Abstract

Creating accurate three-dimensional (3D) digitalized models of cultural heritage objects requires that information about surface geometry be integrated with measurements of other material properties like color and reflectance. Up until now, these measurements have been performed in laboratories using manually integrated (subjective) data analyses. We describe an out-of-laboratory bidirectional reflectance distribution function (BRDF) and 3D shape measurement system that implements shape and BRDF measurement in a single setup with BRDF uncertainty evaluation. The setup aligns spatial data with the angular reflectance distribution, yielding a better estimation of the surface’s reflective properties by integrating these two modality measurements into one setup using a single detector. This approach provides a better picture of an object’s intrinsic material features, which in turn produces a higher-quality digitalized model reconstruction. Furthermore, this system simplifies the data processing by combining structured light projection and photometric stereo. The results of our method of data analysis describe the diffusive and specular attributes corresponding to every measured geometric point and can be used to render intricate 3D models in an arbitrarily illuminated scene.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. V. Hahn, K. C. Baldwin, and D. D. Duncan, “Non-laser-based scanner for three-dimensional digitization of historical artifacts,” Appl. Opt. 46, 2838–2850 (2007).
    [CrossRef] [PubMed]
  2. K. Ikeuchia and D. Miyazaki, Digitally Archiving Cultural Objects (Springer, 2008).
    [CrossRef]
  3. B. K. P. Horn and M. J. Brooks, Shape from Shading, Series of Artificial Intelligence Series Archive (MIT, 1989).
  4. M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, , and D. Fulk, “The digital Michelangelo project: 3D scanning of large statues,” in Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (Association for Computing Machinery, 2000), pp. 131–144.
  5. V. Domiter, B. Repnik, and B. Žalik, “Surface reconstruction algorithms in cultural heritage digital representation,” in Proceedings of the International Symposium on Information Communication and Automation Technologies (ICAT) (IEEE, 2009), pp. 1–5.
  6. C. Rocchini, P. Cignoni, C. Montani, P. Pingi, and R. Scopigno, “A low cost 3D scanner based on structured light,” in Computer Graphics Forum Eurographics 2001 Conference Issue, Vol. 20 (Blackwell, 2001), pp. 299–308.
    [CrossRef]
  7. E. Reinhard, G. Ward, S. Pattanaik, and P. Debevec, High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting (Elsevier, 2006).
  8. P. D. Burns and R. S. Berns, “Analysis multispectral image capture,” in Proceedings of Fourth Color Imaging Conference Color Science, Systems, and Applications (Society for Imaging Science and Technology, 1996), pp. 19–22.
  9. J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes, Computer Graphics: Principles and Practice in C, 2nd ed. (Addison-Wesley, 1996).
  10. T. Luhmann, S. Robson, S. Kyle, and I. Harley, Close Range Photogrammetry: Principles, Techniques and Applications (Wiley, 2007).
  11. H. P. A. Lensch, J. Kautz, M. Goesele, W. Heidrich, and H.-P. Seidel, “Image-based reconstruction of spatially varying materials,” in Twelfth Eurographics Workshop on Rendering (Springer, 2001).
  12. G. J. Ward, “Measuring and modeling anisotropic reflection,” in Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques, Vol. 26 (Association for Computing Machinery, 1992), pp. 265–272 .
  13. E. Lafortune, S. Foo, K. Torrance, and D. Greenberg, “Non-linear approximation of reflectance functions,” in Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques (Association for Computing Machinery, 1997).
  14. S. R. Marschner, S. H. Westin, E. P. F. Lafortune, K. E. Torrance, and D. P. Greenberg, “Image-based BRDF measurement including human skin,” in Ninth Eurographics Workshop on Rendering (Springer, 1999).
  15. J. Paterson, D. Claus, and A. Fitzgibbon, “BRDF and geometry capture from extended inhomogeneous samples using flash photography,” Comput. Graph. Forum 24, 383–391 (2005).
    [CrossRef]
  16. D. B. Goldman, B. Curless, A. Hertzmann, and S. M. Seitz, “Shape and spatially-varying BRDFs from potometric stereo,” in IEEE International Conference on Computer Vision Workshops (IEEE, 2005), pp. 341–348.
  17. K. J. Dana, “BRDF/BTF measurement device,” in Eighth IEEE International Conference on Computer Vision Workshops, Vol. 2 (IEEE, 2001), pp. 460.
  18. W. Matusik, H. Pfister, M. Brand, and L. McMillan, “Efficient isotropic BRDF measurement,” in Proceedings of the 14th Eurographics Symposium on Rendering (European Association for Computer Graphics, 2003).
  19. J. Salvi, J. Pagès, and J. Batlle, “Pattern codification strategies in structured light systems,” Pattern Recogn. 37, 827–849 (2004).
    [CrossRef]
  20. M. Ito and A. Ishii, “A three-level checkerboard pattern (TCP) projection method for curved surface measurement,” Pattern Recogn. 28, 27–40 (1995).
    [CrossRef]
  21. H. Hügli and G. Maïtre, “Generation and use of color pseudo random sequences for coding structured light in active ranging,” Proc. SPIE 1010, 75–82 (1989).
  22. R. A. Morano, C. Ozturk, R. Conn, S. Dubin, S. Zietz, and J. Nissanov, “Structured light using pseudorandom codes,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 322–327(1998).
    [CrossRef]
  23. M. Trobina, “Error model of a coded-light range sensor,” Tech. Rep. BIWI-TR-164 (Communication Technology Laboratory, ETH Zentrum, 1995), pp. 1–35.
  24. D. Caspi, N. Kiryati, and J. Shamir, “Range imaging with adaptive color structured light,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 470–480 (1998).
    [CrossRef]
  25. D. Bergmann, “New approach for automatic surface reconstruction with coded light,” Proc. SPIE 2572, 2–9 (1995).
    [CrossRef]
  26. T. Pajdla, “BCRF—binary-coded illumination range finder reimplementation,” Tech. Rep. KUL/ESAT/MI2/9502, (Katholieke Universiteit Leuven, ESAT, April 1995).
  27. T. Monksand and J. Carter, “Improved stripe matching for colour encoded structured light,” in Proceedings of the 5th International Conference on Computer Analysis of Images and Patterns, D. Chetverikov and W.G.Kropatsch (Springer-Verlag, 1993), pp. 476–485.
  28. R. Sitnik, M. Kujawinska, and J. Woznicki, “Digital fringe projection system for large-volume 360 deg shape measurement,” Opt. Eng. 41, 443–449 (2002).
    [CrossRef]
  29. X. He, P. Heynen, R. Phillips, K. Torrance, D. Salesin, and D. Greenberg, “A fast and accurate light reflection model,” in Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques (Association for Computing Machinery, 1992), pp. 253–254.
  30. K. E. Torrance, E. M. Sparrow, “Theory for off-specular reflection from roughened surfaces,” J. Opt. Soc. Am. 57, 1105–1112 (1967).
    [CrossRef]
  31. P. Shirley, “Physically based lighting calculations for computer graphics,” Ph.D. dissertation (University of Illinois at Urbana–Champaign, 1990).
  32. B.-T. Phong, “Illumination for computer generated pictures,” Commun. ACM 18, 311–317 (1975).
    [CrossRef]
  33. T. Yu, N. Xu, and N. Ahuja, “Recovering shape and reflectance model of non-Lambertian objects from multiple views,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2004), pp. 226–233.
  34. E. P. Lafortune and Y. D. Willems, “Using the modified Phong BRDF for physically based rendering,” Tech. Rep. CW197 (Computer Science Department, Katholieke Universiteit Leuven, 1994).
  35. M. Ashikmin and P. Shirley, “An anisotropic Phong light reflection model,” Tech. Rep. UUCS-00-014 (Computer Science Department, University of Utah, 2000).
  36. R. L. Cook and K. E. Torrance, “A reflectance model for computer graphics,” ACM Trans. Graph. 1, 7–24(1982).
    [CrossRef]
  37. S. M. Rusinkiewicz, “A new change of variables for efficient BRDF representation,” in Ninth Eurographics Workshop on Rendering (Springer, 1998), pp. 11–22.
  38. T. Haber and P. Bekaert, “Image-based acquisition of shape and spatially varying reflectance,” in British Machine Vision Conference 2008 Proceedings, M.Everingham, C.J.Needham, and R.Fraile, eds. (British Machine Vision Association, 2008).
  39. J. Gu, C. Tu, R. Ramamoorthi, P. Belhumeur, W. Matusik, and S. K. Nayar, “Time-varying surface appearance: acquisition, modeling and rendering,” ACM Trans. Graph. 25, 762–771(2006).
    [CrossRef]
  40. R. Sitnik, “New method of structure light measurement system calibration based on adaptive and effective evaluation of 3D-phase distribution,” Proc. SPIE 5856, 109–117 (2005).
    [CrossRef]
  41. J. Blinn, “Models of light reflection for computer synthesized pictures,” in Proceedings of the 1977 Conference on Computer Graphics and Interactive Techniques (Association for Computing Machinery, 1977), pp. 192–198.
  42. J. Gühring, “Dense 3D surface acquisition by structured light using off-the-shelf components,” Proc. SPIE 4309, 220–231(2001).
    [CrossRef]
  43. K. Patorskiand and M. Kujawinska, Handbook of the Moiré Fringe Technique (Elsevier, 1993).

2007

2006

J. Gu, C. Tu, R. Ramamoorthi, P. Belhumeur, W. Matusik, and S. K. Nayar, “Time-varying surface appearance: acquisition, modeling and rendering,” ACM Trans. Graph. 25, 762–771(2006).
[CrossRef]

2005

R. Sitnik, “New method of structure light measurement system calibration based on adaptive and effective evaluation of 3D-phase distribution,” Proc. SPIE 5856, 109–117 (2005).
[CrossRef]

J. Paterson, D. Claus, and A. Fitzgibbon, “BRDF and geometry capture from extended inhomogeneous samples using flash photography,” Comput. Graph. Forum 24, 383–391 (2005).
[CrossRef]

2004

J. Salvi, J. Pagès, and J. Batlle, “Pattern codification strategies in structured light systems,” Pattern Recogn. 37, 827–849 (2004).
[CrossRef]

2002

R. Sitnik, M. Kujawinska, and J. Woznicki, “Digital fringe projection system for large-volume 360 deg shape measurement,” Opt. Eng. 41, 443–449 (2002).
[CrossRef]

2001

J. Gühring, “Dense 3D surface acquisition by structured light using off-the-shelf components,” Proc. SPIE 4309, 220–231(2001).
[CrossRef]

1998

R. A. Morano, C. Ozturk, R. Conn, S. Dubin, S. Zietz, and J. Nissanov, “Structured light using pseudorandom codes,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 322–327(1998).
[CrossRef]

D. Caspi, N. Kiryati, and J. Shamir, “Range imaging with adaptive color structured light,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 470–480 (1998).
[CrossRef]

1995

D. Bergmann, “New approach for automatic surface reconstruction with coded light,” Proc. SPIE 2572, 2–9 (1995).
[CrossRef]

M. Ito and A. Ishii, “A three-level checkerboard pattern (TCP) projection method for curved surface measurement,” Pattern Recogn. 28, 27–40 (1995).
[CrossRef]

1989

H. Hügli and G. Maïtre, “Generation and use of color pseudo random sequences for coding structured light in active ranging,” Proc. SPIE 1010, 75–82 (1989).

1982

R. L. Cook and K. E. Torrance, “A reflectance model for computer graphics,” ACM Trans. Graph. 1, 7–24(1982).
[CrossRef]

1975

B.-T. Phong, “Illumination for computer generated pictures,” Commun. ACM 18, 311–317 (1975).
[CrossRef]

1967

Ahuja, N.

T. Yu, N. Xu, and N. Ahuja, “Recovering shape and reflectance model of non-Lambertian objects from multiple views,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2004), pp. 226–233.

Anderson, S.

M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, , and D. Fulk, “The digital Michelangelo project: 3D scanning of large statues,” in Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (Association for Computing Machinery, 2000), pp. 131–144.

Ashikmin, M.

M. Ashikmin and P. Shirley, “An anisotropic Phong light reflection model,” Tech. Rep. UUCS-00-014 (Computer Science Department, University of Utah, 2000).

Baldwin, K. C.

Batlle, J.

J. Salvi, J. Pagès, and J. Batlle, “Pattern codification strategies in structured light systems,” Pattern Recogn. 37, 827–849 (2004).
[CrossRef]

Bekaert, P.

T. Haber and P. Bekaert, “Image-based acquisition of shape and spatially varying reflectance,” in British Machine Vision Conference 2008 Proceedings, M.Everingham, C.J.Needham, and R.Fraile, eds. (British Machine Vision Association, 2008).

Belhumeur, P.

J. Gu, C. Tu, R. Ramamoorthi, P. Belhumeur, W. Matusik, and S. K. Nayar, “Time-varying surface appearance: acquisition, modeling and rendering,” ACM Trans. Graph. 25, 762–771(2006).
[CrossRef]

Bergmann, D.

D. Bergmann, “New approach for automatic surface reconstruction with coded light,” Proc. SPIE 2572, 2–9 (1995).
[CrossRef]

Berns, R. S.

P. D. Burns and R. S. Berns, “Analysis multispectral image capture,” in Proceedings of Fourth Color Imaging Conference Color Science, Systems, and Applications (Society for Imaging Science and Technology, 1996), pp. 19–22.

Blinn, J.

J. Blinn, “Models of light reflection for computer synthesized pictures,” in Proceedings of the 1977 Conference on Computer Graphics and Interactive Techniques (Association for Computing Machinery, 1977), pp. 192–198.

Brand, M.

W. Matusik, H. Pfister, M. Brand, and L. McMillan, “Efficient isotropic BRDF measurement,” in Proceedings of the 14th Eurographics Symposium on Rendering (European Association for Computer Graphics, 2003).

Brooks, M. J.

B. K. P. Horn and M. J. Brooks, Shape from Shading, Series of Artificial Intelligence Series Archive (MIT, 1989).

Burns, P. D.

P. D. Burns and R. S. Berns, “Analysis multispectral image capture,” in Proceedings of Fourth Color Imaging Conference Color Science, Systems, and Applications (Society for Imaging Science and Technology, 1996), pp. 19–22.

Carter, J.

T. Monksand and J. Carter, “Improved stripe matching for colour encoded structured light,” in Proceedings of the 5th International Conference on Computer Analysis of Images and Patterns, D. Chetverikov and W.G.Kropatsch (Springer-Verlag, 1993), pp. 476–485.

Caspi, D.

D. Caspi, N. Kiryati, and J. Shamir, “Range imaging with adaptive color structured light,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 470–480 (1998).
[CrossRef]

Cignoni, P.

C. Rocchini, P. Cignoni, C. Montani, P. Pingi, and R. Scopigno, “A low cost 3D scanner based on structured light,” in Computer Graphics Forum Eurographics 2001 Conference Issue, Vol. 20 (Blackwell, 2001), pp. 299–308.
[CrossRef]

Claus, D.

J. Paterson, D. Claus, and A. Fitzgibbon, “BRDF and geometry capture from extended inhomogeneous samples using flash photography,” Comput. Graph. Forum 24, 383–391 (2005).
[CrossRef]

Conn, R.

R. A. Morano, C. Ozturk, R. Conn, S. Dubin, S. Zietz, and J. Nissanov, “Structured light using pseudorandom codes,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 322–327(1998).
[CrossRef]

Cook, R. L.

R. L. Cook and K. E. Torrance, “A reflectance model for computer graphics,” ACM Trans. Graph. 1, 7–24(1982).
[CrossRef]

Curless, B.

M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, , and D. Fulk, “The digital Michelangelo project: 3D scanning of large statues,” in Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (Association for Computing Machinery, 2000), pp. 131–144.

D. B. Goldman, B. Curless, A. Hertzmann, and S. M. Seitz, “Shape and spatially-varying BRDFs from potometric stereo,” in IEEE International Conference on Computer Vision Workshops (IEEE, 2005), pp. 341–348.

Dana, K. J.

K. J. Dana, “BRDF/BTF measurement device,” in Eighth IEEE International Conference on Computer Vision Workshops, Vol. 2 (IEEE, 2001), pp. 460.

Davis, J.

M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, , and D. Fulk, “The digital Michelangelo project: 3D scanning of large statues,” in Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (Association for Computing Machinery, 2000), pp. 131–144.

Debevec, P.

E. Reinhard, G. Ward, S. Pattanaik, and P. Debevec, High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting (Elsevier, 2006).

Domiter, V.

V. Domiter, B. Repnik, and B. Žalik, “Surface reconstruction algorithms in cultural heritage digital representation,” in Proceedings of the International Symposium on Information Communication and Automation Technologies (ICAT) (IEEE, 2009), pp. 1–5.

Dubin, S.

R. A. Morano, C. Ozturk, R. Conn, S. Dubin, S. Zietz, and J. Nissanov, “Structured light using pseudorandom codes,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 322–327(1998).
[CrossRef]

Duncan, D. D.

Feiner, S. K.

J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes, Computer Graphics: Principles and Practice in C, 2nd ed. (Addison-Wesley, 1996).

Fitzgibbon, A.

J. Paterson, D. Claus, and A. Fitzgibbon, “BRDF and geometry capture from extended inhomogeneous samples using flash photography,” Comput. Graph. Forum 24, 383–391 (2005).
[CrossRef]

Foley, J. D.

J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes, Computer Graphics: Principles and Practice in C, 2nd ed. (Addison-Wesley, 1996).

Foo, S.

E. Lafortune, S. Foo, K. Torrance, and D. Greenberg, “Non-linear approximation of reflectance functions,” in Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques (Association for Computing Machinery, 1997).

Fulk, D.

M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, , and D. Fulk, “The digital Michelangelo project: 3D scanning of large statues,” in Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (Association for Computing Machinery, 2000), pp. 131–144.

Ginsberg, J.

M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, , and D. Fulk, “The digital Michelangelo project: 3D scanning of large statues,” in Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (Association for Computing Machinery, 2000), pp. 131–144.

Ginzton, M.

M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, , and D. Fulk, “The digital Michelangelo project: 3D scanning of large statues,” in Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (Association for Computing Machinery, 2000), pp. 131–144.

Goesele, M.

H. P. A. Lensch, J. Kautz, M. Goesele, W. Heidrich, and H.-P. Seidel, “Image-based reconstruction of spatially varying materials,” in Twelfth Eurographics Workshop on Rendering (Springer, 2001).

Goldman, D. B.

D. B. Goldman, B. Curless, A. Hertzmann, and S. M. Seitz, “Shape and spatially-varying BRDFs from potometric stereo,” in IEEE International Conference on Computer Vision Workshops (IEEE, 2005), pp. 341–348.

Greenberg, D.

X. He, P. Heynen, R. Phillips, K. Torrance, D. Salesin, and D. Greenberg, “A fast and accurate light reflection model,” in Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques (Association for Computing Machinery, 1992), pp. 253–254.

E. Lafortune, S. Foo, K. Torrance, and D. Greenberg, “Non-linear approximation of reflectance functions,” in Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques (Association for Computing Machinery, 1997).

Greenberg, D. P.

S. R. Marschner, S. H. Westin, E. P. F. Lafortune, K. E. Torrance, and D. P. Greenberg, “Image-based BRDF measurement including human skin,” in Ninth Eurographics Workshop on Rendering (Springer, 1999).

Gu, J.

J. Gu, C. Tu, R. Ramamoorthi, P. Belhumeur, W. Matusik, and S. K. Nayar, “Time-varying surface appearance: acquisition, modeling and rendering,” ACM Trans. Graph. 25, 762–771(2006).
[CrossRef]

Gühring, J.

J. Gühring, “Dense 3D surface acquisition by structured light using off-the-shelf components,” Proc. SPIE 4309, 220–231(2001).
[CrossRef]

Haber, T.

T. Haber and P. Bekaert, “Image-based acquisition of shape and spatially varying reflectance,” in British Machine Vision Conference 2008 Proceedings, M.Everingham, C.J.Needham, and R.Fraile, eds. (British Machine Vision Association, 2008).

Hahn, D. V.

Harley, I.

T. Luhmann, S. Robson, S. Kyle, and I. Harley, Close Range Photogrammetry: Principles, Techniques and Applications (Wiley, 2007).

He, X.

X. He, P. Heynen, R. Phillips, K. Torrance, D. Salesin, and D. Greenberg, “A fast and accurate light reflection model,” in Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques (Association for Computing Machinery, 1992), pp. 253–254.

Heidrich, W.

H. P. A. Lensch, J. Kautz, M. Goesele, W. Heidrich, and H.-P. Seidel, “Image-based reconstruction of spatially varying materials,” in Twelfth Eurographics Workshop on Rendering (Springer, 2001).

Hertzmann, A.

D. B. Goldman, B. Curless, A. Hertzmann, and S. M. Seitz, “Shape and spatially-varying BRDFs from potometric stereo,” in IEEE International Conference on Computer Vision Workshops (IEEE, 2005), pp. 341–348.

Heynen, P.

X. He, P. Heynen, R. Phillips, K. Torrance, D. Salesin, and D. Greenberg, “A fast and accurate light reflection model,” in Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques (Association for Computing Machinery, 1992), pp. 253–254.

Horn, B. K. P.

B. K. P. Horn and M. J. Brooks, Shape from Shading, Series of Artificial Intelligence Series Archive (MIT, 1989).

Hughes, J. F.

J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes, Computer Graphics: Principles and Practice in C, 2nd ed. (Addison-Wesley, 1996).

Hügli, H.

H. Hügli and G. Maïtre, “Generation and use of color pseudo random sequences for coding structured light in active ranging,” Proc. SPIE 1010, 75–82 (1989).

Ikeuchia, K.

K. Ikeuchia and D. Miyazaki, Digitally Archiving Cultural Objects (Springer, 2008).
[CrossRef]

Ishii, A.

M. Ito and A. Ishii, “A three-level checkerboard pattern (TCP) projection method for curved surface measurement,” Pattern Recogn. 28, 27–40 (1995).
[CrossRef]

Ito, M.

M. Ito and A. Ishii, “A three-level checkerboard pattern (TCP) projection method for curved surface measurement,” Pattern Recogn. 28, 27–40 (1995).
[CrossRef]

Kautz, J.

H. P. A. Lensch, J. Kautz, M. Goesele, W. Heidrich, and H.-P. Seidel, “Image-based reconstruction of spatially varying materials,” in Twelfth Eurographics Workshop on Rendering (Springer, 2001).

Kiryati, N.

D. Caspi, N. Kiryati, and J. Shamir, “Range imaging with adaptive color structured light,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 470–480 (1998).
[CrossRef]

Koller, D.

M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, , and D. Fulk, “The digital Michelangelo project: 3D scanning of large statues,” in Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (Association for Computing Machinery, 2000), pp. 131–144.

Kujawinska, M.

R. Sitnik, M. Kujawinska, and J. Woznicki, “Digital fringe projection system for large-volume 360 deg shape measurement,” Opt. Eng. 41, 443–449 (2002).
[CrossRef]

K. Patorskiand and M. Kujawinska, Handbook of the Moiré Fringe Technique (Elsevier, 1993).

Kyle, S.

T. Luhmann, S. Robson, S. Kyle, and I. Harley, Close Range Photogrammetry: Principles, Techniques and Applications (Wiley, 2007).

Lafortune, E.

E. Lafortune, S. Foo, K. Torrance, and D. Greenberg, “Non-linear approximation of reflectance functions,” in Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques (Association for Computing Machinery, 1997).

Lafortune, E. P.

E. P. Lafortune and Y. D. Willems, “Using the modified Phong BRDF for physically based rendering,” Tech. Rep. CW197 (Computer Science Department, Katholieke Universiteit Leuven, 1994).

Lafortune, E. P. F.

S. R. Marschner, S. H. Westin, E. P. F. Lafortune, K. E. Torrance, and D. P. Greenberg, “Image-based BRDF measurement including human skin,” in Ninth Eurographics Workshop on Rendering (Springer, 1999).

Lensch, H. P. A.

H. P. A. Lensch, J. Kautz, M. Goesele, W. Heidrich, and H.-P. Seidel, “Image-based reconstruction of spatially varying materials,” in Twelfth Eurographics Workshop on Rendering (Springer, 2001).

Levoy, M.

M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, , and D. Fulk, “The digital Michelangelo project: 3D scanning of large statues,” in Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (Association for Computing Machinery, 2000), pp. 131–144.

Luhmann, T.

T. Luhmann, S. Robson, S. Kyle, and I. Harley, Close Range Photogrammetry: Principles, Techniques and Applications (Wiley, 2007).

Maïtre, G.

H. Hügli and G. Maïtre, “Generation and use of color pseudo random sequences for coding structured light in active ranging,” Proc. SPIE 1010, 75–82 (1989).

Marschner, S. R.

S. R. Marschner, S. H. Westin, E. P. F. Lafortune, K. E. Torrance, and D. P. Greenberg, “Image-based BRDF measurement including human skin,” in Ninth Eurographics Workshop on Rendering (Springer, 1999).

Matusik, W.

J. Gu, C. Tu, R. Ramamoorthi, P. Belhumeur, W. Matusik, and S. K. Nayar, “Time-varying surface appearance: acquisition, modeling and rendering,” ACM Trans. Graph. 25, 762–771(2006).
[CrossRef]

W. Matusik, H. Pfister, M. Brand, and L. McMillan, “Efficient isotropic BRDF measurement,” in Proceedings of the 14th Eurographics Symposium on Rendering (European Association for Computer Graphics, 2003).

McMillan, L.

W. Matusik, H. Pfister, M. Brand, and L. McMillan, “Efficient isotropic BRDF measurement,” in Proceedings of the 14th Eurographics Symposium on Rendering (European Association for Computer Graphics, 2003).

Miyazaki, D.

K. Ikeuchia and D. Miyazaki, Digitally Archiving Cultural Objects (Springer, 2008).
[CrossRef]

Monksand, T.

T. Monksand and J. Carter, “Improved stripe matching for colour encoded structured light,” in Proceedings of the 5th International Conference on Computer Analysis of Images and Patterns, D. Chetverikov and W.G.Kropatsch (Springer-Verlag, 1993), pp. 476–485.

Montani, C.

C. Rocchini, P. Cignoni, C. Montani, P. Pingi, and R. Scopigno, “A low cost 3D scanner based on structured light,” in Computer Graphics Forum Eurographics 2001 Conference Issue, Vol. 20 (Blackwell, 2001), pp. 299–308.
[CrossRef]

Morano, R. A.

R. A. Morano, C. Ozturk, R. Conn, S. Dubin, S. Zietz, and J. Nissanov, “Structured light using pseudorandom codes,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 322–327(1998).
[CrossRef]

Nayar, S. K.

J. Gu, C. Tu, R. Ramamoorthi, P. Belhumeur, W. Matusik, and S. K. Nayar, “Time-varying surface appearance: acquisition, modeling and rendering,” ACM Trans. Graph. 25, 762–771(2006).
[CrossRef]

Nissanov, J.

R. A. Morano, C. Ozturk, R. Conn, S. Dubin, S. Zietz, and J. Nissanov, “Structured light using pseudorandom codes,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 322–327(1998).
[CrossRef]

Ozturk, C.

R. A. Morano, C. Ozturk, R. Conn, S. Dubin, S. Zietz, and J. Nissanov, “Structured light using pseudorandom codes,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 322–327(1998).
[CrossRef]

Pagès, J.

J. Salvi, J. Pagès, and J. Batlle, “Pattern codification strategies in structured light systems,” Pattern Recogn. 37, 827–849 (2004).
[CrossRef]

Pajdla, T.

T. Pajdla, “BCRF—binary-coded illumination range finder reimplementation,” Tech. Rep. KUL/ESAT/MI2/9502, (Katholieke Universiteit Leuven, ESAT, April 1995).

Paterson, J.

J. Paterson, D. Claus, and A. Fitzgibbon, “BRDF and geometry capture from extended inhomogeneous samples using flash photography,” Comput. Graph. Forum 24, 383–391 (2005).
[CrossRef]

Patorskiand, K.

K. Patorskiand and M. Kujawinska, Handbook of the Moiré Fringe Technique (Elsevier, 1993).

Pattanaik, S.

E. Reinhard, G. Ward, S. Pattanaik, and P. Debevec, High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting (Elsevier, 2006).

Pereira, L.

M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, , and D. Fulk, “The digital Michelangelo project: 3D scanning of large statues,” in Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (Association for Computing Machinery, 2000), pp. 131–144.

Pfister, H.

W. Matusik, H. Pfister, M. Brand, and L. McMillan, “Efficient isotropic BRDF measurement,” in Proceedings of the 14th Eurographics Symposium on Rendering (European Association for Computer Graphics, 2003).

Phillips, R.

X. He, P. Heynen, R. Phillips, K. Torrance, D. Salesin, and D. Greenberg, “A fast and accurate light reflection model,” in Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques (Association for Computing Machinery, 1992), pp. 253–254.

Phong, B.-T.

B.-T. Phong, “Illumination for computer generated pictures,” Commun. ACM 18, 311–317 (1975).
[CrossRef]

Pingi, P.

C. Rocchini, P. Cignoni, C. Montani, P. Pingi, and R. Scopigno, “A low cost 3D scanner based on structured light,” in Computer Graphics Forum Eurographics 2001 Conference Issue, Vol. 20 (Blackwell, 2001), pp. 299–308.
[CrossRef]

Pulli, K.

M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, , and D. Fulk, “The digital Michelangelo project: 3D scanning of large statues,” in Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (Association for Computing Machinery, 2000), pp. 131–144.

Ramamoorthi, R.

J. Gu, C. Tu, R. Ramamoorthi, P. Belhumeur, W. Matusik, and S. K. Nayar, “Time-varying surface appearance: acquisition, modeling and rendering,” ACM Trans. Graph. 25, 762–771(2006).
[CrossRef]

Reinhard, E.

E. Reinhard, G. Ward, S. Pattanaik, and P. Debevec, High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting (Elsevier, 2006).

Repnik, B.

V. Domiter, B. Repnik, and B. Žalik, “Surface reconstruction algorithms in cultural heritage digital representation,” in Proceedings of the International Symposium on Information Communication and Automation Technologies (ICAT) (IEEE, 2009), pp. 1–5.

Robson, S.

T. Luhmann, S. Robson, S. Kyle, and I. Harley, Close Range Photogrammetry: Principles, Techniques and Applications (Wiley, 2007).

Rocchini, C.

C. Rocchini, P. Cignoni, C. Montani, P. Pingi, and R. Scopigno, “A low cost 3D scanner based on structured light,” in Computer Graphics Forum Eurographics 2001 Conference Issue, Vol. 20 (Blackwell, 2001), pp. 299–308.
[CrossRef]

Rusinkiewicz, S.

M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, , and D. Fulk, “The digital Michelangelo project: 3D scanning of large statues,” in Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (Association for Computing Machinery, 2000), pp. 131–144.

Rusinkiewicz, S. M.

S. M. Rusinkiewicz, “A new change of variables for efficient BRDF representation,” in Ninth Eurographics Workshop on Rendering (Springer, 1998), pp. 11–22.

Salesin, D.

X. He, P. Heynen, R. Phillips, K. Torrance, D. Salesin, and D. Greenberg, “A fast and accurate light reflection model,” in Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques (Association for Computing Machinery, 1992), pp. 253–254.

Salvi, J.

J. Salvi, J. Pagès, and J. Batlle, “Pattern codification strategies in structured light systems,” Pattern Recogn. 37, 827–849 (2004).
[CrossRef]

Scopigno, R.

C. Rocchini, P. Cignoni, C. Montani, P. Pingi, and R. Scopigno, “A low cost 3D scanner based on structured light,” in Computer Graphics Forum Eurographics 2001 Conference Issue, Vol. 20 (Blackwell, 2001), pp. 299–308.
[CrossRef]

Seidel, H.-P.

H. P. A. Lensch, J. Kautz, M. Goesele, W. Heidrich, and H.-P. Seidel, “Image-based reconstruction of spatially varying materials,” in Twelfth Eurographics Workshop on Rendering (Springer, 2001).

Seitz, S. M.

D. B. Goldman, B. Curless, A. Hertzmann, and S. M. Seitz, “Shape and spatially-varying BRDFs from potometric stereo,” in IEEE International Conference on Computer Vision Workshops (IEEE, 2005), pp. 341–348.

Shade, J.

M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, , and D. Fulk, “The digital Michelangelo project: 3D scanning of large statues,” in Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (Association for Computing Machinery, 2000), pp. 131–144.

Shamir, J.

D. Caspi, N. Kiryati, and J. Shamir, “Range imaging with adaptive color structured light,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 470–480 (1998).
[CrossRef]

Shirley, P.

P. Shirley, “Physically based lighting calculations for computer graphics,” Ph.D. dissertation (University of Illinois at Urbana–Champaign, 1990).

M. Ashikmin and P. Shirley, “An anisotropic Phong light reflection model,” Tech. Rep. UUCS-00-014 (Computer Science Department, University of Utah, 2000).

Sitnik, R.

R. Sitnik, “New method of structure light measurement system calibration based on adaptive and effective evaluation of 3D-phase distribution,” Proc. SPIE 5856, 109–117 (2005).
[CrossRef]

R. Sitnik, M. Kujawinska, and J. Woznicki, “Digital fringe projection system for large-volume 360 deg shape measurement,” Opt. Eng. 41, 443–449 (2002).
[CrossRef]

Sparrow, E. M.

Torrance, K.

E. Lafortune, S. Foo, K. Torrance, and D. Greenberg, “Non-linear approximation of reflectance functions,” in Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques (Association for Computing Machinery, 1997).

X. He, P. Heynen, R. Phillips, K. Torrance, D. Salesin, and D. Greenberg, “A fast and accurate light reflection model,” in Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques (Association for Computing Machinery, 1992), pp. 253–254.

Torrance, K. E.

R. L. Cook and K. E. Torrance, “A reflectance model for computer graphics,” ACM Trans. Graph. 1, 7–24(1982).
[CrossRef]

K. E. Torrance, E. M. Sparrow, “Theory for off-specular reflection from roughened surfaces,” J. Opt. Soc. Am. 57, 1105–1112 (1967).
[CrossRef]

S. R. Marschner, S. H. Westin, E. P. F. Lafortune, K. E. Torrance, and D. P. Greenberg, “Image-based BRDF measurement including human skin,” in Ninth Eurographics Workshop on Rendering (Springer, 1999).

Trobina, M.

M. Trobina, “Error model of a coded-light range sensor,” Tech. Rep. BIWI-TR-164 (Communication Technology Laboratory, ETH Zentrum, 1995), pp. 1–35.

Tu, C.

J. Gu, C. Tu, R. Ramamoorthi, P. Belhumeur, W. Matusik, and S. K. Nayar, “Time-varying surface appearance: acquisition, modeling and rendering,” ACM Trans. Graph. 25, 762–771(2006).
[CrossRef]

van Dam, A.

J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes, Computer Graphics: Principles and Practice in C, 2nd ed. (Addison-Wesley, 1996).

Ward, G.

E. Reinhard, G. Ward, S. Pattanaik, and P. Debevec, High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting (Elsevier, 2006).

Ward, G. J.

G. J. Ward, “Measuring and modeling anisotropic reflection,” in Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques, Vol. 26 (Association for Computing Machinery, 1992), pp. 265–272 .

Westin, S. H.

S. R. Marschner, S. H. Westin, E. P. F. Lafortune, K. E. Torrance, and D. P. Greenberg, “Image-based BRDF measurement including human skin,” in Ninth Eurographics Workshop on Rendering (Springer, 1999).

Willems, Y. D.

E. P. Lafortune and Y. D. Willems, “Using the modified Phong BRDF for physically based rendering,” Tech. Rep. CW197 (Computer Science Department, Katholieke Universiteit Leuven, 1994).

Woznicki, J.

R. Sitnik, M. Kujawinska, and J. Woznicki, “Digital fringe projection system for large-volume 360 deg shape measurement,” Opt. Eng. 41, 443–449 (2002).
[CrossRef]

Xu, N.

T. Yu, N. Xu, and N. Ahuja, “Recovering shape and reflectance model of non-Lambertian objects from multiple views,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2004), pp. 226–233.

Yu, T.

T. Yu, N. Xu, and N. Ahuja, “Recovering shape and reflectance model of non-Lambertian objects from multiple views,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2004), pp. 226–233.

Žalik, B.

V. Domiter, B. Repnik, and B. Žalik, “Surface reconstruction algorithms in cultural heritage digital representation,” in Proceedings of the International Symposium on Information Communication and Automation Technologies (ICAT) (IEEE, 2009), pp. 1–5.

Zietz, S.

R. A. Morano, C. Ozturk, R. Conn, S. Dubin, S. Zietz, and J. Nissanov, “Structured light using pseudorandom codes,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 322–327(1998).
[CrossRef]

ACM Trans. Graph.

R. L. Cook and K. E. Torrance, “A reflectance model for computer graphics,” ACM Trans. Graph. 1, 7–24(1982).
[CrossRef]

J. Gu, C. Tu, R. Ramamoorthi, P. Belhumeur, W. Matusik, and S. K. Nayar, “Time-varying surface appearance: acquisition, modeling and rendering,” ACM Trans. Graph. 25, 762–771(2006).
[CrossRef]

Appl. Opt.

Commun. ACM

B.-T. Phong, “Illumination for computer generated pictures,” Commun. ACM 18, 311–317 (1975).
[CrossRef]

Comput. Graph. Forum

J. Paterson, D. Claus, and A. Fitzgibbon, “BRDF and geometry capture from extended inhomogeneous samples using flash photography,” Comput. Graph. Forum 24, 383–391 (2005).
[CrossRef]

IEEE Trans. Pattern Anal. Mach. Intell.

R. A. Morano, C. Ozturk, R. Conn, S. Dubin, S. Zietz, and J. Nissanov, “Structured light using pseudorandom codes,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 322–327(1998).
[CrossRef]

D. Caspi, N. Kiryati, and J. Shamir, “Range imaging with adaptive color structured light,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 470–480 (1998).
[CrossRef]

J. Opt. Soc. Am.

Opt. Eng.

R. Sitnik, M. Kujawinska, and J. Woznicki, “Digital fringe projection system for large-volume 360 deg shape measurement,” Opt. Eng. 41, 443–449 (2002).
[CrossRef]

Pattern Recogn.

J. Salvi, J. Pagès, and J. Batlle, “Pattern codification strategies in structured light systems,” Pattern Recogn. 37, 827–849 (2004).
[CrossRef]

M. Ito and A. Ishii, “A three-level checkerboard pattern (TCP) projection method for curved surface measurement,” Pattern Recogn. 28, 27–40 (1995).
[CrossRef]

Proc. SPIE

H. Hügli and G. Maïtre, “Generation and use of color pseudo random sequences for coding structured light in active ranging,” Proc. SPIE 1010, 75–82 (1989).

R. Sitnik, “New method of structure light measurement system calibration based on adaptive and effective evaluation of 3D-phase distribution,” Proc. SPIE 5856, 109–117 (2005).
[CrossRef]

J. Gühring, “Dense 3D surface acquisition by structured light using off-the-shelf components,” Proc. SPIE 4309, 220–231(2001).
[CrossRef]

D. Bergmann, “New approach for automatic surface reconstruction with coded light,” Proc. SPIE 2572, 2–9 (1995).
[CrossRef]

Other

T. Pajdla, “BCRF—binary-coded illumination range finder reimplementation,” Tech. Rep. KUL/ESAT/MI2/9502, (Katholieke Universiteit Leuven, ESAT, April 1995).

T. Monksand and J. Carter, “Improved stripe matching for colour encoded structured light,” in Proceedings of the 5th International Conference on Computer Analysis of Images and Patterns, D. Chetverikov and W.G.Kropatsch (Springer-Verlag, 1993), pp. 476–485.

T. Yu, N. Xu, and N. Ahuja, “Recovering shape and reflectance model of non-Lambertian objects from multiple views,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2004), pp. 226–233.

E. P. Lafortune and Y. D. Willems, “Using the modified Phong BRDF for physically based rendering,” Tech. Rep. CW197 (Computer Science Department, Katholieke Universiteit Leuven, 1994).

M. Ashikmin and P. Shirley, “An anisotropic Phong light reflection model,” Tech. Rep. UUCS-00-014 (Computer Science Department, University of Utah, 2000).

K. Patorskiand and M. Kujawinska, Handbook of the Moiré Fringe Technique (Elsevier, 1993).

J. Blinn, “Models of light reflection for computer synthesized pictures,” in Proceedings of the 1977 Conference on Computer Graphics and Interactive Techniques (Association for Computing Machinery, 1977), pp. 192–198.

X. He, P. Heynen, R. Phillips, K. Torrance, D. Salesin, and D. Greenberg, “A fast and accurate light reflection model,” in Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques (Association for Computing Machinery, 1992), pp. 253–254.

P. Shirley, “Physically based lighting calculations for computer graphics,” Ph.D. dissertation (University of Illinois at Urbana–Champaign, 1990).

S. M. Rusinkiewicz, “A new change of variables for efficient BRDF representation,” in Ninth Eurographics Workshop on Rendering (Springer, 1998), pp. 11–22.

T. Haber and P. Bekaert, “Image-based acquisition of shape and spatially varying reflectance,” in British Machine Vision Conference 2008 Proceedings, M.Everingham, C.J.Needham, and R.Fraile, eds. (British Machine Vision Association, 2008).

M. Trobina, “Error model of a coded-light range sensor,” Tech. Rep. BIWI-TR-164 (Communication Technology Laboratory, ETH Zentrum, 1995), pp. 1–35.

D. B. Goldman, B. Curless, A. Hertzmann, and S. M. Seitz, “Shape and spatially-varying BRDFs from potometric stereo,” in IEEE International Conference on Computer Vision Workshops (IEEE, 2005), pp. 341–348.

K. J. Dana, “BRDF/BTF measurement device,” in Eighth IEEE International Conference on Computer Vision Workshops, Vol. 2 (IEEE, 2001), pp. 460.

W. Matusik, H. Pfister, M. Brand, and L. McMillan, “Efficient isotropic BRDF measurement,” in Proceedings of the 14th Eurographics Symposium on Rendering (European Association for Computer Graphics, 2003).

K. Ikeuchia and D. Miyazaki, Digitally Archiving Cultural Objects (Springer, 2008).
[CrossRef]

B. K. P. Horn and M. J. Brooks, Shape from Shading, Series of Artificial Intelligence Series Archive (MIT, 1989).

M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, , and D. Fulk, “The digital Michelangelo project: 3D scanning of large statues,” in Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (Association for Computing Machinery, 2000), pp. 131–144.

V. Domiter, B. Repnik, and B. Žalik, “Surface reconstruction algorithms in cultural heritage digital representation,” in Proceedings of the International Symposium on Information Communication and Automation Technologies (ICAT) (IEEE, 2009), pp. 1–5.

C. Rocchini, P. Cignoni, C. Montani, P. Pingi, and R. Scopigno, “A low cost 3D scanner based on structured light,” in Computer Graphics Forum Eurographics 2001 Conference Issue, Vol. 20 (Blackwell, 2001), pp. 299–308.
[CrossRef]

E. Reinhard, G. Ward, S. Pattanaik, and P. Debevec, High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting (Elsevier, 2006).

P. D. Burns and R. S. Berns, “Analysis multispectral image capture,” in Proceedings of Fourth Color Imaging Conference Color Science, Systems, and Applications (Society for Imaging Science and Technology, 1996), pp. 19–22.

J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes, Computer Graphics: Principles and Practice in C, 2nd ed. (Addison-Wesley, 1996).

T. Luhmann, S. Robson, S. Kyle, and I. Harley, Close Range Photogrammetry: Principles, Techniques and Applications (Wiley, 2007).

H. P. A. Lensch, J. Kautz, M. Goesele, W. Heidrich, and H.-P. Seidel, “Image-based reconstruction of spatially varying materials,” in Twelfth Eurographics Workshop on Rendering (Springer, 2001).

G. J. Ward, “Measuring and modeling anisotropic reflection,” in Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques, Vol. 26 (Association for Computing Machinery, 1992), pp. 265–272 .

E. Lafortune, S. Foo, K. Torrance, and D. Greenberg, “Non-linear approximation of reflectance functions,” in Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques (Association for Computing Machinery, 1997).

S. R. Marschner, S. H. Westin, E. P. F. Lafortune, K. E. Torrance, and D. P. Greenberg, “Image-based BRDF measurement including human skin,” in Ninth Eurographics Workshop on Rendering (Springer, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Diagram describing the geometric relation for BRDF sampling.

Fig. 2
Fig. 2

Sample theoretical BRDF for a set of Phong parameters K d = 20 , K s = 20 , A s = 40 .

Fig. 3
Fig. 3

Specular cosine exponential lobe with incident, surface normal, and reflection directions.

Fig. 4
Fig. 4

Point P on curved surface with indicated directions of incidence and view measured by a device consisting of a camera, a light source array, and a DLP projector.

Fig. 5
Fig. 5

Experimental setup photo.

Fig. 6
Fig. 6

Sample frames collected for different illumination directions: (a) 50 ° , (b) 20 ° , (c) 0 ° , (d) 30 ° .

Fig. 7
Fig. 7

Activity diagram of an integrated measurement process.

Fig. 8
Fig. 8

Comparison of simulated and estimated BRDF values.

Fig. 9
Fig. 9

Grayscale object image measured from multiple directions.

Fig. 10
Fig. 10

Gray coded quality factors; the central brighter region represents best specular estimation, while the darker shade is the less probable estimation.

Fig. 11
Fig. 11

Merging of two clouds.

Fig. 12
Fig. 12

Common BRDF measurement setup used for verification.

Fig. 13
Fig. 13

Diffusive surface angular response, measured by two methods.

Fig. 14
Fig. 14

Angular response of shiny aluminum surface with a dominating specular component.

Fig. 15
Fig. 15

Angular response of a semireflective surface.

Tables (2)

Tables Icon

Table 1 Reference Measurement Deviation in RMS of the Angular Light Distribution Slices

Tables Icon

Table 2 Comparison of Phong Parameters Estimation Error for a Diffusive Surface

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

ρ ( ω i , ω o ) = d L ( ω o ) d E ( ω i ) | P .
ρ ( ω i , ω o ) cos ( ϕ o ) d ω o 1.
{ b k = B k ( i , j ) k 0 , K } , where     i 1 , I , j 1 , J ,
d k = P S k ,
s k = P S k d k ,
h k = s k + v s k + v .
B k ( i , j ) = C EO · I k · k d s k · n + k s ( h · n ) k e ,
C EO · I k = L k ( d k ) 2 .
I d = b k s k · n ,
k d = I d · ( d k ) 2 L k .
k S = I s · ( d k ) 2 L k , where     I s max { b k } min { b k } s k · n .
r i = | P i P 1 | ,
    P 1 P 1 C 1 ,     P i P i C 1 r i < r , q ( P i ) > q ( P 1 ) ,
k s , e ( P 1 ) ( new ) = k s , e ( P 1 ) ( old ) · q ( P 1 ) + k s , e ( P i ) ( old ) · q ( P i ) · ( r i r ) q ( P 1 ) + q ( P i ) · ( r i r ) ,

Metrics