Abstract

The use of grating as a spectral filter provides a simple way of improving wavelength tuning and stability of continuous-wave optical parametric oscillators (cw OPOs). In this paper, we discuss how to design and use such grating-cavity cw OPOs for high-resolution spectroscopy in the molecular fingerprint region at 3μm. The first design presented in the paper is based on a metal-coated diffraction grating, which produces fast and broad wavelength tuning and high wavelength stability. The second design uses a bulk Bragg grating for high optical power and good spectral purity. We report a new Bragg-grating OPO and demonstrate its use in a Doppler-free absorption spectroscopy of CH4 at 3.22μm. In addition, we describe a new balanced detection scheme, which can be used to improve the signal-to-noise ratio of absorption measurements if the measurement noise is limited by the intensity noise of the mid-infrared OPO.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Zaske, D.-H. Lee, and C. Becher, “Green-pumped cw singly resonant optical parametric oscillator based on MgO:PPLN with frequency stabilization to an atomic resonance,” Appl. Phys. B 98, 729–735 (2010).
    [CrossRef]
  2. H. Verbraak, A. K. Y. Ngai, S. T. Persijn, F. J. M. Harren, and H. Linnartz, “Mid-infrared continuous wave cavity ring down spectroscopy of molecular ions using an optical parametric oscillator,” Chem. Phys. Lett. 442, 145–149 (2007).
    [CrossRef]
  3. E. V. Kovalchuk, D. Dekorsy, A. I. Lvovsky, C. Braxmaier, J. Mlynek, A. Peters, and S. Schiller, “High-resolution Doppler-free molecular spectroscopy with a continuous-wave optical parametric oscillator,” Opt. Lett. 26, 1430–1432 (2001).
    [CrossRef]
  4. P. G. Mickelson, Y. N. Martinez de Escobar, P. Anzel, B. J. De Salvo, S. B. Nagel, A. J. Traverso, M. Yan, and T. C. Killian, “Repumping and spectroscopy of laser-cooled Sr atoms using the (5s5p)3P2–(5s4d)3D2 transition,” J. Phys. B 42, 235001(2009).
    [CrossRef]
  5. U. Ströβner, J.-P. Meyn, R. Wallenstein, P. Urenski, A. Arie, G. Rosenman, J. Mlynek, S. Schiller, and A. Peters, “Single-frequency continuous-wave optical parametric oscillator system with an ultrawide tuning range of 550 to 2830nm,” J. Opt. Soc. Am. B 19, 1419–1424 (2002).
    [CrossRef]
  6. W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, “93% pump depletion, 3.5W continuous-wave, singly resonant optical parametric oscillator,” Opt. Lett. 21, 1336–1338 (1996).
    [CrossRef] [PubMed]
  7. M. Siltanen, M. Vainio, and L. Halonen, “Pump-tunable continuous-wave singly resonant optical parametric oscillator from 2.5 to 4.4μm,” Opt. Express 18, 14087–14092 (2010).
    [CrossRef] [PubMed]
  8. A. K. Y. Ngai, S. T. Persijn, G. von Basum, and F. J. M. Harren, “Automatically tunable continuous-wave optical parametric oscillator for high-resolution spectroscopy and sensitive trace-gas detection,” Appl. Phys. B 85, 173–180 (2006).
    [CrossRef]
  9. A. Henderson and R. Stafford, “Low threshold, singly-resonant CW OPO pumped by an all-fiber pump source,” Opt. Express 14, 767–772 (2006).
    [CrossRef] [PubMed]
  10. M. E. Klein, D.-H. Lee, J.-P. Meyn, K.-J. Boller, and R. Wallenstein, “Singly resonant continuous-wave optical parametric oscillator pumped by a diode laser,” Opt. Lett. 24, 1142–1144 (1999).
    [CrossRef]
  11. S. E. Bisson, K. M. Armstrong, T. J. Kulp, and M. Hartings, “Broadly tunable, mode-hop-tuned, cw optical parametric oscillator based on periodically poled lithium niobate,” Appl. Opt. 40, 6049–6055 (2001).
    [CrossRef]
  12. M. Vainio, M. Siltanen, J. Peltola, and L. Halonen, “Continuous-wave optical parametric oscillator tuned by a diffraction grating,” Opt. Express 17, 7702–7707 (2009).
    [CrossRef] [PubMed]
  13. M. Vainio, M. Siltanen, T. Hieta, and L. Halonen, “Continuous-wave optical parametric oscillator based on a Bragg grating,” Opt. Lett. 35, 1527–1529 (2010).
    [CrossRef] [PubMed]
  14. Focusing parameter for a Gaussian beam is defined as ξ=Lcλx/(2πnxwx2), where Lc is the crystal length, λx is the wavelength, nx is the refractive index of the crystal, and wx is the waist size of the beam (1/e2-intensity radius).
  15. M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, “Thermal effects in singly resonant continuous wave optical parametric oscillators,” Appl. Phys. B 94, 411–427 (2009).
    [CrossRef]
  16. A. V. Smith, SNLO software, 4.0 ed. (2005).
  17. R. D. Boyd, J. A. Britten, D. E. Decker, B. W. Shore, B. C. Stuart, M. D. Perry, and L. Li, “High-efficiency metallic diffraction gratings for laser applications,” Appl. Opt. 34, 1697–1706 (1995).
    [CrossRef] [PubMed]
  18. D. H. Martz, H. T. Nguyen, D. Patel, J. A. Britten, D. Alessi, E. Krous, Y. Wang, M. A. Larotonda, J. George, B. Knollenberg, B. M. Luther, J. J. Rocca, and C. S. Menoni, “Large area high efficiency broad bandwidth 800nm dielectric gratings for high energy laser pulse compression,” Opt. Express 17, 23809–23816 (2009).
    [CrossRef]
  19. O. Efimov, L. Glebov, L. Glebova, K. Richardson, and V. Smirnov, “High-efficiency Bragg gratings in photothermorefractive glass,” Appl. Opt. 38, 619–627 (1999).
    [CrossRef]
  20. C. Moser, L. Ho, E. Maye, and F. Havermeyer, “Fabrication and applications of volume holographic optical filters in glass,” J. Phys. D 41, 224003 (2008).
    [CrossRef]
  21. C. Moser, L. Ho, and F. Havermeyer, “Self-aligned non-dispersive external cavity tunable laser,” Opt. Express 16, 16691–16696 (2008).
    [CrossRef] [PubMed]
  22. J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Finite beams in reflective volume bragg gratings: theory and experiments,” IEEE J. Quantum Electron. 44, 81–89 (2008).
    [CrossRef]
  23. A. J. Henderson and R. Stafford, “Intra-cavity power effects in singly resonant cw OPOs,” Appl. Phys. B 85, 181–184 (2006).
    [CrossRef]
  24. G. K. Samanta and M. Ebrahim-Zadeh, “Continuous-wave singly-resonant optical parametric oscillator with resonant wave coupling,” Opt. Express 16, 6883–6888 (2008).
    [CrossRef] [PubMed]
  25. T.-H. My, O. Robin, O. Mhibik, C. Drag, and F. Bretenaker, “Stimulated Raman scattering in an optical parametric oscillator based on periodically poled MgO-doped stoichiometric LiTaO3,” Opt. Express 17, 5912–5918 (2009).
    [CrossRef] [PubMed]
  26. L. B. Kreuzer, “Single and multimode oscillation of the singly resonant optical parametric oscillator,” in Proceedings of the Joint Conference on Lasers and Opto-Electronics (The Institution of Electronic and Radio Engineers, 1969), pp. 52–63, revised ed.
  27. R. Sowade, I. Breunig, J. Kiessling, and K. Buse, “Influence of the pump threshold on the single-frequency output power of singly resonant optical parametric oscillators,” Appl. Phys. B 96, 25–28 (2009).
    [CrossRef]
  28. B. Jacobsson, V. Pasiskevicius, F. Laurell, E. Rotari, V. Smirnov, and L. Glebov, “Tunable narrowband optical parametric oscillator using a transversely chirped Bragg grating,” Opt. Lett. 34, 449–451 (2009).
    [CrossRef] [PubMed]
  29. A. Castrillo, E. De Tommasi, L. Gianfrani, L. Sirigu, and J. Faist, “Doppler-free saturated-absorption spectroscopy of CO2 at 4.3μm by means of a distributed feedback quantum cascade laser,” Opt. Lett. 31, 3040–3042 (2006).
    [CrossRef] [PubMed]
  30. D. Mazzotti, S. Borri, P. Cancio, G. Giusfredi, and P. De Natale, “Low-power Lamb-dip spectroscopy of very weak CO2 transitions near 4.25μm,” Opt. Lett. 27, 1256–1258 (2002).
    [CrossRef]
  31. P. Maddaloni, G. Gagliardi, P. Malara, and P. De Natale, “A 3.5mW continuous-wave difference-frequency source around 3μm for sub-Doppler molecular spectroscopy,” Appl. Phys. B 80, 141–145 (2005).
    [CrossRef]
  32. M. Abe, K. Takahata, and H. Sasada, “Sub-Doppler resolution 3.4μm spectrometer with an efficient difference-frequency-generation source,” Opt. Lett. 34, 1744–1746 (2009).
    [CrossRef] [PubMed]
  33. HITRAN 2008 database (http://www.cfa.harvard.edu/hitran/).
  34. J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992).
    [CrossRef] [PubMed]
  35. W. Chen, G. Mouret, and D. Boucher, “Difference-frequency laser spectroscopy detection of acetylene trace constituent,” Appl. Phys. B 67, 375–378 (1998).
    [CrossRef]

2010 (3)

2009 (8)

B. Jacobsson, V. Pasiskevicius, F. Laurell, E. Rotari, V. Smirnov, and L. Glebov, “Tunable narrowband optical parametric oscillator using a transversely chirped Bragg grating,” Opt. Lett. 34, 449–451 (2009).
[CrossRef] [PubMed]

T.-H. My, O. Robin, O. Mhibik, C. Drag, and F. Bretenaker, “Stimulated Raman scattering in an optical parametric oscillator based on periodically poled MgO-doped stoichiometric LiTaO3,” Opt. Express 17, 5912–5918 (2009).
[CrossRef] [PubMed]

M. Vainio, M. Siltanen, J. Peltola, and L. Halonen, “Continuous-wave optical parametric oscillator tuned by a diffraction grating,” Opt. Express 17, 7702–7707 (2009).
[CrossRef] [PubMed]

M. Abe, K. Takahata, and H. Sasada, “Sub-Doppler resolution 3.4μm spectrometer with an efficient difference-frequency-generation source,” Opt. Lett. 34, 1744–1746 (2009).
[CrossRef] [PubMed]

D. H. Martz, H. T. Nguyen, D. Patel, J. A. Britten, D. Alessi, E. Krous, Y. Wang, M. A. Larotonda, J. George, B. Knollenberg, B. M. Luther, J. J. Rocca, and C. S. Menoni, “Large area high efficiency broad bandwidth 800nm dielectric gratings for high energy laser pulse compression,” Opt. Express 17, 23809–23816 (2009).
[CrossRef]

P. G. Mickelson, Y. N. Martinez de Escobar, P. Anzel, B. J. De Salvo, S. B. Nagel, A. J. Traverso, M. Yan, and T. C. Killian, “Repumping and spectroscopy of laser-cooled Sr atoms using the (5s5p)3P2–(5s4d)3D2 transition,” J. Phys. B 42, 235001(2009).
[CrossRef]

M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, “Thermal effects in singly resonant continuous wave optical parametric oscillators,” Appl. Phys. B 94, 411–427 (2009).
[CrossRef]

R. Sowade, I. Breunig, J. Kiessling, and K. Buse, “Influence of the pump threshold on the single-frequency output power of singly resonant optical parametric oscillators,” Appl. Phys. B 96, 25–28 (2009).
[CrossRef]

2008 (4)

C. Moser, L. Ho, E. Maye, and F. Havermeyer, “Fabrication and applications of volume holographic optical filters in glass,” J. Phys. D 41, 224003 (2008).
[CrossRef]

J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Finite beams in reflective volume bragg gratings: theory and experiments,” IEEE J. Quantum Electron. 44, 81–89 (2008).
[CrossRef]

G. K. Samanta and M. Ebrahim-Zadeh, “Continuous-wave singly-resonant optical parametric oscillator with resonant wave coupling,” Opt. Express 16, 6883–6888 (2008).
[CrossRef] [PubMed]

C. Moser, L. Ho, and F. Havermeyer, “Self-aligned non-dispersive external cavity tunable laser,” Opt. Express 16, 16691–16696 (2008).
[CrossRef] [PubMed]

2007 (1)

H. Verbraak, A. K. Y. Ngai, S. T. Persijn, F. J. M. Harren, and H. Linnartz, “Mid-infrared continuous wave cavity ring down spectroscopy of molecular ions using an optical parametric oscillator,” Chem. Phys. Lett. 442, 145–149 (2007).
[CrossRef]

2006 (4)

A. K. Y. Ngai, S. T. Persijn, G. von Basum, and F. J. M. Harren, “Automatically tunable continuous-wave optical parametric oscillator for high-resolution spectroscopy and sensitive trace-gas detection,” Appl. Phys. B 85, 173–180 (2006).
[CrossRef]

A. J. Henderson and R. Stafford, “Intra-cavity power effects in singly resonant cw OPOs,” Appl. Phys. B 85, 181–184 (2006).
[CrossRef]

A. Henderson and R. Stafford, “Low threshold, singly-resonant CW OPO pumped by an all-fiber pump source,” Opt. Express 14, 767–772 (2006).
[CrossRef] [PubMed]

A. Castrillo, E. De Tommasi, L. Gianfrani, L. Sirigu, and J. Faist, “Doppler-free saturated-absorption spectroscopy of CO2 at 4.3μm by means of a distributed feedback quantum cascade laser,” Opt. Lett. 31, 3040–3042 (2006).
[CrossRef] [PubMed]

2005 (1)

P. Maddaloni, G. Gagliardi, P. Malara, and P. De Natale, “A 3.5mW continuous-wave difference-frequency source around 3μm for sub-Doppler molecular spectroscopy,” Appl. Phys. B 80, 141–145 (2005).
[CrossRef]

2002 (2)

2001 (2)

1999 (2)

1998 (1)

W. Chen, G. Mouret, and D. Boucher, “Difference-frequency laser spectroscopy detection of acetylene trace constituent,” Appl. Phys. B 67, 375–378 (1998).
[CrossRef]

1996 (1)

1995 (1)

1992 (1)

Abe, M.

Alessi, D.

Alexander, J. I.

Anzel, P.

P. G. Mickelson, Y. N. Martinez de Escobar, P. Anzel, B. J. De Salvo, S. B. Nagel, A. J. Traverso, M. Yan, and T. C. Killian, “Repumping and spectroscopy of laser-cooled Sr atoms using the (5s5p)3P2–(5s4d)3D2 transition,” J. Phys. B 42, 235001(2009).
[CrossRef]

Arie, A.

Armstrong, K. M.

Becher, C.

S. Zaske, D.-H. Lee, and C. Becher, “Green-pumped cw singly resonant optical parametric oscillator based on MgO:PPLN with frequency stabilization to an atomic resonance,” Appl. Phys. B 98, 729–735 (2010).
[CrossRef]

Bisson, S. E.

Boller, K.-J.

Borri, S.

Bosenberg, W. R.

Boucher, D.

W. Chen, G. Mouret, and D. Boucher, “Difference-frequency laser spectroscopy detection of acetylene trace constituent,” Appl. Phys. B 67, 375–378 (1998).
[CrossRef]

Boyd, R. D.

Braxmaier, C.

Bretenaker, F.

Breunig, I.

R. Sowade, I. Breunig, J. Kiessling, and K. Buse, “Influence of the pump threshold on the single-frequency output power of singly resonant optical parametric oscillators,” Appl. Phys. B 96, 25–28 (2009).
[CrossRef]

Britten, J. A.

Buse, K.

R. Sowade, I. Breunig, J. Kiessling, and K. Buse, “Influence of the pump threshold on the single-frequency output power of singly resonant optical parametric oscillators,” Appl. Phys. B 96, 25–28 (2009).
[CrossRef]

Byer, R. L.

Cancio, P.

Castrillo, A.

Chen, W.

W. Chen, G. Mouret, and D. Boucher, “Difference-frequency laser spectroscopy detection of acetylene trace constituent,” Appl. Phys. B 67, 375–378 (1998).
[CrossRef]

De Natale, P.

P. Maddaloni, G. Gagliardi, P. Malara, and P. De Natale, “A 3.5mW continuous-wave difference-frequency source around 3μm for sub-Doppler molecular spectroscopy,” Appl. Phys. B 80, 141–145 (2005).
[CrossRef]

D. Mazzotti, S. Borri, P. Cancio, G. Giusfredi, and P. De Natale, “Low-power Lamb-dip spectroscopy of very weak CO2 transitions near 4.25μm,” Opt. Lett. 27, 1256–1258 (2002).
[CrossRef]

De Salvo, B. J.

P. G. Mickelson, Y. N. Martinez de Escobar, P. Anzel, B. J. De Salvo, S. B. Nagel, A. J. Traverso, M. Yan, and T. C. Killian, “Repumping and spectroscopy of laser-cooled Sr atoms using the (5s5p)3P2–(5s4d)3D2 transition,” J. Phys. B 42, 235001(2009).
[CrossRef]

De Tommasi, E.

Decker, D. E.

Dekorsy, D.

Drag, C.

Drobshoff, A.

E?mov, O.

Ebrahim-Zadeh, M.

Faist, J.

Gagliardi, G.

P. Maddaloni, G. Gagliardi, P. Malara, and P. De Natale, “A 3.5mW continuous-wave difference-frequency source around 3μm for sub-Doppler molecular spectroscopy,” Appl. Phys. B 80, 141–145 (2005).
[CrossRef]

George, J.

Gianfrani, L.

Giusfredi, G.

Glebov, L.

Glebova, L.

Halonen, L.

Harren, F. J. M.

M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, “Thermal effects in singly resonant continuous wave optical parametric oscillators,” Appl. Phys. B 94, 411–427 (2009).
[CrossRef]

H. Verbraak, A. K. Y. Ngai, S. T. Persijn, F. J. M. Harren, and H. Linnartz, “Mid-infrared continuous wave cavity ring down spectroscopy of molecular ions using an optical parametric oscillator,” Chem. Phys. Lett. 442, 145–149 (2007).
[CrossRef]

A. K. Y. Ngai, S. T. Persijn, G. von Basum, and F. J. M. Harren, “Automatically tunable continuous-wave optical parametric oscillator for high-resolution spectroscopy and sensitive trace-gas detection,” Appl. Phys. B 85, 173–180 (2006).
[CrossRef]

Hartings, M.

Havermeyer, F.

C. Moser, L. Ho, and F. Havermeyer, “Self-aligned non-dispersive external cavity tunable laser,” Opt. Express 16, 16691–16696 (2008).
[CrossRef] [PubMed]

C. Moser, L. Ho, E. Maye, and F. Havermeyer, “Fabrication and applications of volume holographic optical filters in glass,” J. Phys. D 41, 224003 (2008).
[CrossRef]

Hellström, J. E.

J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Finite beams in reflective volume bragg gratings: theory and experiments,” IEEE J. Quantum Electron. 44, 81–89 (2008).
[CrossRef]

Henderson, A.

Henderson, A. J.

A. J. Henderson and R. Stafford, “Intra-cavity power effects in singly resonant cw OPOs,” Appl. Phys. B 85, 181–184 (2006).
[CrossRef]

Hieta, T.

Ho, L.

C. Moser, L. Ho, E. Maye, and F. Havermeyer, “Fabrication and applications of volume holographic optical filters in glass,” J. Phys. D 41, 224003 (2008).
[CrossRef]

C. Moser, L. Ho, and F. Havermeyer, “Self-aligned non-dispersive external cavity tunable laser,” Opt. Express 16, 16691–16696 (2008).
[CrossRef] [PubMed]

Jacobsson, B.

B. Jacobsson, V. Pasiskevicius, F. Laurell, E. Rotari, V. Smirnov, and L. Glebov, “Tunable narrowband optical parametric oscillator using a transversely chirped Bragg grating,” Opt. Lett. 34, 449–451 (2009).
[CrossRef] [PubMed]

J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Finite beams in reflective volume bragg gratings: theory and experiments,” IEEE J. Quantum Electron. 44, 81–89 (2008).
[CrossRef]

Kiessling, J.

R. Sowade, I. Breunig, J. Kiessling, and K. Buse, “Influence of the pump threshold on the single-frequency output power of singly resonant optical parametric oscillators,” Appl. Phys. B 96, 25–28 (2009).
[CrossRef]

Killian, T. C.

P. G. Mickelson, Y. N. Martinez de Escobar, P. Anzel, B. J. De Salvo, S. B. Nagel, A. J. Traverso, M. Yan, and T. C. Killian, “Repumping and spectroscopy of laser-cooled Sr atoms using the (5s5p)3P2–(5s4d)3D2 transition,” J. Phys. B 42, 235001(2009).
[CrossRef]

Klein, M. E.

Knollenberg, B.

Kovalchuk, E. V.

Kreuzer, L. B.

L. B. Kreuzer, “Single and multimode oscillation of the singly resonant optical parametric oscillator,” in Proceedings of the Joint Conference on Lasers and Opto-Electronics (The Institution of Electronic and Radio Engineers, 1969), pp. 52–63, revised ed.

Krous, E.

Kulp, T. J.

Larotonda, M. A.

Laurell, F.

B. Jacobsson, V. Pasiskevicius, F. Laurell, E. Rotari, V. Smirnov, and L. Glebov, “Tunable narrowband optical parametric oscillator using a transversely chirped Bragg grating,” Opt. Lett. 34, 449–451 (2009).
[CrossRef] [PubMed]

J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Finite beams in reflective volume bragg gratings: theory and experiments,” IEEE J. Quantum Electron. 44, 81–89 (2008).
[CrossRef]

Lee, D.-H.

S. Zaske, D.-H. Lee, and C. Becher, “Green-pumped cw singly resonant optical parametric oscillator based on MgO:PPLN with frequency stabilization to an atomic resonance,” Appl. Phys. B 98, 729–735 (2010).
[CrossRef]

M. E. Klein, D.-H. Lee, J.-P. Meyn, K.-J. Boller, and R. Wallenstein, “Singly resonant continuous-wave optical parametric oscillator pumped by a diode laser,” Opt. Lett. 24, 1142–1144 (1999).
[CrossRef]

Li, L.

Linnartz, H.

H. Verbraak, A. K. Y. Ngai, S. T. Persijn, F. J. M. Harren, and H. Linnartz, “Mid-infrared continuous wave cavity ring down spectroscopy of molecular ions using an optical parametric oscillator,” Chem. Phys. Lett. 442, 145–149 (2007).
[CrossRef]

Luther, B. M.

Lvovsky, A. I.

Maddaloni, P.

P. Maddaloni, G. Gagliardi, P. Malara, and P. De Natale, “A 3.5mW continuous-wave difference-frequency source around 3μm for sub-Doppler molecular spectroscopy,” Appl. Phys. B 80, 141–145 (2005).
[CrossRef]

Malara, P.

P. Maddaloni, G. Gagliardi, P. Malara, and P. De Natale, “A 3.5mW continuous-wave difference-frequency source around 3μm for sub-Doppler molecular spectroscopy,” Appl. Phys. B 80, 141–145 (2005).
[CrossRef]

Martinez de Escobar, Y. N.

P. G. Mickelson, Y. N. Martinez de Escobar, P. Anzel, B. J. De Salvo, S. B. Nagel, A. J. Traverso, M. Yan, and T. C. Killian, “Repumping and spectroscopy of laser-cooled Sr atoms using the (5s5p)3P2–(5s4d)3D2 transition,” J. Phys. B 42, 235001(2009).
[CrossRef]

Martz, D. H.

Maye, E.

C. Moser, L. Ho, E. Maye, and F. Havermeyer, “Fabrication and applications of volume holographic optical filters in glass,” J. Phys. D 41, 224003 (2008).
[CrossRef]

Mazzotti, D.

Menoni, C. S.

Meyn, J.-P.

Mhibik, O.

Mickelson, P. G.

P. G. Mickelson, Y. N. Martinez de Escobar, P. Anzel, B. J. De Salvo, S. B. Nagel, A. J. Traverso, M. Yan, and T. C. Killian, “Repumping and spectroscopy of laser-cooled Sr atoms using the (5s5p)3P2–(5s4d)3D2 transition,” J. Phys. B 42, 235001(2009).
[CrossRef]

Mlynek, J.

Moser, C.

C. Moser, L. Ho, and F. Havermeyer, “Self-aligned non-dispersive external cavity tunable laser,” Opt. Express 16, 16691–16696 (2008).
[CrossRef] [PubMed]

C. Moser, L. Ho, E. Maye, and F. Havermeyer, “Fabrication and applications of volume holographic optical filters in glass,” J. Phys. D 41, 224003 (2008).
[CrossRef]

Mouret, G.

W. Chen, G. Mouret, and D. Boucher, “Difference-frequency laser spectroscopy detection of acetylene trace constituent,” Appl. Phys. B 67, 375–378 (1998).
[CrossRef]

My, T.-H.

Myers, L. E.

Nagel, S. B.

P. G. Mickelson, Y. N. Martinez de Escobar, P. Anzel, B. J. De Salvo, S. B. Nagel, A. J. Traverso, M. Yan, and T. C. Killian, “Repumping and spectroscopy of laser-cooled Sr atoms using the (5s5p)3P2–(5s4d)3D2 transition,” J. Phys. B 42, 235001(2009).
[CrossRef]

Ngai, A. K. Y.

H. Verbraak, A. K. Y. Ngai, S. T. Persijn, F. J. M. Harren, and H. Linnartz, “Mid-infrared continuous wave cavity ring down spectroscopy of molecular ions using an optical parametric oscillator,” Chem. Phys. Lett. 442, 145–149 (2007).
[CrossRef]

A. K. Y. Ngai, S. T. Persijn, G. von Basum, and F. J. M. Harren, “Automatically tunable continuous-wave optical parametric oscillator for high-resolution spectroscopy and sensitive trace-gas detection,” Appl. Phys. B 85, 173–180 (2006).
[CrossRef]

Nguyen, H. T.

Pasiskevicius, V.

B. Jacobsson, V. Pasiskevicius, F. Laurell, E. Rotari, V. Smirnov, and L. Glebov, “Tunable narrowband optical parametric oscillator using a transversely chirped Bragg grating,” Opt. Lett. 34, 449–451 (2009).
[CrossRef] [PubMed]

J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Finite beams in reflective volume bragg gratings: theory and experiments,” IEEE J. Quantum Electron. 44, 81–89 (2008).
[CrossRef]

Patel, D.

Peltola, J.

M. Vainio, M. Siltanen, J. Peltola, and L. Halonen, “Continuous-wave optical parametric oscillator tuned by a diffraction grating,” Opt. Express 17, 7702–7707 (2009).
[CrossRef] [PubMed]

M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, “Thermal effects in singly resonant continuous wave optical parametric oscillators,” Appl. Phys. B 94, 411–427 (2009).
[CrossRef]

Perry, M. D.

Persijn, S.

M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, “Thermal effects in singly resonant continuous wave optical parametric oscillators,” Appl. Phys. B 94, 411–427 (2009).
[CrossRef]

Persijn, S. T.

H. Verbraak, A. K. Y. Ngai, S. T. Persijn, F. J. M. Harren, and H. Linnartz, “Mid-infrared continuous wave cavity ring down spectroscopy of molecular ions using an optical parametric oscillator,” Chem. Phys. Lett. 442, 145–149 (2007).
[CrossRef]

A. K. Y. Ngai, S. T. Persijn, G. von Basum, and F. J. M. Harren, “Automatically tunable continuous-wave optical parametric oscillator for high-resolution spectroscopy and sensitive trace-gas detection,” Appl. Phys. B 85, 173–180 (2006).
[CrossRef]

Peters, A.

Richardson, K.

Robin, O.

Rocca, J. J.

Rosenman, G.

Rotari, E.

Samanta, G. K.

Sasada, H.

Schiller, S.

Shore, B. W.

Siltanen, M.

Silver, J. A.

Sirigu, L.

Smirnov, V.

Smith, A. V.

A. V. Smith, SNLO software, 4.0 ed. (2005).

Sowade, R.

R. Sowade, I. Breunig, J. Kiessling, and K. Buse, “Influence of the pump threshold on the single-frequency output power of singly resonant optical parametric oscillators,” Appl. Phys. B 96, 25–28 (2009).
[CrossRef]

Stafford, R.

A. Henderson and R. Stafford, “Low threshold, singly-resonant CW OPO pumped by an all-fiber pump source,” Opt. Express 14, 767–772 (2006).
[CrossRef] [PubMed]

A. J. Henderson and R. Stafford, “Intra-cavity power effects in singly resonant cw OPOs,” Appl. Phys. B 85, 181–184 (2006).
[CrossRef]

Strößner, U.

Stuart, B. C.

Takahata, K.

Traverso, A. J.

P. G. Mickelson, Y. N. Martinez de Escobar, P. Anzel, B. J. De Salvo, S. B. Nagel, A. J. Traverso, M. Yan, and T. C. Killian, “Repumping and spectroscopy of laser-cooled Sr atoms using the (5s5p)3P2–(5s4d)3D2 transition,” J. Phys. B 42, 235001(2009).
[CrossRef]

Urenski, P.

Vainio, M.

Verbraak, H.

H. Verbraak, A. K. Y. Ngai, S. T. Persijn, F. J. M. Harren, and H. Linnartz, “Mid-infrared continuous wave cavity ring down spectroscopy of molecular ions using an optical parametric oscillator,” Chem. Phys. Lett. 442, 145–149 (2007).
[CrossRef]

von Basum, G.

A. K. Y. Ngai, S. T. Persijn, G. von Basum, and F. J. M. Harren, “Automatically tunable continuous-wave optical parametric oscillator for high-resolution spectroscopy and sensitive trace-gas detection,” Appl. Phys. B 85, 173–180 (2006).
[CrossRef]

Wallenstein, R.

Wang, Y.

Yan, M.

P. G. Mickelson, Y. N. Martinez de Escobar, P. Anzel, B. J. De Salvo, S. B. Nagel, A. J. Traverso, M. Yan, and T. C. Killian, “Repumping and spectroscopy of laser-cooled Sr atoms using the (5s5p)3P2–(5s4d)3D2 transition,” J. Phys. B 42, 235001(2009).
[CrossRef]

Zaske, S.

S. Zaske, D.-H. Lee, and C. Becher, “Green-pumped cw singly resonant optical parametric oscillator based on MgO:PPLN with frequency stabilization to an atomic resonance,” Appl. Phys. B 98, 729–735 (2010).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. B (7)

W. Chen, G. Mouret, and D. Boucher, “Difference-frequency laser spectroscopy detection of acetylene trace constituent,” Appl. Phys. B 67, 375–378 (1998).
[CrossRef]

P. Maddaloni, G. Gagliardi, P. Malara, and P. De Natale, “A 3.5mW continuous-wave difference-frequency source around 3μm for sub-Doppler molecular spectroscopy,” Appl. Phys. B 80, 141–145 (2005).
[CrossRef]

A. J. Henderson and R. Stafford, “Intra-cavity power effects in singly resonant cw OPOs,” Appl. Phys. B 85, 181–184 (2006).
[CrossRef]

R. Sowade, I. Breunig, J. Kiessling, and K. Buse, “Influence of the pump threshold on the single-frequency output power of singly resonant optical parametric oscillators,” Appl. Phys. B 96, 25–28 (2009).
[CrossRef]

M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, “Thermal effects in singly resonant continuous wave optical parametric oscillators,” Appl. Phys. B 94, 411–427 (2009).
[CrossRef]

S. Zaske, D.-H. Lee, and C. Becher, “Green-pumped cw singly resonant optical parametric oscillator based on MgO:PPLN with frequency stabilization to an atomic resonance,” Appl. Phys. B 98, 729–735 (2010).
[CrossRef]

A. K. Y. Ngai, S. T. Persijn, G. von Basum, and F. J. M. Harren, “Automatically tunable continuous-wave optical parametric oscillator for high-resolution spectroscopy and sensitive trace-gas detection,” Appl. Phys. B 85, 173–180 (2006).
[CrossRef]

Chem. Phys. Lett. (1)

H. Verbraak, A. K. Y. Ngai, S. T. Persijn, F. J. M. Harren, and H. Linnartz, “Mid-infrared continuous wave cavity ring down spectroscopy of molecular ions using an optical parametric oscillator,” Chem. Phys. Lett. 442, 145–149 (2007).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Finite beams in reflective volume bragg gratings: theory and experiments,” IEEE J. Quantum Electron. 44, 81–89 (2008).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

P. G. Mickelson, Y. N. Martinez de Escobar, P. Anzel, B. J. De Salvo, S. B. Nagel, A. J. Traverso, M. Yan, and T. C. Killian, “Repumping and spectroscopy of laser-cooled Sr atoms using the (5s5p)3P2–(5s4d)3D2 transition,” J. Phys. B 42, 235001(2009).
[CrossRef]

J. Phys. D (1)

C. Moser, L. Ho, E. Maye, and F. Havermeyer, “Fabrication and applications of volume holographic optical filters in glass,” J. Phys. D 41, 224003 (2008).
[CrossRef]

Opt. Express (7)

Opt. Lett. (8)

M. Vainio, M. Siltanen, T. Hieta, and L. Halonen, “Continuous-wave optical parametric oscillator based on a Bragg grating,” Opt. Lett. 35, 1527–1529 (2010).
[CrossRef] [PubMed]

M. E. Klein, D.-H. Lee, J.-P. Meyn, K.-J. Boller, and R. Wallenstein, “Singly resonant continuous-wave optical parametric oscillator pumped by a diode laser,” Opt. Lett. 24, 1142–1144 (1999).
[CrossRef]

W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, “93% pump depletion, 3.5W continuous-wave, singly resonant optical parametric oscillator,” Opt. Lett. 21, 1336–1338 (1996).
[CrossRef] [PubMed]

E. V. Kovalchuk, D. Dekorsy, A. I. Lvovsky, C. Braxmaier, J. Mlynek, A. Peters, and S. Schiller, “High-resolution Doppler-free molecular spectroscopy with a continuous-wave optical parametric oscillator,” Opt. Lett. 26, 1430–1432 (2001).
[CrossRef]

B. Jacobsson, V. Pasiskevicius, F. Laurell, E. Rotari, V. Smirnov, and L. Glebov, “Tunable narrowband optical parametric oscillator using a transversely chirped Bragg grating,” Opt. Lett. 34, 449–451 (2009).
[CrossRef] [PubMed]

A. Castrillo, E. De Tommasi, L. Gianfrani, L. Sirigu, and J. Faist, “Doppler-free saturated-absorption spectroscopy of CO2 at 4.3μm by means of a distributed feedback quantum cascade laser,” Opt. Lett. 31, 3040–3042 (2006).
[CrossRef] [PubMed]

D. Mazzotti, S. Borri, P. Cancio, G. Giusfredi, and P. De Natale, “Low-power Lamb-dip spectroscopy of very weak CO2 transitions near 4.25μm,” Opt. Lett. 27, 1256–1258 (2002).
[CrossRef]

M. Abe, K. Takahata, and H. Sasada, “Sub-Doppler resolution 3.4μm spectrometer with an efficient difference-frequency-generation source,” Opt. Lett. 34, 1744–1746 (2009).
[CrossRef] [PubMed]

Other (4)

HITRAN 2008 database (http://www.cfa.harvard.edu/hitran/).

L. B. Kreuzer, “Single and multimode oscillation of the singly resonant optical parametric oscillator,” in Proceedings of the Joint Conference on Lasers and Opto-Electronics (The Institution of Electronic and Radio Engineers, 1969), pp. 52–63, revised ed.

Focusing parameter for a Gaussian beam is defined as ξ=Lcλx/(2πnxwx2), where Lc is the crystal length, λx is the wavelength, nx is the refractive index of the crystal, and wx is the waist size of the beam (1/e2-intensity radius).

A. V. Smith, SNLO software, 4.0 ed. (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Schematic of the grating-cavity cw SRO depicted from above. The SRO cavity resonates the signal wave and consists of highly reflective mirrors (M) and the grating. The pump beam is focused into the crystal using a lens (L) and the mid-infrared output beam is collimated with another lens (L). (b) Diffraction grating in the Littrow configuration, depicted from the side of the SRO cavity. The grating is placed in the secondary focus of the cavity shown in Fig. 1a. The SRO wavelength can be tuned by varying the grating angle θ. The waist diameter of the resonating signal beam at the grating is 2 w 2 and its projection on the grating is D 2 . See text for details.

Fig. 2
Fig. 2

Measured frequency stability of the grating-cavity SRO. Measurement resolution is limited to about 80 MHz by the wavelength meter. Inset: a detail of the measured data, showing individual points recorded by the wavelength meter at a rate of 1 S / s . The black curve shows the 60-point adjacent average of the data.

Fig. 3
Fig. 3

Mode-hop frequency tuning range of > 500 GHz is achieved with the grating-tuned SRO at 2.7 μm by rotating the grating angle. The tuning range can be extended by combining the grating tuning with a stepwise scanning of the crystal temperature as demonstrated in the figure.

Fig. 4
Fig. 4

Measured frequency tuning range of the SRO at three different wavelengths, obtained by grating rotation without changing the crystal temperature or period. Black squares: tuning range measured with an SRO output power of 0.3 W . Red dot: tuning range with an output power of > 0.5 W .

Fig. 5
Fig. 5

Left axis: frequency selectivity Δ ν G of the grating as a function of the grating angle θ G . Right axis: vertical projection of the signal beam diameter on the grating as a function of grating rotation, calculated with w 2 = 0.325 mm [see Fig. 1b for details]. Grating line spacing is d G = 1 / 900 mm . Top axis shows how the idler wavelength changes versus grating angle when the SRO is pumped at λ p = 1064 nm .

Fig. 6
Fig. 6

Schematic of the saturation spectrometer used for Doppler-free spectroscopy of CH 4 at 3.22 μm . The mid-infrared output beam ( λ i ) of the BG-SRO is directed through an absorption cell filled with CH 4 and reflected back along the path of incidence. The absorption signal is detected with a fast mid-infrared photodetector (MCT). Other abbreviations in the figure are L, collimating lens; DM, dichroic mirror used to separate the residue of pump beam ( λ p ) from the idler wavelength; M, gold-coated mirrors; and BS, a wedged Ca F 2 beam splitter. The gray box in the upper left corner of the figure shows the principle of a balanced-detection scheme used in the measurement of Fig. 10 and explained in the text. PD, near-infrared photodetector; A, operational amplifier with an adjustable gain; DA, difference amplifier. Electrical signals are shown with dashed lines and optical beams with solid lines.

Fig. 7
Fig. 7

Measured (upper panel) and simulated (lower panel) spectrum of methane, with the BG-SRO beam double passed through a 25 cm absorption cell filled with 0.12 mbar of CH 4 . The wave number scale of the measurement is not calibrated.

Fig. 8
Fig. 8

Lamb dip in the middle of a Doppler- broadened absorption line of CH 4 at 3104.2 cm 1 . The dots are measured data points collected with a digital volt meter. The solid line shows a Lorentzian fit to the data around the line center. The linewidth of the detected Lamb dip as derived from the fit is 5.4 MHz (FWHM).

Fig. 9
Fig. 9

Recording of two partially overlapping CH 4 absorption lines at 3104.20 and 3104.22 cm 1 as measured using both direct absorption spectroscopy and wavelength modulation spectroscopy (WMS). The standard 1f lock-in detection was used for WMS. The Lamb dips are clearly resolved in the middle of the Doppler-broadened lines. The inset shows how the absorption line slope converts the SRO frequency modulation into amplitude modulation, which is the reason why the direct absorption signal looks noisy.

Fig. 10
Fig. 10

High-speed BG-SRO scans over CH 4 absorption lines at 3.22 μm . Upper panel (a) shows results of measurements done with a frequency scan rate of 200 GHz / s . The lower panel (b) was measured with a scan rate of 43.5 GHz / s but close to a turning point of the pump laser PZT scan. The upper trace of each panel was measured using direct absorption spectroscopy, in which case the signal-to-noise ratio of the measurement was degraded by the SRO intensity fluctuations. This problem was avoided by using a balanced-detection scheme explained in the text. Note that the y-axes of the balanced-detection plots are offset by 0.1 for clarity.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

1 / λ i = 1 / λ p 1 / λ s .
λ s = 2 m d G sin θ G ,
D 2 = 2 w 2 cos θ G ,
Δ ν G = ν s N G = d G D 2 c λ s = c 4 w 2 tan θ G ,
λ s = 2 n BG d BG cos θ BG ,

Metrics