mode room-temperature CW interband cascade lasers covering the λ=3–4 μm spectral band,” in Laser Applications to Chemical, Security and Environmental Analysis, OSA Technical Digest Series (CD) Optical Society of America, 2010), paper LMA2.

Kim, M.

M. Kim, C. L. Canedy, C. S. Kim, W. W. Bewley, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Room temperature interband cascade lasers,” Phys. Proced. 3, 1195–1200 (2010).
[CrossRef]

D. Caffey, T. Day, C. S. Kim, M. Kim, I. Vurgaftman, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. Abell, and J. R. Meyer, “Performance characteristics of a continuous wave compact widely tunable external cavity interband cascade lasers,” Opt. Express 18, 15691–15696 (2010).
[CrossRef] [PubMed]

M. Kim, C. L. Canedy, W. W. Bewley, C. S. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade laser emitting at λ=3.75 μm in continuous wave above room temperature,” Appl. Phys. Lett. 92, 191110–191112 (2008).
[CrossRef]

M. Kim, W. W. Bewley, J. R. Lindle, C. S. Kim, C. L. Canedy, J. Abell, I. Vurgaftman, and J. R. Meyer, “Single-mode room-temperature CW interband cascade lasers covering the λ=3–4 μm spectral band,” in Laser Applications to Chemical, Security and Environmental Analysis, OSA Technical Digest Series (CD) Optical Society of America, 2010), paper LMA2.

Kim, S.-S.

C. Young, S.-S. Kim, Y. Luzinova, M. Weida, D. Arnone, E. Takeuchi, T. Day, and B. Mizaikoff, “External cavity widely tunable quantum cascade laser based hollow waveguide gas sensors for multianalyte detection,” Sens. Actuators B Chem. 140, 24–28 (2009).
[CrossRef]

Kollner, M.

Kosterev, A.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90, 165–176 (2007).
[CrossRef]

F. K. Tittel, Y. Bakhirkin, A. Kosterev, and G. Wysocki, “Recent advances in trace gas detection using quantum and interband cascade lasers,” Rev. Laser Eng. 34, 275–282 (2006).

R. Lewicki, A. Kosterev, D. M. Thomazy, L. Gong, R. Griffin, T. Day, and F. Tittel, “Ammonia sensor for environmental monitoring based on a 10.4 μm external-cavity quantum cascade laser,” in Laser Applications to Chemical, Security and Environmental Analysis, OSA Technical Digest Series (Optical Society of America, 2010), paper LTuD2.

Kosterev, A. A.

V. Spagnolo, A. A. Kosterev, L. Dong, R. Lewicki, and F. K. Tittel, “NO trace gas sensor based on quartz enhanced photoacoustic spectroscopy and external cavity quantum cascade laser,” Appl. Phys. B 100, 125–130 (2010).
[CrossRef]

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

C. Bauer, U. Willer, R. Lewicki, A. Pohlkotter, A. A. Kosterev, D. Kosynkin, F. K. Tittel, and W. Schade, “A mid-infrared QEPAS sensor device for TATP detection,” J. Phys.: Conf. Ser. 157, 012002 (2009).
[CrossRef]

R. Lewicki, G. Wysocki, A. A. Kosterev, and F. K. Tittel, “QEPAS based detection of broadband absorbing molecules using a widely tunable, cw quantum cascade laser at 8.4 μm,” Opt. Express 15, 7357–7366 (2007).
[CrossRef] [PubMed]

Y. A. Bakhirkin, A. A. Kosterev, R. F. Curl, F. K. Tittel, D. A. Yarekha, L. Hvozdara, M. Giovannini, and F. Faist, “Sub-ppbv nitric oxide concentration measurements using CW thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82, 149–154(2005).
[CrossRef]

A. A. Kosterev, R. F. Curl, F. K. Tittel, M. Rochat, M. Beck, D. Hofstetter, and J. Faist, “Chemical sensing with pulsed QC-DFB lasers operating at 6.6 μm,” Appl. Phys. B 75, 351–357 (2002).
[CrossRef]

A. A. Kosterev, R. F. Curl, F. K. Tittel, M. Rochat, M. Beck, D. Hofstetter, and J. Faist, “Chemical sensing with pulsed QC-DFB lasers operating at 15.6 μm,” Appl. Phys. B 75, 351–357 (2002).
[CrossRef]

Kosynkin, D.

C. Bauer, U. Willer, R. Lewicki, A. Pohlkotter, A. A. Kosterev, D. Kosynkin, F. K. Tittel, and W. Schade, “A mid-infrared QEPAS sensor device for TATP detection,” J. Phys.: Conf. Ser. 157, 012002 (2009).
[CrossRef]

Kumar, S.

Labrie, D.

J. Reid and D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

Lambrecht, A.

J. Hildenbrand, J. Herbst, J. Wöllenstein, and A. Lambrecht, “Explosive detection using infrared laser spectroscopy,” Proc. SPIE 7222, 72220B (2009).
[CrossRef]

Lapson, L.

Le, H. Q.

G. Luo, C. Peng, H. Q. Le, S. Pei, H. Lee, W. Hwang, B. Ishaug, and J. Zheng, “Broadly wavelength-tunable external cavity mid-infrared quantum cascade lasers,” IEEE J. Quantum Electron. 38, 486–494 (2002).
[CrossRef]

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, and C.-H. Lin,” Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78, 2834–2836 (2001).
[CrossRef]

Lee, A. W.

Lee, B. G.

B. G. Lee, J. Kansky, A. K. Goyal, C. Pflügl, L. Diehl, M. A. Belkin, A. Sanchez, and F. Capasso, “Wavelength beam combining of quantum cascade laser arrays for remote sensing,” Proc. SPIE 7460, 746004 (2009).
[CrossRef]

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

Lee, H.

G. Luo, C. Peng, H. Q. Le, S. Pei, H. Lee, W. Hwang, B. Ishaug, and J. Zheng, “Broadly wavelength-tunable external cavity mid-infrared quantum cascade lasers,” IEEE J. Quantum Electron. 38, 486–494 (2002).
[CrossRef]

Lehmann, K. K.

K. K. Lehmann, G. Berden, and R. Engeln, “An introduction to cavity ringdown spectroscopy,” in Cavity Ringdown Spectroscopy Techniques and Applications, G.Berden and R.Engeln, eds. (Wiley, 2009), pp. 1–26.

Lewicki, R.

V. Spagnolo, A. A. Kosterev, L. Dong, R. Lewicki, and F. K. Tittel, “NO trace gas sensor based on quartz enhanced photoacoustic spectroscopy and external cavity quantum cascade laser,” Appl. Phys. B 100, 125–130 (2010).
[CrossRef]

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

C. Bauer, U. Willer, R. Lewicki, A. Pohlkotter, A. A. Kosterev, D. Kosynkin, F. K. Tittel, and W. Schade, “A mid-infrared QEPAS sensor device for TATP detection,” J. Phys.: Conf. Ser. 157, 012002 (2009).
[CrossRef]

R. Lewicki, J. H. Doty III, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultra-sensitive detection of nitric oxide at 5.33 by using external cavity quantum cascade laser based magnetic rotation spectroscopy,” Proc. Natl. Acad. Sci. USA 106, 12587–12592 (2009).
[CrossRef] [PubMed]

R. Lewicki, G. Wysocki, A. A. Kosterev, and F. K. Tittel, “QEPAS based detection of broadband absorbing molecules using a widely tunable, cw quantum cascade laser at 8.4 μm,” Opt. Express 15, 7357–7366 (2007).
[CrossRef] [PubMed]

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90, 165–176 (2007).
[CrossRef]

R. Lewicki, A. Kosterev, D. M. Thomazy, L. Gong, R. Griffin, T. Day, and F. Tittel, “Ammonia sensor for environmental monitoring based on a 10.4 μm external-cavity quantum cascade laser,” in Laser Applications to Chemical, Security and Environmental Analysis, OSA Technical Digest Series (Optical Society of America, 2010), paper LTuD2.

R. Lewicki, G. Wysocki, J. Doty, R. F. Curl Jr., and F. K. Tittel, “Ultra-sensitive detection of nitric oxide at 5.33 μm using an external cavity QCL based Faraday rotation spectroscopic sensor platform,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (Optical Society of America, 2008), paper CMH5.
[PubMed]

Lin, C.-H.

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, and C.-H. Lin,” Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78, 2834–2836 (2001).
[CrossRef]

Lindle, J. R.

M. Kim, C. L. Canedy, C. S. Kim, W. W. Bewley, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Room temperature interband cascade lasers,” Phys. Proced. 3, 1195–1200 (2010).
[CrossRef]

D. Caffey, T. Day, C. S. Kim, M. Kim, I. Vurgaftman, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. Abell, and J. R. Meyer, “Performance characteristics of a continuous wave compact widely tunable external cavity interband cascade lasers,” Opt. Express 18, 15691–15696 (2010).
[CrossRef] [PubMed]

M. Kim, C. L. Canedy, W. W. Bewley, C. S. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade laser emitting at λ=3.75 μm in continuous wave above room temperature,” Appl. Phys. Lett. 92, 191110–191112 (2008).
[CrossRef]

M. Kim, W. W. Bewley, J. R. Lindle, C. S. Kim, C. L. Canedy, J. Abell, I. Vurgaftman, and J. R. Meyer, “Single-mode room-temperature CW interband cascade lasers covering the λ=3–4 μm spectral band,” in Laser Applications to Chemical, Security and Environmental Analysis, OSA Technical Digest Series (CD) Optical Society of America, 2010), paper LMA2.

Losco, T.

Luo, G.

G. Luo, C. Peng, H. Q. Le, S. Pei, H. Lee, W. Hwang, B. Ishaug, and J. Zheng, “Broadly wavelength-tunable external cavity mid-infrared quantum cascade lasers,” IEEE J. Quantum Electron. 38, 486–494 (2002).
[CrossRef]

Luo, G. P.

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, and C.-H. Lin,” Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78, 2834–2836 (2001).
[CrossRef]

Luzinova, Y.

C. Young, S.-S. Kim, Y. Luzinova, M. Weida, D. Arnone, E. Takeuchi, T. Day, and B. Mizaikoff, “External cavity widely tunable quantum cascade laser based hollow waveguide gas sensors for multianalyte detection,” Sens. Actuators B Chem. 140, 24–28 (2009).
[CrossRef]

MacArthur, J.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

Mahler, L.

L. Mahler, M. I. Amanti, C. Walther, A. Tredicucci, F. Beltram, J. Faist, H. E. Beere, and D. A. Ritchie, “Distributed feedback ring resonators for vertically emitting terahertz quantum cascade lasers,” Opt. Express 17, 13031–13039 (2009).
[CrossRef] [PubMed]

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett. 91, 121104 (2007).
[CrossRef]

Maki, A. G.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Mandin, J.-Y.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Martin, D.

G. N. Rao, C. Gudipaty, and D. Martin, “Higher harmonic detection employing wavelength modulation spectroscopy and near infrared diode lasers: an undergraduate experiment,” Am. J. Phys. 77, 821–825 (2009).
[CrossRef]

Massie, S. T.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Maulini, R.

A. Hugi, R. Maulini, and J. Faist, “Topical review—external cavity quantum cascade laser,” Semicond. Sci. Technol. 25, 083001 (2010).
[CrossRef]

G. Wysocki, R. Curl, F. Tittel, R. Maulini, J. Billiard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81, 769–777 (2005).
[CrossRef]

R. Maulini, D. A. Yarekha, J. Bulliard, M. Giovannini, J. Faist, and E. Gini, “Continuous-wave operation of a broadly tunable thermoelectrically cooled external cavity quantum-cascade laser,” Opt. Lett. 30, 2584–2586 (2005).
[CrossRef] [PubMed]

Mazzotti, D.

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett. 104, 083904 (2010).
[CrossRef] [PubMed]

McGill, R. A.

R. Furstenberg, C. A. Kendziora, J. Stepnowski, S. V. Stepnowski, M. Rake, M. R. Papantonakis, V. Nguyen, G. K. Hubler, and R. A. McGill, “Stand-off detection of trace explosives via resonant infrared photothermal imaging,” Appl. Phys. Lett. 93, 224103 (2008).
[CrossRef]

McManus, B.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

Meienburg, W.

Meijer, G.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

R. Engeln, G. Berden, R. Peters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
[CrossRef]

Melchior, H.

M. Beck, D. Hofstetter, T. Aellen, T. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2001).
[CrossRef]

Meyer, J. R.

M. Kim, C. L. Canedy, C. S. Kim, W. W. Bewley, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Room temperature interband cascade lasers,” Phys. Proced. 3, 1195–1200 (2010).
[CrossRef]

D. Caffey, T. Day, C. S. Kim, M. Kim, I. Vurgaftman, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. Abell, and J. R. Meyer, “Performance characteristics of a continuous wave compact widely tunable external cavity interband cascade lasers,” Opt. Express 18, 15691–15696 (2010).
[CrossRef] [PubMed]

M. Kim, C. L. Canedy, W. W. Bewley, C. S. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade laser emitting at λ=3.75 μm in continuous wave above room temperature,” Appl. Phys. Lett. 92, 191110–191112 (2008).
[CrossRef]

M. Kim, W. W. Bewley, J. R. Lindle, C. S. Kim, C. L. Canedy, J. Abell, I. Vurgaftman, and J. R. Meyer, “Single-mode room-temperature CW interband cascade lasers covering the λ=3–4 μm spectral band,” in Laser Applications to Chemical, Security and Environmental Analysis, OSA Technical Digest Series (CD) Optical Society of America, 2010), paper LMA2.

Mikhailenko, C. N.

C. N. Mikhailenko, Y. L. Babikov, and V. F. Golovko, “Information-calculating system spectroscopy of atmospheric gases. The structure and main functions,” Atmos. Oceanic Opt. 18, 685–695 (2005).

Mitchell, G. M.

G. M. Mitchell, V. Vorsa, and G. L. Ryals, “Trace impurity detection in ammonia for the compound semiconductor market,” presented at SEMICON West, San Francisco, California, 17–21 July 2002.

Mizaikoff, B.

C. Young, S.-S. Kim, Y. Luzinova, M. Weida, D. Arnone, E. Takeuchi, T. Day, and B. Mizaikoff, “External cavity widely tunable quantum cascade laser based hollow waveguide gas sensors for multianalyte detection,” Sens. Actuators B Chem. 140, 24–28 (2009).
[CrossRef]

Mohan, A.

Monkhouse, P.

Müller, A.

Napoleone, A.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

Neckel, H.

Nguyen, V.

R. Furstenberg, C. A. Kendziora, J. Stepnowski, S. V. Stepnowski, M. Rake, M. R. Papantonakis, V. Nguyen, G. K. Hubler, and R. A. McGill, “Stand-off detection of trace explosives via resonant infrared photothermal imaging,” Appl. Phys. Lett. 93, 224103 (2008).
[CrossRef]

O’Keefe, A.

M. L. Silva, D. M. Sonnenfroh, D. I. Rosen, M. G. Allen, and A. O’Keefe, “Integrated cavity output spectroscopy measurements of nitric oxide levels in breath with a pulsed room-temperature quantum cascade laser,” Appl. Phys. B 81, 705–710 (2005).
[CrossRef]

A. O’Keefe, J. J. Scherer, and J. B. Paul, “CW integrated cavity output spectroscopy,” Chem. Phys. Lett. 307, 343–349 (1999).
[CrossRef]

A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2554 (1988).
[CrossRef]

Oakley, D. C.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

Oesterle, U.

M. Beck, D. Hofstetter, T. Aellen, T. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2001).
[CrossRef]

Orphal, J.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Paiella, R.

R. Paiella, Intersubband Transitions in Quantum Structures (McGraw-Hill, 2006).

Papantonakis, M. R.

R. Furstenberg, C. A. Kendziora, J. Stepnowski, S. V. Stepnowski, M. Rake, M. R. Papantonakis, V. Nguyen, G. K. Hubler, and R. A. McGill, “Stand-off detection of trace explosives via resonant infrared photothermal imaging,” Appl. Phys. Lett. 93, 224103 (2008).
[CrossRef]

Patel, C. K. N.

I. Dunayevskiy, A. Tsekoun, M. Prasanna, R. Go, and C. K. N. Patel, “High-sensitivity detection of triacetone triperoxide (TATP) and its precursor acetone,” Appl. Opt. 46, 6397–6404(2007).
[CrossRef] [PubMed]

M. Pusharsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers,” Proc. Natl. Acad. Sci. USA 103, 10846–10849 (2006).
[CrossRef]

M. Pushkarsky, I. G. Dunayevskiy, M. Prasanna, A. G. Tsekoun, R. Go, and C. K. N. Patel, “High sensitivity detection of TNT,” Proc. Natl. Acad. Sci. USA 103, 19630–19634 (2006).
[CrossRef] [PubMed]

Paul, J. B.

Peeters, R.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

Pei, S.

G. Luo, C. Peng, H. Q. Le, S. Pei, H. Lee, W. Hwang, B. Ishaug, and J. Zheng, “Broadly wavelength-tunable external cavity mid-infrared quantum cascade lasers,” IEEE J. Quantum Electron. 38, 486–494 (2002).
[CrossRef]

Pei, S. S.

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, and C.-H. Lin,” Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78, 2834–2836 (2001).
[CrossRef]

Peng, C.

G. Luo, C. Peng, H. Q. Le, S. Pei, H. Lee, W. Hwang, B. Ishaug, and J. Zheng, “Broadly wavelength-tunable external cavity mid-infrared quantum cascade lasers,” IEEE J. Quantum Electron. 38, 486–494 (2002).
[CrossRef]

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, and C.-H. Lin,” Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78, 2834–2836 (2001).
[CrossRef]

Perrin, A.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Peters, R.

R. Engeln, G. Berden, R. Peters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
[CrossRef]

Peverall, R.

G. Hancock, J. H. van Helden, R. Peverall, G. A. D. Ritchie, and R. J. Walker, “Direct and wavelength modulation spectroscopy using a cw external cavity quantum cascade laser,” Appl. Phys. Lett. 94, 201110 (2009).
[CrossRef]

J. H. Van Helden, R. Peverall, and G. A. D. Ritchie, “Cavity enhanced techniques using continuous wave lasers,” in Cavity Ring-Down Spectroscopy, G.Berden and R.Engeln, eds. (Wiley, 2009), pp. 27–56.

Pflügl, C.

B. G. Lee, J. Kansky, A. K. Goyal, C. Pflügl, L. Diehl, M. A. Belkin, A. Sanchez, and F. Capasso, “Wavelength beam combining of quantum cascade laser arrays for remote sensing,” Proc. SPIE 7460, 746004 (2009).
[CrossRef]

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

Pohlkotter, A.

U. Willer, A. Pohlkotter, W. Schade, J. Xu, T. Losco, R. P. Green, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “Resonant tuning fork detector for THz radiation,” Opt. Express 17, 14069–14074 (2009).
[CrossRef] [PubMed]

C. Bauer, U. Willer, R. Lewicki, A. Pohlkotter, A. A. Kosterev, D. Kosynkin, F. K. Tittel, and W. Schade, “A mid-infrared QEPAS sensor device for TATP detection,” J. Phys.: Conf. Ser. 157, 012002 (2009).
[CrossRef]

Prasanna, M.

I. Dunayevskiy, A. Tsekoun, M. Prasanna, R. Go, and C. K. N. Patel, “High-sensitivity detection of triacetone triperoxide (TATP) and its precursor acetone,” Appl. Opt. 46, 6397–6404(2007).
[CrossRef] [PubMed]

M. Pushkarsky, I. G. Dunayevskiy, M. Prasanna, A. G. Tsekoun, R. Go, and C. K. N. Patel, “High sensitivity detection of TNT,” Proc. Natl. Acad. Sci. USA 103, 19630–19634 (2006).
[CrossRef] [PubMed]

Pusharsky, M.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

M. Pusharsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers,” Proc. Natl. Acad. Sci. USA 103, 10846–10849 (2006).
[CrossRef]

Pushkarsky, M.

M. Pushkarsky, I. G. Dunayevskiy, M. Prasanna, A. G. Tsekoun, R. Go, and C. K. N. Patel, “High sensitivity detection of TNT,” Proc. Natl. Acad. Sci. USA 103, 19630–19634 (2006).
[CrossRef] [PubMed]

Pustogov, V.

Rake, M.

R. Furstenberg, C. A. Kendziora, J. Stepnowski, S. V. Stepnowski, M. Rake, M. R. Papantonakis, V. Nguyen, G. K. Hubler, and R. A. McGill, “Stand-off detection of trace explosives via resonant infrared photothermal imaging,” Appl. Phys. Lett. 93, 224103 (2008).
[CrossRef]

Rao, G. N.

Reid, J.

J. Reid and D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

Reno, J. L.

Richter, D.

F. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” in Solid-State Mid-Infrared Laser Sources, I.T.Sorokina and K.L.Vodopyanov, eds., Topics in Applied Physics (Springer, 2003), pp. 445–516.

Rinsland, C. P.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Risby, T. H.

T. H. Risby and S. F. Solga, “Current status of clinical breath analysis,” Appl. Phys. B 85, 421–426 (2006).
[CrossRef]

Ritchie, D. A.

Ritchie, G. A. D.

G. Hancock, J. H. van Helden, R. Peverall, G. A. D. Ritchie, and R. J. Walker, “Direct and wavelength modulation spectroscopy using a cw external cavity quantum cascade laser,” Appl. Phys. Lett. 94, 201110 (2009).
[CrossRef]

J. H. Van Helden, R. Peverall, and G. A. D. Ritchie, “Cavity enhanced techniques using continuous wave lasers,” in Cavity Ring-Down Spectroscopy, G.Berden and R.Engeln, eds. (Wiley, 2009), pp. 27–56.

Rochat, M.

A. A. Kosterev, R. F. Curl, F. K. Tittel, M. Rochat, M. Beck, D. Hofstetter, and J. Faist, “Chemical sensing with pulsed QC-DFB lasers operating at 15.6 μm,” Appl. Phys. B 75, 351–357 (2002).
[CrossRef]

A. A. Kosterev, R. F. Curl, F. K. Tittel, M. Rochat, M. Beck, D. Hofstetter, and J. Faist, “Chemical sensing with pulsed QC-DFB lasers operating at 6.6 μm,” Appl. Phys. B 75, 351–357 (2002).
[CrossRef]

Romanini, D.

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

Rosen, D. I.

M. L. Silva, D. M. Sonnenfroh, D. I. Rosen, M. G. Allen, and A. O’Keefe, “Integrated cavity output spectroscopy measurements of nitric oxide levels in breath with a pulsed room-temperature quantum cascade laser,” Appl. Phys. B 81, 705–710 (2005).
[CrossRef]

Rothman, L. S.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Ryals, G. L.

G. M. Mitchell, V. Vorsa, and G. L. Ryals, “Trace impurity detection in ammonia for the compound semiconductor market,” presented at SEMICON West, San Francisco, California, 17–21 July 2002.

Sadeghi, N.

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

Sanchez, A.

B. G. Lee, J. Kansky, A. K. Goyal, C. Pflügl, L. Diehl, M. A. Belkin, A. Sanchez, and F. Capasso, “Wavelength beam combining of quantum cascade laser arrays for remote sensing,” Proc. SPIE 7460, 746004 (2009).
[CrossRef]

Scalari, G.

G. Scalari, M. I. Amanti, C. Walther, R. Terazzi, M. Beck, and J. Faist, “Broadband THz lasing from a photon-phonon quantum cascade structure,” Opt. Express 18, 8043–8052(2010).
[CrossRef] [PubMed]

C. Walther, G. Scalari, M. I. Amanti, M. Beck, and J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science 327, 1495–1497 (2010).
[CrossRef] [PubMed]

M. I. Amanti, G. Scalari, F. Castellano, M. Beck, and J. Faist, “Low divergence terahertz photonic-wire laser,” Opt. Express 18, 6390–6395 (2010).
[CrossRef] [PubMed]

M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photon. 3, 586–590 (2009).
[CrossRef]

Schade, W.

U. Willer, A. Pohlkotter, W. Schade, J. Xu, T. Losco, R. P. Green, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “Resonant tuning fork detector for THz radiation,” Opt. Express 17, 14069–14074 (2009).
[CrossRef] [PubMed]

C. Bauer, U. Willer, R. Lewicki, A. Pohlkotter, A. A. Kosterev, D. Kosynkin, F. K. Tittel, and W. Schade, “A mid-infrared QEPAS sensor device for TATP detection,” J. Phys.: Conf. Ser. 157, 012002 (2009).
[CrossRef]

Schafer, M.

Schawlow, A. L.

A. L. Schawlow and C. H. Towens, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
[CrossRef]

Scherer, J. J.

A. O’Keefe, J. J. Scherer, and J. B. Paul, “CW integrated cavity output spectroscopy,” Chem. Phys. Lett. 307, 343–349 (1999).
[CrossRef]

Schindler, K. P.

Senesac, L. R.

C. W. Van Neste, L. R. Senesac, and T. Thundat, “Standoff spectroscopy of surface adsorbed chemicals,” Anal. Chem. 81, 1952–1956 (2009).
[CrossRef] [PubMed]

Sick, V.

Silva, M. L.

M. L. Silva, D. M. Sonnenfroh, D. I. Rosen, M. G. Allen, and A. O’Keefe, “Integrated cavity output spectroscopy measurements of nitric oxide levels in breath with a pulsed room-temperature quantum cascade laser,” Appl. Phys. B 81, 705–710 (2005).
[CrossRef]

Sirtori, C.

J. Faist, J. C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[CrossRef]

C. Gmachl, J. Faist, J. N. Baillargeon, F. Capasso, C. Sirtori, D. L. Sivco, S. G. Chu, and A. Y. Cho, “Complex-coupled quantum cascade distributed-feedback laser,” IEEE Photon. Technol. Lett. 9, 1090–1092 (1997).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556(1994).
[CrossRef] [PubMed]

J. Faist and C. Sirtori, “Long-wave length infrared semiconductor lasers InP,” in GaAs-Based Quantum Cascade Lasers (Wiley, 2004), pp. 217–278.

Sivco, D. L.

S. Borri, S. Bartalini, P. De Natale, M. Inguscio, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Frequency modulation spectroscopy by means of quantum-cascade lasers,” Appl. Phys. B 85, 223–229 (2006).
[CrossRef]

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64, 1533–1601 (2001).
[CrossRef]

C. Gmachl, J. Faist, J. N. Baillargeon, F. Capasso, C. Sirtori, D. L. Sivco, S. G. Chu, and A. Y. Cho, “Complex-coupled quantum cascade distributed-feedback laser,” IEEE Photon. Technol. Lett. 9, 1090–1092 (1997).
[CrossRef]

J. Faist, J. C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556(1994).
[CrossRef] [PubMed]

Smith, M. A. H.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

So, S.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90, 165–176 (2007).
[CrossRef]

Solga, S. F.

T. H. Risby and S. F. Solga, “Current status of clinical breath analysis,” Appl. Phys. B 85, 421–426 (2006).
[CrossRef]

Sonnenfroh, D. M.

M. L. Silva, D. M. Sonnenfroh, D. I. Rosen, M. G. Allen, and A. O’Keefe, “Integrated cavity output spectroscopy measurements of nitric oxide levels in breath with a pulsed room-temperature quantum cascade laser,” Appl. Phys. B 81, 705–710 (2005).
[CrossRef]

Spagnolo, V.

V. Spagnolo, A. A. Kosterev, L. Dong, R. Lewicki, and F. K. Tittel, “NO trace gas sensor based on quartz enhanced photoacoustic spectroscopy and external cavity quantum cascade laser,” Appl. Phys. B 100, 125–130 (2010).
[CrossRef]

Stepnowski, J.

R. Furstenberg, C. A. Kendziora, J. Stepnowski, S. V. Stepnowski, M. Rake, M. R. Papantonakis, V. Nguyen, G. K. Hubler, and R. A. McGill, “Stand-off detection of trace explosives via resonant infrared photothermal imaging,” Appl. Phys. Lett. 93, 224103 (2008).
[CrossRef]

Stepnowski, S. V.

R. Furstenberg, C. A. Kendziora, J. Stepnowski, S. V. Stepnowski, M. Rake, M. R. Papantonakis, V. Nguyen, G. K. Hubler, and R. A. McGill, “Stand-off detection of trace explosives via resonant infrared photothermal imaging,” Appl. Phys. Lett. 93, 224103 (2008).
[CrossRef]

Stoeckel, F.

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

Suntz, R.

Takeuchi, E.

M. J. Weida, P. Buerki, E. Takeuchi, and T. Day, “External-cavity QCLs broaden capabilities for molecular detection,” Laser Focus World 46, 1–7 (2010).

C. Young, S.-S. Kim, Y. Luzinova, M. Weida, D. Arnone, E. Takeuchi, T. Day, and B. Mizaikoff, “External cavity widely tunable quantum cascade laser based hollow waveguide gas sensors for multianalyte detection,” Sens. Actuators B Chem. 140, 24–28 (2009).
[CrossRef]

Tennyson, J.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Terazzi, R.

G. Scalari, M. I. Amanti, C. Walther, R. Terazzi, M. Beck, and J. Faist, “Broadband THz lasing from a photon-phonon quantum cascade structure,” Opt. Express 18, 8043–8052(2010).
[CrossRef] [PubMed]

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable, high performance quantum cascade laser,” Appl. Phys. Lett. 96, 141105 (2010).
[CrossRef]

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95, 061103 (2009).
[CrossRef]

Thomazy, D. M.

R. Lewicki, A. Kosterev, D. M. Thomazy, L. Gong, R. Griffin, T. Day, and F. Tittel, “Ammonia sensor for environmental monitoring based on a 10.4 μm external-cavity quantum cascade laser,” in Laser Applications to Chemical, Security and Environmental Analysis, OSA Technical Digest Series (Optical Society of America, 2010), paper LTuD2.

Thundat, T.

C. W. Van Neste, L. R. Senesac, and T. Thundat, “Standoff spectroscopy of surface adsorbed chemicals,” Anal. Chem. 81, 1952–1956 (2009).
[CrossRef] [PubMed]

Tittel, F.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90, 165–176 (2007).
[CrossRef]

G. Wysocki, R. Curl, F. Tittel, R. Maulini, J. Billiard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81, 769–777 (2005).
[CrossRef]

F. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” in Solid-State Mid-Infrared Laser Sources, I.T.Sorokina and K.L.Vodopyanov, eds., Topics in Applied Physics (Springer, 2003), pp. 445–516.

R. Lewicki, A. Kosterev, D. M. Thomazy, L. Gong, R. Griffin, T. Day, and F. Tittel, “Ammonia sensor for environmental monitoring based on a 10.4 μm external-cavity quantum cascade laser,” in Laser Applications to Chemical, Security and Environmental Analysis, OSA Technical Digest Series (Optical Society of America, 2010), paper LTuD2.

Tittel, F. K.

V. Spagnolo, A. A. Kosterev, L. Dong, R. Lewicki, and F. K. Tittel, “NO trace gas sensor based on quartz enhanced photoacoustic spectroscopy and external cavity quantum cascade laser,” Appl. Phys. B 100, 125–130 (2010).
[CrossRef]

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

R. Lewicki, J. H. Doty III, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultra-sensitive detection of nitric oxide at 5.33 by using external cavity quantum cascade laser based magnetic rotation spectroscopy,” Proc. Natl. Acad. Sci. USA 106, 12587–12592 (2009).
[CrossRef] [PubMed]

C. Bauer, U. Willer, R. Lewicki, A. Pohlkotter, A. A. Kosterev, D. Kosynkin, F. K. Tittel, and W. Schade, “A mid-infrared QEPAS sensor device for TATP detection,” J. Phys.: Conf. Ser. 157, 012002 (2009).
[CrossRef]

R. Lewicki, G. Wysocki, A. A. Kosterev, and F. K. Tittel, “QEPAS based detection of broadband absorbing molecules using a widely tunable, cw quantum cascade laser at 8.4 μm,” Opt. Express 15, 7357–7366 (2007).
[CrossRef] [PubMed]

F. K. Tittel, Y. Bakhirkin, A. Kosterev, and G. Wysocki, “Recent advances in trace gas detection using quantum and interband cascade lasers,” Rev. Laser Eng. 34, 275–282 (2006).

Y. A. Bakhirkin, A. A. Kosterev, R. F. Curl, F. K. Tittel, D. A. Yarekha, L. Hvozdara, M. Giovannini, and F. Faist, “Sub-ppbv nitric oxide concentration measurements using CW thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82, 149–154(2005).
[CrossRef]

A. A. Kosterev, R. F. Curl, F. K. Tittel, M. Rochat, M. Beck, D. Hofstetter, and J. Faist, “Chemical sensing with pulsed QC-DFB lasers operating at 6.6 μm,” Appl. Phys. B 75, 351–357 (2002).
[CrossRef]

A. A. Kosterev, R. F. Curl, F. K. Tittel, M. Rochat, M. Beck, D. Hofstetter, and J. Faist, “Chemical sensing with pulsed QC-DFB lasers operating at 15.6 μm,” Appl. Phys. B 75, 351–357 (2002).
[CrossRef]

R. Lewicki, G. Wysocki, J. Doty, R. F. Curl Jr., and F. K. Tittel, “Ultra-sensitive detection of nitric oxide at 5.33 μm using an external cavity QCL based Faraday rotation spectroscopic sensor platform,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (Optical Society of America, 2008), paper CMH5.
[PubMed]

Tolchenov, R. N.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Toth, R. A.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Totschnig, G.

Towens, C. H.

A. L. Schawlow and C. H. Towens, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
[CrossRef]

Tredicucci, A.

Tsekoun, A.

I. Dunayevskiy, A. Tsekoun, M. Prasanna, R. Go, and C. K. N. Patel, “High-sensitivity detection of triacetone triperoxide (TATP) and its precursor acetone,” Appl. Opt. 46, 6397–6404(2007).
[CrossRef] [PubMed]

M. Pusharsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers,” Proc. Natl. Acad. Sci. USA 103, 10846–10849 (2006).
[CrossRef]

Tsekoun, A. G.

M. Pushkarsky, I. G. Dunayevskiy, M. Prasanna, A. G. Tsekoun, R. Go, and C. K. N. Patel, “High sensitivity detection of TNT,” Proc. Natl. Acad. Sci. USA 103, 19630–19634 (2006).
[CrossRef] [PubMed]

Um, J.

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, and C.-H. Lin,” Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78, 2834–2836 (2001).
[CrossRef]

van Helden, J. H.

G. Hancock, J. H. van Helden, R. Peverall, G. A. D. Ritchie, and R. J. Walker, “Direct and wavelength modulation spectroscopy using a cw external cavity quantum cascade laser,” Appl. Phys. Lett. 94, 201110 (2009).
[CrossRef]

J. H. Van Helden, R. Peverall, and G. A. D. Ritchie, “Cavity enhanced techniques using continuous wave lasers,” in Cavity Ring-Down Spectroscopy, G.Berden and R.Engeln, eds. (Wiley, 2009), pp. 27–56.

Van Neste, C. W.

C. W. Van Neste, L. R. Senesac, and T. Thundat, “Standoff spectroscopy of surface adsorbed chemicals,” Anal. Chem. 81, 1952–1956 (2009).
[CrossRef] [PubMed]

Varanasi, P.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Ventrudo, B. F.

J. A. Gupta, B. F. Ventrudo, P. Waldron, and P. J. Barrios, “External cavity tunable type-I diode laser with continuous-wave singlemode operation at 3.24 μm,” Electron. Lett. 46, 1218–1220 (2010).
[CrossRef]

Vorsa, V.

G. M. Mitchell, V. Vorsa, and G. L. Ryals, “Trace impurity detection in ammonia for the compound semiconductor market,” presented at SEMICON West, San Francisco, California, 17–21 July 2002.

Vurgaftman, I.

M. Kim, C. L. Canedy, C. S. Kim, W. W. Bewley, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Room temperature interband cascade lasers,” Phys. Proced. 3, 1195–1200 (2010).
[CrossRef]

D. Caffey, T. Day, C. S. Kim, M. Kim, I. Vurgaftman, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. Abell, and J. R. Meyer, “Performance characteristics of a continuous wave compact widely tunable external cavity interband cascade lasers,” Opt. Express 18, 15691–15696 (2010).
[CrossRef] [PubMed]

M. Kim, C. L. Canedy, W. W. Bewley, C. S. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade laser emitting at λ=3.75 μm in continuous wave above room temperature,” Appl. Phys. Lett. 92, 191110–191112 (2008).
[CrossRef]

M. Kim, W. W. Bewley, J. R. Lindle, C. S. Kim, C. L. Canedy, J. Abell, I. Vurgaftman, and J. R. Meyer, “Single-mode room-temperature CW interband cascade lasers covering the λ=3–4 μm spectral band,” in Laser Applications to Chemical, Security and Environmental Analysis, OSA Technical Digest Series (CD) Optical Society of America, 2010), paper LMA2.

Wagner, G.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Waldron, P.

J. A. Gupta, B. F. Ventrudo, P. Waldron, and P. J. Barrios, “External cavity tunable type-I diode laser with continuous-wave singlemode operation at 3.24 μm,” Electron. Lett. 46, 1218–1220 (2010).
[CrossRef]

Walker, R. J.

G. Hancock, J. H. van Helden, R. Peverall, G. A. D. Ritchie, and R. J. Walker, “Direct and wavelength modulation spectroscopy using a cw external cavity quantum cascade laser,” Appl. Phys. Lett. 94, 201110 (2009).
[CrossRef]

Walther, C.

Weida, M.

C. Young, S.-S. Kim, Y. Luzinova, M. Weida, D. Arnone, E. Takeuchi, T. Day, and B. Mizaikoff, “External cavity widely tunable quantum cascade laser based hollow waveguide gas sensors for multianalyte detection,” Sens. Actuators B Chem. 140, 24–28 (2009).
[CrossRef]

Weida, M. J.

M. J. Weida, P. Buerki, E. Takeuchi, and T. Day, “External-cavity QCLs broaden capabilities for molecular detection,” Laser Focus World 46, 1–7 (2010).

Werle, P.

P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta A 54, 197–236 (1998).
[CrossRef]

P. Werle, “Analytical applications of infrared semiconductor lasers in atmospheric trace gas monitoring,” J. Phys. IV 4, C4-9–C4-12 (1994).
[CrossRef]

Willer, U.

U. Willer, A. Pohlkotter, W. Schade, J. Xu, T. Losco, R. P. Green, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “Resonant tuning fork detector for THz radiation,” Opt. Express 17, 14069–14074 (2009).
[CrossRef] [PubMed]

C. Bauer, U. Willer, R. Lewicki, A. Pohlkotter, A. A. Kosterev, D. Kosynkin, F. K. Tittel, and W. Schade, “A mid-infrared QEPAS sensor device for TATP detection,” J. Phys.: Conf. Ser. 157, 012002 (2009).
[CrossRef]

Williams, B. S.

Winter, F.

Wittmann, A.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95, 061103 (2009).
[CrossRef]

A. Mohan, A. Wittmann, A. Hugi, S. Blaser, M. Giovannini, and J. Faist, “Room-temperature continuous-wave operation of an external-cavity cascade laser,” Opt. Lett. 32, 2792–2794(2007).
[CrossRef] [PubMed]

Wolfrum, J.

Wöllenstein, J.

J. Hildenbrand, J. Herbst, J. Wöllenstein, and A. Lambrecht, “Explosive detection using infrared laser spectroscopy,” Proc. SPIE 7222, 72220B (2009).
[CrossRef]

Wysocki, G.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

R. Lewicki, J. H. Doty III, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultra-sensitive detection of nitric oxide at 5.33 by using external cavity quantum cascade laser based magnetic rotation spectroscopy,” Proc. Natl. Acad. Sci. USA 106, 12587–12592 (2009).
[CrossRef] [PubMed]

R. Lewicki, G. Wysocki, A. A. Kosterev, and F. K. Tittel, “QEPAS based detection of broadband absorbing molecules using a widely tunable, cw quantum cascade laser at 8.4 μm,” Opt. Express 15, 7357–7366 (2007).
[CrossRef] [PubMed]

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90, 165–176 (2007).
[CrossRef]

F. K. Tittel, Y. Bakhirkin, A. Kosterev, and G. Wysocki, “Recent advances in trace gas detection using quantum and interband cascade lasers,” Rev. Laser Eng. 34, 275–282 (2006).

G. Wysocki, R. Curl, F. Tittel, R. Maulini, J. Billiard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81, 769–777 (2005).
[CrossRef]

R. Lewicki, G. Wysocki, J. Doty, R. F. Curl Jr., and F. K. Tittel, “Ultra-sensitive detection of nitric oxide at 5.33 μm using an external cavity QCL based Faraday rotation spectroscopic sensor platform,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (Optical Society of America, 2008), paper CMH5.
[PubMed]

Xu, J.

U. Willer, A. Pohlkotter, W. Schade, J. Xu, T. Losco, R. P. Green, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “Resonant tuning fork detector for THz radiation,” Opt. Express 17, 14069–14074 (2009).
[CrossRef] [PubMed]

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett. 91, 121104 (2007).
[CrossRef]

Yarekha, D. A.

Y. A. Bakhirkin, A. A. Kosterev, R. F. Curl, F. K. Tittel, D. A. Yarekha, L. Hvozdara, M. Giovannini, and F. Faist, “Sub-ppbv nitric oxide concentration measurements using CW thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82, 149–154(2005).
[CrossRef]

R. Maulini, D. A. Yarekha, J. Bulliard, M. Giovannini, J. Faist, and E. Gini, “Continuous-wave operation of a broadly tunable thermoelectrically cooled external cavity quantum-cascade laser,” Opt. Lett. 30, 2584–2586 (2005).
[CrossRef] [PubMed]

Young, C.

C. Young, S.-S. Kim, Y. Luzinova, M. Weida, D. Arnone, E. Takeuchi, T. Day, and B. Mizaikoff, “External cavity widely tunable quantum cascade laser based hollow waveguide gas sensors for multianalyte detection,” Sens. Actuators B Chem. 140, 24–28 (2009).
[CrossRef]

Zheng, J.

G. Luo, C. Peng, H. Q. Le, S. Pei, H. Lee, W. Hwang, B. Ishaug, and J. Zheng, “Broadly wavelength-tunable external cavity mid-infrared quantum cascade lasers,” IEEE J. Quantum Electron. 38, 486–494 (2002).
[CrossRef]

Am. J. Phys. (1)

G. N. Rao, C. Gudipaty, and D. Martin, “Higher harmonic detection employing wavelength modulation spectroscopy and near infrared diode lasers: an undergraduate experiment,” Am. J. Phys. 77, 821–825 (2009).
[CrossRef]

Anal. Chem. (1)

C. W. Van Neste, L. R. Senesac, and T. Thundat, “Standoff spectroscopy of surface adsorbed chemicals,” Anal. Chem. 81, 1952–1956 (2009).
[CrossRef] [PubMed]

Appl. Opt. (8)

I. Dunayevskiy, A. Tsekoun, M. Prasanna, R. Go, and C. K. N. Patel, “High-sensitivity detection of triacetone triperoxide (TATP) and its precursor acetone,” Appl. Opt. 46, 6397–6404(2007).
[CrossRef] [PubMed]

G. N. Rao and A. Karpf, “High sensitivity detection of NO2 employing cavity ring-down spectroscopy and an external cavity continuously tunable quantum cascade laser,” Appl. Opt. 49, 4906–4914 (2010).
[CrossRef] [PubMed]

G. N. Rao and A. Karpf, “Extremely sensitive detection of NO2 employing off-axis integrated cavity output spectroscopy coupled with multiple line integrated absorption spectroscopy,” Appl. Opt. , to be published.
[PubMed]

J. B. Paul, L. Lapson, and J. G. Anderson, “Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment,” Appl. Opt. 40, 4904–4910 (2001).
[CrossRef]

A. Karpf and G. N. Rao, “Enhanced sensitivity for the detection of trace gases using multiple line integrated absorption spectroscopy,” Appl. Opt. 48, 5061–5066 (2009).
[CrossRef] [PubMed]

A. Karpf and G. N. Rao, “Enhancement of trace gas detection by integrating wavelength modulated spectra across multiple lines,” Appl. Opt. 49, 1406–1413 (2010).
[CrossRef] [PubMed]

A. Arnold, H. Becker, R. Hemberger, W. Hentschel, W. Ketterle, M. Kollner, W. Meienburg, P. Monkhouse, H. Neckel, M. Schafer, K. P. Schindler, V. Sick, R. Suntz, and J. Wolfrum, “Laser in situ monitoring of combustion processes,” Appl. Opt. 29, 4860–4872 (1990).
[CrossRef] [PubMed]

A. Karpf and G. N. Rao, “Absorption and wavelength modulation spectroscopy of NO2 using a tunable, external cavity continuous wave quantum cascade laser,” Appl. Opt. 48, 408–413 (2009).
[CrossRef] [PubMed]

Appl. Phys. B (10)

G. Wysocki, R. Curl, F. Tittel, R. Maulini, J. Billiard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81, 769–777 (2005).
[CrossRef]

T. H. Risby and S. F. Solga, “Current status of clinical breath analysis,” Appl. Phys. B 85, 421–426 (2006).
[CrossRef]

A. A. Kosterev, R. F. Curl, F. K. Tittel, M. Rochat, M. Beck, D. Hofstetter, and J. Faist, “Chemical sensing with pulsed QC-DFB lasers operating at 6.6 μm,” Appl. Phys. B 75, 351–357 (2002).
[CrossRef]

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90, 165–176 (2007).
[CrossRef]

S. Borri, S. Bartalini, P. De Natale, M. Inguscio, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Frequency modulation spectroscopy by means of quantum-cascade lasers,” Appl. Phys. B 85, 223–229 (2006).
[CrossRef]

A. A. Kosterev, R. F. Curl, F. K. Tittel, M. Rochat, M. Beck, D. Hofstetter, and J. Faist, “Chemical sensing with pulsed QC-DFB lasers operating at 15.6 μm,” Appl. Phys. B 75, 351–357 (2002).
[CrossRef]

V. Spagnolo, A. A. Kosterev, L. Dong, R. Lewicki, and F. K. Tittel, “NO trace gas sensor based on quartz enhanced photoacoustic spectroscopy and external cavity quantum cascade laser,” Appl. Phys. B 100, 125–130 (2010).
[CrossRef]

J. Reid and D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

Y. A. Bakhirkin, A. A. Kosterev, R. F. Curl, F. K. Tittel, D. A. Yarekha, L. Hvozdara, M. Giovannini, and F. Faist, “Sub-ppbv nitric oxide concentration measurements using CW thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82, 149–154(2005).
[CrossRef]

M. L. Silva, D. M. Sonnenfroh, D. I. Rosen, M. G. Allen, and A. O’Keefe, “Integrated cavity output spectroscopy measurements of nitric oxide levels in breath with a pulsed room-temperature quantum cascade laser,” Appl. Phys. B 81, 705–710 (2005).
[CrossRef]

Appl. Phys. Lett. (9)

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Hofler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, and C.-H. Lin,” Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78, 2834–2836 (2001).
[CrossRef]

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable, high performance quantum cascade laser,” Appl. Phys. Lett. 96, 141105 (2010).
[CrossRef]

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95, 061103 (2009).
[CrossRef]

J. Faist, J. C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[CrossRef]

G. Hancock, J. H. van Helden, R. Peverall, G. A. D. Ritchie, and R. J. Walker, “Direct and wavelength modulation spectroscopy using a cw external cavity quantum cascade laser,” Appl. Phys. Lett. 94, 201110 (2009).
[CrossRef]

R. Furstenberg, C. A. Kendziora, J. Stepnowski, S. V. Stepnowski, M. Rake, M. R. Papantonakis, V. Nguyen, G. K. Hubler, and R. A. McGill, “Stand-off detection of trace explosives via resonant infrared photothermal imaging,” Appl. Phys. Lett. 93, 224103 (2008).
[CrossRef]

M. Kim, C. L. Canedy, W. W. Bewley, C. S. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade laser emitting at λ=3.75 μm in continuous wave above room temperature,” Appl. Phys. Lett. 92, 191110–191112 (2008).
[CrossRef]

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett. 91, 121104 (2007).
[CrossRef]

Atmos. Oceanic Opt. (1)

C. N. Mikhailenko, Y. L. Babikov, and V. F. Golovko, “Information-calculating system spectroscopy of atmospheric gases. The structure and main functions,” Atmos. Oceanic Opt. 18, 685–695 (2005).

Chem. Phys. Lett. (2)

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

A. O’Keefe, J. J. Scherer, and J. B. Paul, “CW integrated cavity output spectroscopy,” Chem. Phys. Lett. 307, 343–349 (1999).
[CrossRef]

Electron. Lett. (1)

J. A. Gupta, B. F. Ventrudo, P. Waldron, and P. J. Barrios, “External cavity tunable type-I diode laser with continuous-wave singlemode operation at 3.24 μm,” Electron. Lett. 46, 1218–1220 (2010).
[CrossRef]

Federal register (1)

 U.S. Environmental Protection Agency, “Primary national ambient air quality standards for nitrogen dioxide; final rule,” Federal register 75, 6474–6537 (2010).

IEEE J. Quantum Electron. (1)

G. Luo, C. Peng, H. Q. Le, S. Pei, H. Lee, W. Hwang, B. Ishaug, and J. Zheng, “Broadly wavelength-tunable external cavity mid-infrared quantum cascade lasers,” IEEE J. Quantum Electron. 38, 486–494 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. Gmachl, J. Faist, J. N. Baillargeon, F. Capasso, C. Sirtori, D. L. Sivco, S. G. Chu, and A. Y. Cho, “Complex-coupled quantum cascade distributed-feedback laser,” IEEE Photon. Technol. Lett. 9, 1090–1092 (1997).
[CrossRef]

Int. Rev. Phys. Chem. (2)

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

J. Phys. IV (1)

P. Werle, “Analytical applications of infrared semiconductor lasers in atmospheric trace gas monitoring,” J. Phys. IV 4, C4-9–C4-12 (1994).
[CrossRef]

J. Phys.: Conf. Ser. (1)

C. Bauer, U. Willer, R. Lewicki, A. Pohlkotter, A. A. Kosterev, D. Kosynkin, F. K. Tittel, and W. Schade, “A mid-infrared QEPAS sensor device for TATP detection,” J. Phys.: Conf. Ser. 157, 012002 (2009).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Laser Focus World (1)

M. J. Weida, P. Buerki, E. Takeuchi, and T. Day, “External-cavity QCLs broaden capabilities for molecular detection,” Laser Focus World 46, 1–7 (2010).

Nat. Photon. (2)

M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photon. 3, 586–590 (2009).
[CrossRef]

B. S. Williams, “Terahertz quantum cascade lasers,” Nat. Photon. 1, 517–525 (2007).
[CrossRef]

Opt. Express (6)

Opt. Lett. (4)

Phys. Proced. (1)

M. Kim, C. L. Canedy, C. S. Kim, W. W. Bewley, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Room temperature interband cascade lasers,” Phys. Proced. 3, 1195–1200 (2010).
[CrossRef]

Phys. Rev. (1)

A. L. Schawlow and C. H. Towens, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
[CrossRef]

Phys. Rev. Lett. (1)

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett. 104, 083904 (2010).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (3)

M. Pusharsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers,” Proc. Natl. Acad. Sci. USA 103, 10846–10849 (2006).
[CrossRef]

M. Pushkarsky, I. G. Dunayevskiy, M. Prasanna, A. G. Tsekoun, R. Go, and C. K. N. Patel, “High sensitivity detection of TNT,” Proc. Natl. Acad. Sci. USA 103, 19630–19634 (2006).
[CrossRef] [PubMed]

R. Lewicki, J. H. Doty III, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultra-sensitive detection of nitric oxide at 5.33 by using external cavity quantum cascade laser based magnetic rotation spectroscopy,” Proc. Natl. Acad. Sci. USA 106, 12587–12592 (2009).
[CrossRef] [PubMed]

Proc. SPIE (2)

B. G. Lee, J. Kansky, A. K. Goyal, C. Pflügl, L. Diehl, M. A. Belkin, A. Sanchez, and F. Capasso, “Wavelength beam combining of quantum cascade laser arrays for remote sensing,” Proc. SPIE 7460, 746004 (2009).
[CrossRef]

J. Hildenbrand, J. Herbst, J. Wöllenstein, and A. Lambrecht, “Explosive detection using infrared laser spectroscopy,” Proc. SPIE 7222, 72220B (2009).
[CrossRef]

Rep. Prog. Phys. (1)

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64, 1533–1601 (2001).
[CrossRef]

Rev. Laser Eng. (1)

F. K. Tittel, Y. Bakhirkin, A. Kosterev, and G. Wysocki, “Recent advances in trace gas detection using quantum and interband cascade lasers,” Rev. Laser Eng. 34, 275–282 (2006).

Rev. Sci. Instrum. (2)

A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2554 (1988).
[CrossRef]

R. Engeln, G. Berden, R. Peters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
[CrossRef]

Science (4)

J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556(1994).
[CrossRef] [PubMed]

C. Walther, G. Scalari, M. I. Amanti, M. Beck, and J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science 327, 1495–1497 (2010).
[CrossRef] [PubMed]

M. Beck, D. Hofstetter, T. Aellen, T. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2001).
[CrossRef]

Semicond. Sci. Technol. (1)

A. Hugi, R. Maulini, and J. Faist, “Topical review—external cavity quantum cascade laser,” Semicond. Sci. Technol. 25, 083001 (2010).
[CrossRef]

Sens. Actuators B Chem. (1)

C. Young, S.-S. Kim, Y. Luzinova, M. Weida, D. Arnone, E. Takeuchi, T. Day, and B. Mizaikoff, “External cavity widely tunable quantum cascade laser based hollow waveguide gas sensors for multianalyte detection,” Sens. Actuators B Chem. 140, 24–28 (2009).
[CrossRef]

Spectrochim. Acta A (1)

P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta A 54, 197–236 (1998).
[CrossRef]

Other (14)

F. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” in Solid-State Mid-Infrared Laser Sources, I.T.Sorokina and K.L.Vodopyanov, eds., Topics in Applied Physics (Springer, 2003), pp. 445–516.

G. M. Mitchell, V. Vorsa, and G. L. Ryals, “Trace impurity detection in ammonia for the compound semiconductor market,” presented at SEMICON West, San Francisco, California, 17–21 July 2002.

F. J. Aellen, T. Gresch, T. Beck, and M. Giovannini, “Mid-infrared coherent sources and applications progress,” in Quantum Cascade Lasers (Springer, 2007), pp. 171–192.

R. Paiella, Intersubband Transitions in Quantum Structures (McGraw-Hill, 2006).

J. Cockburn, “Mid-infrared semiconductor optoelectronics,” in Mid-Infrared Quantum Cascade Lasers (Springer, 2006), Vol. 118, pp. 323–355.

J. Faist and C. Sirtori, “Long-wave length infrared semiconductor lasers InP,” in GaAs-Based Quantum Cascade Lasers (Wiley, 2004), pp. 217–278.

U.S. Environmental Protection Agency, “National air quality status and trends through 2007,” EPA-454/R-08-006, (Environmental Protection Agency, 2008).

M. Kim, W. W. Bewley, J. R. Lindle, C. S. Kim, C. L. Canedy, J. Abell, I. Vurgaftman, and J. R. Meyer, “Single-mode room-temperature CW interband cascade lasers covering the λ=3–4 μm spectral band,” in Laser Applications to Chemical, Security and Environmental Analysis, OSA Technical Digest Series (CD) Optical Society of America, 2010), paper LMA2.

K. W. Busch and M. Busch, “Introduction to cavity ringdown spectroscopy,” in Cavity Ringdown Spectroscopy, K.W.Busch and M.A.Busch, eds. (American Chemical Society, 1999), pp. 7–19.
[CrossRef]

K. K. Lehmann, G. Berden, and R. Engeln, “An introduction to cavity ringdown spectroscopy,” in Cavity Ringdown Spectroscopy Techniques and Applications, G.Berden and R.Engeln, eds. (Wiley, 2009), pp. 1–26.

J. H. Van Helden, R. Peverall, and G. A. D. Ritchie, “Cavity enhanced techniques using continuous wave lasers,” in Cavity Ring-Down Spectroscopy, G.Berden and R.Engeln, eds. (Wiley, 2009), pp. 27–56.

R. Lewicki, G. Wysocki, J. Doty, R. F. Curl Jr., and F. K. Tittel, “Ultra-sensitive detection of nitric oxide at 5.33 μm using an external cavity QCL based Faraday rotation spectroscopic sensor platform,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (Optical Society of America, 2008), paper CMH5.
[PubMed]

K. W. Busch, A. Hennequin, and M. A. Busch, “Introduction to optical cavities,” in Cavity Ringdown Spectroscopy, K.W.Busch and M.A.Busch, eds. (American Chemical Society, 1999), pp. 20–33.
[CrossRef]

R. Lewicki, A. Kosterev, D. M. Thomazy, L. Gong, R. Griffin, T. Day, and F. Tittel, “Ammonia sensor for environmental monitoring based on a 10.4 μm external-cavity quantum cascade laser,” in Laser Applications to Chemical, Security and Environmental Analysis, OSA Technical Digest Series (Optical Society of America, 2010), paper LTuD2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Chart showing the location of the strongest rotational vibrational bands for several species based on simulated spectra. The spectra were generated using the HITRAN database [23] and the SPECTRA software developed by Mikhailenko et al. [24]. The spectra correspond to a reference concentration of 100 ppm at a pressure of 1000 mbars .

Fig. 2
Fig. 2

Tuning ranges of the Daylight Solutions EC tunable QCLs and ICLs. (Reproduced with permission from Daylight Solutions.)

Fig. 3
Fig. 3

Tunability and peak power of the Daylight Solutions EC-QCL. (Reproduced with permission from Daylight Solutions.)

Fig. 4
Fig. 4

NO 2 absorption spectrum recorded from 1629 to 1645 cm 1 at 50 ppm , 260 mbars using a continuously tunable EC-QCL [21].

Fig. 5
Fig. 5

Absorption spectrum of NO 2 ( 50 ppm at 260 mbars ) from 1631.73 to 1633.8 cm 1 . The black trace is the experimental data and the gray trace is the simulated spectrum based on HITRAN data [23].

Fig. 6
Fig. 6

(a) NO 2 absorption spectrum of the doublet at 1632.5 cm 1 . The NO 2 concentration was at 75 ± 15 ppm at a pressure of 120 ± 10 mbars [21]. (b) Second harmonic WMS signal of the absorption spectrum of the doublet at 1632.5 cm 1 . The NO 2 concentration was 75 ± 15 ppm at a pressure of 120 ± 10 mbars [21].

Fig. 7
Fig. 7

Cavity ringdown time plot for 100 ppb of NO 2 in zero air at 950 mbars [70].

Fig. 8
Fig. 8

Schematic of the experimental setup for MLIAS employing ICOS for the trace detection of NO 2 [71].

Fig. 9
Fig. 9

Schematic diagram of the QE-PAS-based sensor platform with a cw EC-QCL spectroscopic source operating at 8.4 μm . Reproduced from Lewicki et al. [83].

Fig. 10
Fig. 10

Schematic diagram of experimental setup for EC-QCL-based magnetic rotation spectroscopy. Reproduced from Lewicki et al. [87].

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

S T = i α i ( ν ) L d ν .
α eff = 1 c ( 1 τ 1 τ 0 ) = i σ i N i .
I 0 ( ν ) I ( ν ) I 0 ( ν ) = α ( ν ) L ( 1 R ) ,

Metrics