Abstract

Propagation and mode coupling within relatively short (110m) large core, nominally multimode, fibers are of interest in a number of applications. In this research, we have studied the output beam quality and mode coupling in various fibers with core diameters of 100400μm and lengths of 2m. Output beam quality (M2) and mode-coupling coefficients (D) have been studied for different clad dimensions, numerical apertures, and wavelengths. The mode-coupling coefficients have been determined based on modal power diffusion considerations. The results show that D scales approximately as the inverse square of the clad dimension and inverse square root of the wavelength. Output from a 2m length fiber of 100μm core and 660μm clad fiber is close to single mode (M2=1.6), while output from a 200μm core and 745μm clad fiber also has high beam quality.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. X. Phuoc, “Laser-induced spark for simultaneous ignition and fuel-to-air ratio measurements,” Opt. Lasers Eng. 44, 520–534 (2006).
    [CrossRef]
  2. D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, and R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combust. Flame 138, 55–77 (2004).
    [CrossRef]
  3. D. Graham-Rowe, “Lasers for engine ignition,” Nat. Photon. 2, 515–517 (2008).
    [CrossRef]
  4. H. El-Rabii, K. Zahringer, J. C. Rolon, and F. Lacas, “Laser ignition in a lean premixed prevaporized injector,” Combust. Sci. Technol. 176, 1391–1417 (2004).
    [CrossRef]
  5. S. Joshi, A. P. Yalin, and A. Galvanauskas, “Use of hollow core fibers, fiber lasers, and photonic crystal fibers for spark delivery and laser ignition in gases,” Appl. Opt. 46, 4057–4064(2007).
    [CrossRef] [PubMed]
  6. A. P. Yalin, S. Joshi, M. DeFoort, and B. Willson, “Towards multiplexed fiber delivered laser ignition for natural gas engines,” J. Eng. Gas Turbines Power 130, 044502 (2008).
    [CrossRef]
  7. H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4, 322–327 (2007).
    [CrossRef]
  8. G. Kroupa, G. Franz, and E. Winkelhofer, “Novel miniaturized high-energy Nd-YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48, 014202 (2009).
    [CrossRef]
  9. M. Tsunekane and T. Taira, “Temperature and polarization dependences of Cr:YAG transmission for passive Q-switching,” in Lasers and Electro-Optics 2009 and 2009 Conference on Quantum Electronics and Laser Science (IEEE, 2009), pp. 1–2.
    [CrossRef]
  10. R. Tambay and R. K. Thareja, “Laser-induced breakdown studies of laboratory air at 0.266, 0.355, 0.532, and 1.06 μm,” J. Appl. Phys. 70, 2890–2892 (1991).
    [CrossRef]
  11. D. I. Rosen and G. Weyl, “Laser-induced breakdown in nitrogen and the rare-gases at 0.53 and 0.35 μm,” J. Phys. D 20, 1264–1276 (1987).
    [CrossRef]
  12. T. X. Phuoc, “Laser spark ignition: experimental determination of laser-induced breakdown thresholds of combustion gases,” Opt. Commun. 175, 419–423 (2000).
    [CrossRef]
  13. A. Smith, B. Do, R. Schuster, and D. Collier, “Rate equation model of bulk optical damage of silica, and the influence of polishing on surface optical damage of silica,” in Fiber Lasers V: Technology, Systems, and Applications, J.Broeng and C.Headley, eds. (2008), pp. U118–U129.
  14. A. Stakhiv, R. Gilber, H. Kopecek, A. M. Zheltikov, and E. Wintner, “Laser ignition of engines via optical fibers?” Laser Phys. 14, 738–747 (2004).
  15. H. El-Rabii and G. Gaborel, “Laser ignition of flammable mixtures via a solid core optical fiber,” Appl. Phys. B 87, 139–144 (2007).
    [CrossRef]
  16. S. O. Konorov, A. B. Fedotov, O. A. Kolevatova, V. I. Beloglazov, N. B. Skibina, A. V. Shcherbakov, E. Wintner, and A. M. Zheltikov, “Laser breakdown with millijoule trains of picosecond pulses transmitted through a hollow-core photonic-crystal fibre,” J. Phys. D 36, 1375–1381 (2003).
    [CrossRef]
  17. A. K. Ghatak and K. Thyagarajan, Optical Electronics(Cambridge University, 1989).
  18. D. Gloge, “Optical power flow in multimode fibers,” Bell Syst. Tech. J. 51, 1767–1783 (1972).
  19. D. Gloge, “Bending loss in multimode fibers with graded and ungraded core index,” Appl. Opt. 11, 2506–2513 (1972).
    [CrossRef] [PubMed]
  20. R. Olshansky, “Distortion losses in cabled optical fibers,” Appl. Opt. 14, 20–21 (1975).
    [CrossRef] [PubMed]
  21. R. Olshansky, “Mode-coupling effects in graded-index optical fibers,” Appl. Opt. 14, 935–945 (1975).
    [CrossRef] [PubMed]
  22. C. D. Stacey, R. M. Jenkins, J. Banerji, and A. R. Davies, “Demonstration of fundamental mode only propagation in highly multimode fibre for high power EDFAs,” Opt. Commun. 269, 310–314 (2007).
    [CrossRef]
  23. M. E. Fermann, “Single-mode excitation of multimode fibers with ultrashort pulses,” Opt. Lett. 23, 52–54 (1998).
    [CrossRef]
  24. D. Donlagic and B. Culshaw, “Propagation of the fundamental mode in curved graded index multimode fiber and its application in sensor systems,” J. Lightwave Technol. 18, 334–342 (2000).
    [CrossRef]
  25. D. Donlagic and B. Culshaw, “Microbend sensor structure for use in distributed and quasi-distributed sensor systems based on selective launching and filtering of the modes in graded index multimode fiber,” J. Lightwave Technol. 17, 1856–1868(1999).
    [CrossRef]
  26. A. Bjarklev, J. Broeng, and A. -S. Bjarklev, Photonic Crystal Fibers (Springer, 2003).
    [CrossRef]
  27. nktphotonics, “http://www.nktphotonics.com/files/files/LMA-35-080926.pdf.”
  28. O. Schmidt, J. Rothhardt, F. Roser, S. Linke, T. Schreiber, K. Rademaker, J. Limpert, S. Ermeneux, P. Yvernault, F. Salin, and A. Tunnermann, “Millijoule pulse energy Q-switched short-length fiber laser,” Opt. Lett. 32, 1551–1553 (2007).
    [CrossRef] [PubMed]
  29. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett. 25, 442–444 (2000).
    [CrossRef]
  30. K. -C. Hou, “High-peak-power fiber-laser technology for laser-produced-plasma extreme ultraviolet lithography,” Ph.Ddissertation (University of Michigan, 2008).
  31. J. D. Mullett, G. Dearden, R. Dodd, A. T. Shenton, G. Triantos, and K. G. Watkins, “A comparative study of optical fibre types for application in a laser-induced ignition system,” J. Opt. A Pure Appl. Opt. 11, 054007 (2009).
    [CrossRef]
  32. J. Tauer, H. Kofler, E. Schwarz, and E. Wintner, “Transportation of megawatt millijoule laser pulses via optical fibers?” Central Eur. J. Phys. 8, 242–248 (2010).
    [CrossRef]
  33. A. E. Siegman, “Defining, measuring, and optimizing laser-beam quality,” in Laser Resonators and Coherent Optics: Modeling, Technology, and Applications, A.Bhowmik, ed. (SPIE, 1993), pp. 2–12.
  34. R. S. Taylor, K. E. Leopold, R. K. Brimacombe, and S. Mihailov, “Dependence of the damage and transmission properties of fused-silica fibers on the excimer laser wavelength,” Appl. Opt. 27, 3124–3134 (1988).
    [CrossRef] [PubMed]
  35. S. W. Allison, G. T. Gillies, D. W. Magnuson, and T. S. Pagano, “Pulsed laser damage to optical fibers,” Appl. Opt. 24, 3140–3145 (1985).
    [CrossRef] [PubMed]
  36. J. Mateo, M. A. Losada, and I. Garces, “Global characterization of optical power propagation in step-index plastic optical fibers,” Opt. Express 14, 9028–9035 (2006).
    [CrossRef] [PubMed]
  37. M. Rousseau and L. Jeunhomme, “Numerical-solution of coupled-power equation in step-index optical fibers,” IEEE Trans. Microwave Theory Tech. 25, 577–585 (1977).
    [CrossRef]
  38. A. Djordjevich and S. Savovic, “Investigation of mode coupling in step index plastic optical fibers using the power flow equation,” IEEE Photon. Technol. Lett. 12, 1489–1491 (2000).
    [CrossRef]
  39. S. Savovic and A. Djordjevich, “Method for calculating the coupling coefficient in step-index optical fibers,” Appl. Opt. 46, 1477–1481 (2007).
    [CrossRef] [PubMed]

2010 (1)

J. Tauer, H. Kofler, E. Schwarz, and E. Wintner, “Transportation of megawatt millijoule laser pulses via optical fibers?” Central Eur. J. Phys. 8, 242–248 (2010).
[CrossRef]

2009 (2)

J. D. Mullett, G. Dearden, R. Dodd, A. T. Shenton, G. Triantos, and K. G. Watkins, “A comparative study of optical fibre types for application in a laser-induced ignition system,” J. Opt. A Pure Appl. Opt. 11, 054007 (2009).
[CrossRef]

G. Kroupa, G. Franz, and E. Winkelhofer, “Novel miniaturized high-energy Nd-YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48, 014202 (2009).
[CrossRef]

2008 (2)

A. P. Yalin, S. Joshi, M. DeFoort, and B. Willson, “Towards multiplexed fiber delivered laser ignition for natural gas engines,” J. Eng. Gas Turbines Power 130, 044502 (2008).
[CrossRef]

D. Graham-Rowe, “Lasers for engine ignition,” Nat. Photon. 2, 515–517 (2008).
[CrossRef]

2007 (6)

C. D. Stacey, R. M. Jenkins, J. Banerji, and A. R. Davies, “Demonstration of fundamental mode only propagation in highly multimode fibre for high power EDFAs,” Opt. Commun. 269, 310–314 (2007).
[CrossRef]

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4, 322–327 (2007).
[CrossRef]

H. El-Rabii and G. Gaborel, “Laser ignition of flammable mixtures via a solid core optical fiber,” Appl. Phys. B 87, 139–144 (2007).
[CrossRef]

S. Savovic and A. Djordjevich, “Method for calculating the coupling coefficient in step-index optical fibers,” Appl. Opt. 46, 1477–1481 (2007).
[CrossRef] [PubMed]

O. Schmidt, J. Rothhardt, F. Roser, S. Linke, T. Schreiber, K. Rademaker, J. Limpert, S. Ermeneux, P. Yvernault, F. Salin, and A. Tunnermann, “Millijoule pulse energy Q-switched short-length fiber laser,” Opt. Lett. 32, 1551–1553 (2007).
[CrossRef] [PubMed]

S. Joshi, A. P. Yalin, and A. Galvanauskas, “Use of hollow core fibers, fiber lasers, and photonic crystal fibers for spark delivery and laser ignition in gases,” Appl. Opt. 46, 4057–4064(2007).
[CrossRef] [PubMed]

2006 (2)

J. Mateo, M. A. Losada, and I. Garces, “Global characterization of optical power propagation in step-index plastic optical fibers,” Opt. Express 14, 9028–9035 (2006).
[CrossRef] [PubMed]

T. X. Phuoc, “Laser-induced spark for simultaneous ignition and fuel-to-air ratio measurements,” Opt. Lasers Eng. 44, 520–534 (2006).
[CrossRef]

2004 (3)

D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, and R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combust. Flame 138, 55–77 (2004).
[CrossRef]

H. El-Rabii, K. Zahringer, J. C. Rolon, and F. Lacas, “Laser ignition in a lean premixed prevaporized injector,” Combust. Sci. Technol. 176, 1391–1417 (2004).
[CrossRef]

A. Stakhiv, R. Gilber, H. Kopecek, A. M. Zheltikov, and E. Wintner, “Laser ignition of engines via optical fibers?” Laser Phys. 14, 738–747 (2004).

2003 (1)

S. O. Konorov, A. B. Fedotov, O. A. Kolevatova, V. I. Beloglazov, N. B. Skibina, A. V. Shcherbakov, E. Wintner, and A. M. Zheltikov, “Laser breakdown with millijoule trains of picosecond pulses transmitted through a hollow-core photonic-crystal fibre,” J. Phys. D 36, 1375–1381 (2003).
[CrossRef]

2000 (4)

T. X. Phuoc, “Laser spark ignition: experimental determination of laser-induced breakdown thresholds of combustion gases,” Opt. Commun. 175, 419–423 (2000).
[CrossRef]

A. Djordjevich and S. Savovic, “Investigation of mode coupling in step index plastic optical fibers using the power flow equation,” IEEE Photon. Technol. Lett. 12, 1489–1491 (2000).
[CrossRef]

J. P. Koplow, D. A. V. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett. 25, 442–444 (2000).
[CrossRef]

D. Donlagic and B. Culshaw, “Propagation of the fundamental mode in curved graded index multimode fiber and its application in sensor systems,” J. Lightwave Technol. 18, 334–342 (2000).
[CrossRef]

1999 (1)

1998 (1)

1991 (1)

R. Tambay and R. K. Thareja, “Laser-induced breakdown studies of laboratory air at 0.266, 0.355, 0.532, and 1.06 μm,” J. Appl. Phys. 70, 2890–2892 (1991).
[CrossRef]

1988 (1)

1987 (1)

D. I. Rosen and G. Weyl, “Laser-induced breakdown in nitrogen and the rare-gases at 0.53 and 0.35 μm,” J. Phys. D 20, 1264–1276 (1987).
[CrossRef]

1985 (1)

1977 (1)

M. Rousseau and L. Jeunhomme, “Numerical-solution of coupled-power equation in step-index optical fibers,” IEEE Trans. Microwave Theory Tech. 25, 577–585 (1977).
[CrossRef]

1975 (2)

1972 (2)

D. Gloge, “Bending loss in multimode fibers with graded and ungraded core index,” Appl. Opt. 11, 2506–2513 (1972).
[CrossRef] [PubMed]

D. Gloge, “Optical power flow in multimode fibers,” Bell Syst. Tech. J. 51, 1767–1783 (1972).

Allison, S. W.

Banerji, J.

C. D. Stacey, R. M. Jenkins, J. Banerji, and A. R. Davies, “Demonstration of fundamental mode only propagation in highly multimode fibre for high power EDFAs,” Opt. Commun. 269, 310–314 (2007).
[CrossRef]

Beloglazov, V. I.

S. O. Konorov, A. B. Fedotov, O. A. Kolevatova, V. I. Beloglazov, N. B. Skibina, A. V. Shcherbakov, E. Wintner, and A. M. Zheltikov, “Laser breakdown with millijoule trains of picosecond pulses transmitted through a hollow-core photonic-crystal fibre,” J. Phys. D 36, 1375–1381 (2003).
[CrossRef]

Bjarklev, A.

A. Bjarklev, J. Broeng, and A. -S. Bjarklev, Photonic Crystal Fibers (Springer, 2003).
[CrossRef]

Bjarklev, A. -S.

A. Bjarklev, J. Broeng, and A. -S. Bjarklev, Photonic Crystal Fibers (Springer, 2003).
[CrossRef]

Bradley, D.

D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, and R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combust. Flame 138, 55–77 (2004).
[CrossRef]

Brimacombe, R. K.

Broeng, J.

A. Bjarklev, J. Broeng, and A. -S. Bjarklev, Photonic Crystal Fibers (Springer, 2003).
[CrossRef]

Collier, D.

A. Smith, B. Do, R. Schuster, and D. Collier, “Rate equation model of bulk optical damage of silica, and the influence of polishing on surface optical damage of silica,” in Fiber Lasers V: Technology, Systems, and Applications, J.Broeng and C.Headley, eds. (2008), pp. U118–U129.

Culshaw, B.

Davies, A. R.

C. D. Stacey, R. M. Jenkins, J. Banerji, and A. R. Davies, “Demonstration of fundamental mode only propagation in highly multimode fibre for high power EDFAs,” Opt. Commun. 269, 310–314 (2007).
[CrossRef]

Dearden, G.

J. D. Mullett, G. Dearden, R. Dodd, A. T. Shenton, G. Triantos, and K. G. Watkins, “A comparative study of optical fibre types for application in a laser-induced ignition system,” J. Opt. A Pure Appl. Opt. 11, 054007 (2009).
[CrossRef]

DeFoort, M.

A. P. Yalin, S. Joshi, M. DeFoort, and B. Willson, “Towards multiplexed fiber delivered laser ignition for natural gas engines,” J. Eng. Gas Turbines Power 130, 044502 (2008).
[CrossRef]

Djordjevich, A.

S. Savovic and A. Djordjevich, “Method for calculating the coupling coefficient in step-index optical fibers,” Appl. Opt. 46, 1477–1481 (2007).
[CrossRef] [PubMed]

A. Djordjevich and S. Savovic, “Investigation of mode coupling in step index plastic optical fibers using the power flow equation,” IEEE Photon. Technol. Lett. 12, 1489–1491 (2000).
[CrossRef]

Do, B.

A. Smith, B. Do, R. Schuster, and D. Collier, “Rate equation model of bulk optical damage of silica, and the influence of polishing on surface optical damage of silica,” in Fiber Lasers V: Technology, Systems, and Applications, J.Broeng and C.Headley, eds. (2008), pp. U118–U129.

Dodd, R.

J. D. Mullett, G. Dearden, R. Dodd, A. T. Shenton, G. Triantos, and K. G. Watkins, “A comparative study of optical fibre types for application in a laser-induced ignition system,” J. Opt. A Pure Appl. Opt. 11, 054007 (2009).
[CrossRef]

Donlagic, D.

El-Rabii, H.

H. El-Rabii and G. Gaborel, “Laser ignition of flammable mixtures via a solid core optical fiber,” Appl. Phys. B 87, 139–144 (2007).
[CrossRef]

H. El-Rabii, K. Zahringer, J. C. Rolon, and F. Lacas, “Laser ignition in a lean premixed prevaporized injector,” Combust. Sci. Technol. 176, 1391–1417 (2004).
[CrossRef]

Ermeneux, S.

Fedotov, A. B.

S. O. Konorov, A. B. Fedotov, O. A. Kolevatova, V. I. Beloglazov, N. B. Skibina, A. V. Shcherbakov, E. Wintner, and A. M. Zheltikov, “Laser breakdown with millijoule trains of picosecond pulses transmitted through a hollow-core photonic-crystal fibre,” J. Phys. D 36, 1375–1381 (2003).
[CrossRef]

Fermann, M. E.

Franz, G.

G. Kroupa, G. Franz, and E. Winkelhofer, “Novel miniaturized high-energy Nd-YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48, 014202 (2009).
[CrossRef]

Gaborel, G.

H. El-Rabii and G. Gaborel, “Laser ignition of flammable mixtures via a solid core optical fiber,” Appl. Phys. B 87, 139–144 (2007).
[CrossRef]

Galvanauskas, A.

Garces, I.

Ghatak, A. K.

A. K. Ghatak and K. Thyagarajan, Optical Electronics(Cambridge University, 1989).

Gilber, R.

A. Stakhiv, R. Gilber, H. Kopecek, A. M. Zheltikov, and E. Wintner, “Laser ignition of engines via optical fibers?” Laser Phys. 14, 738–747 (2004).

Gillies, G. T.

Gloge, D.

D. Gloge, “Optical power flow in multimode fibers,” Bell Syst. Tech. J. 51, 1767–1783 (1972).

D. Gloge, “Bending loss in multimode fibers with graded and ungraded core index,” Appl. Opt. 11, 2506–2513 (1972).
[CrossRef] [PubMed]

Goldberg, L.

Graham-Rowe, D.

D. Graham-Rowe, “Lasers for engine ignition,” Nat. Photon. 2, 515–517 (2008).
[CrossRef]

Herdin, G.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4, 322–327 (2007).
[CrossRef]

Hou, K. -C.

K. -C. Hou, “High-peak-power fiber-laser technology for laser-produced-plasma extreme ultraviolet lithography,” Ph.Ddissertation (University of Michigan, 2008).

Iskra, K.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4, 322–327 (2007).
[CrossRef]

Jenkins, R. M.

C. D. Stacey, R. M. Jenkins, J. Banerji, and A. R. Davies, “Demonstration of fundamental mode only propagation in highly multimode fibre for high power EDFAs,” Opt. Commun. 269, 310–314 (2007).
[CrossRef]

Jeunhomme, L.

M. Rousseau and L. Jeunhomme, “Numerical-solution of coupled-power equation in step-index optical fibers,” IEEE Trans. Microwave Theory Tech. 25, 577–585 (1977).
[CrossRef]

Joshi, S.

A. P. Yalin, S. Joshi, M. DeFoort, and B. Willson, “Towards multiplexed fiber delivered laser ignition for natural gas engines,” J. Eng. Gas Turbines Power 130, 044502 (2008).
[CrossRef]

S. Joshi, A. P. Yalin, and A. Galvanauskas, “Use of hollow core fibers, fiber lasers, and photonic crystal fibers for spark delivery and laser ignition in gases,” Appl. Opt. 46, 4057–4064(2007).
[CrossRef] [PubMed]

Klausner, J.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4, 322–327 (2007).
[CrossRef]

Kliner, D. A. V.

Kofler, H.

J. Tauer, H. Kofler, E. Schwarz, and E. Wintner, “Transportation of megawatt millijoule laser pulses via optical fibers?” Central Eur. J. Phys. 8, 242–248 (2010).
[CrossRef]

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4, 322–327 (2007).
[CrossRef]

Kolevatova, O. A.

S. O. Konorov, A. B. Fedotov, O. A. Kolevatova, V. I. Beloglazov, N. B. Skibina, A. V. Shcherbakov, E. Wintner, and A. M. Zheltikov, “Laser breakdown with millijoule trains of picosecond pulses transmitted through a hollow-core photonic-crystal fibre,” J. Phys. D 36, 1375–1381 (2003).
[CrossRef]

Konorov, S. O.

S. O. Konorov, A. B. Fedotov, O. A. Kolevatova, V. I. Beloglazov, N. B. Skibina, A. V. Shcherbakov, E. Wintner, and A. M. Zheltikov, “Laser breakdown with millijoule trains of picosecond pulses transmitted through a hollow-core photonic-crystal fibre,” J. Phys. D 36, 1375–1381 (2003).
[CrossRef]

Kopecek, H.

A. Stakhiv, R. Gilber, H. Kopecek, A. M. Zheltikov, and E. Wintner, “Laser ignition of engines via optical fibers?” Laser Phys. 14, 738–747 (2004).

Koplow, J. P.

Kroupa, G.

G. Kroupa, G. Franz, and E. Winkelhofer, “Novel miniaturized high-energy Nd-YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48, 014202 (2009).
[CrossRef]

Lacas, F.

H. El-Rabii, K. Zahringer, J. C. Rolon, and F. Lacas, “Laser ignition in a lean premixed prevaporized injector,” Combust. Sci. Technol. 176, 1391–1417 (2004).
[CrossRef]

Leopold, K. E.

Limpert, J.

Linke, S.

Losada, M. A.

Magnuson, D. W.

Mateo, J.

Mihailov, S.

Mullett, J. D.

J. D. Mullett, G. Dearden, R. Dodd, A. T. Shenton, G. Triantos, and K. G. Watkins, “A comparative study of optical fibre types for application in a laser-induced ignition system,” J. Opt. A Pure Appl. Opt. 11, 054007 (2009).
[CrossRef]

Olshansky, R.

Pagano, T. S.

Phuoc, T. X.

T. X. Phuoc, “Laser-induced spark for simultaneous ignition and fuel-to-air ratio measurements,” Opt. Lasers Eng. 44, 520–534 (2006).
[CrossRef]

T. X. Phuoc, “Laser spark ignition: experimental determination of laser-induced breakdown thresholds of combustion gases,” Opt. Commun. 175, 419–423 (2000).
[CrossRef]

Rademaker, K.

Rolon, J. C.

H. El-Rabii, K. Zahringer, J. C. Rolon, and F. Lacas, “Laser ignition in a lean premixed prevaporized injector,” Combust. Sci. Technol. 176, 1391–1417 (2004).
[CrossRef]

Rosen, D. I.

D. I. Rosen and G. Weyl, “Laser-induced breakdown in nitrogen and the rare-gases at 0.53 and 0.35 μm,” J. Phys. D 20, 1264–1276 (1987).
[CrossRef]

Roser, F.

Rothhardt, J.

Rousseau, M.

M. Rousseau and L. Jeunhomme, “Numerical-solution of coupled-power equation in step-index optical fibers,” IEEE Trans. Microwave Theory Tech. 25, 577–585 (1977).
[CrossRef]

Salin, F.

Savovic, S.

S. Savovic and A. Djordjevich, “Method for calculating the coupling coefficient in step-index optical fibers,” Appl. Opt. 46, 1477–1481 (2007).
[CrossRef] [PubMed]

A. Djordjevich and S. Savovic, “Investigation of mode coupling in step index plastic optical fibers using the power flow equation,” IEEE Photon. Technol. Lett. 12, 1489–1491 (2000).
[CrossRef]

Schmidt, O.

Schreiber, T.

Schuster, R.

A. Smith, B. Do, R. Schuster, and D. Collier, “Rate equation model of bulk optical damage of silica, and the influence of polishing on surface optical damage of silica,” in Fiber Lasers V: Technology, Systems, and Applications, J.Broeng and C.Headley, eds. (2008), pp. U118–U129.

Schwarz, E.

J. Tauer, H. Kofler, E. Schwarz, and E. Wintner, “Transportation of megawatt millijoule laser pulses via optical fibers?” Central Eur. J. Phys. 8, 242–248 (2010).
[CrossRef]

Shcherbakov, A. V.

S. O. Konorov, A. B. Fedotov, O. A. Kolevatova, V. I. Beloglazov, N. B. Skibina, A. V. Shcherbakov, E. Wintner, and A. M. Zheltikov, “Laser breakdown with millijoule trains of picosecond pulses transmitted through a hollow-core photonic-crystal fibre,” J. Phys. D 36, 1375–1381 (2003).
[CrossRef]

Shenton, A. T.

J. D. Mullett, G. Dearden, R. Dodd, A. T. Shenton, G. Triantos, and K. G. Watkins, “A comparative study of optical fibre types for application in a laser-induced ignition system,” J. Opt. A Pure Appl. Opt. 11, 054007 (2009).
[CrossRef]

Sheppard, C. G. W.

D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, and R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combust. Flame 138, 55–77 (2004).
[CrossRef]

Siegman, A. E.

A. E. Siegman, “Defining, measuring, and optimizing laser-beam quality,” in Laser Resonators and Coherent Optics: Modeling, Technology, and Applications, A.Bhowmik, ed. (SPIE, 1993), pp. 2–12.

Skibina, N. B.

S. O. Konorov, A. B. Fedotov, O. A. Kolevatova, V. I. Beloglazov, N. B. Skibina, A. V. Shcherbakov, E. Wintner, and A. M. Zheltikov, “Laser breakdown with millijoule trains of picosecond pulses transmitted through a hollow-core photonic-crystal fibre,” J. Phys. D 36, 1375–1381 (2003).
[CrossRef]

Smith, A.

A. Smith, B. Do, R. Schuster, and D. Collier, “Rate equation model of bulk optical damage of silica, and the influence of polishing on surface optical damage of silica,” in Fiber Lasers V: Technology, Systems, and Applications, J.Broeng and C.Headley, eds. (2008), pp. U118–U129.

Stacey, C. D.

C. D. Stacey, R. M. Jenkins, J. Banerji, and A. R. Davies, “Demonstration of fundamental mode only propagation in highly multimode fibre for high power EDFAs,” Opt. Commun. 269, 310–314 (2007).
[CrossRef]

Stakhiv, A.

A. Stakhiv, R. Gilber, H. Kopecek, A. M. Zheltikov, and E. Wintner, “Laser ignition of engines via optical fibers?” Laser Phys. 14, 738–747 (2004).

Suardjaja, I. M.

D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, and R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combust. Flame 138, 55–77 (2004).
[CrossRef]

Taira, T.

M. Tsunekane and T. Taira, “Temperature and polarization dependences of Cr:YAG transmission for passive Q-switching,” in Lasers and Electro-Optics 2009 and 2009 Conference on Quantum Electronics and Laser Science (IEEE, 2009), pp. 1–2.
[CrossRef]

Tambay, R.

R. Tambay and R. K. Thareja, “Laser-induced breakdown studies of laboratory air at 0.266, 0.355, 0.532, and 1.06 μm,” J. Appl. Phys. 70, 2890–2892 (1991).
[CrossRef]

Tartar, G.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4, 322–327 (2007).
[CrossRef]

Tauer, J.

J. Tauer, H. Kofler, E. Schwarz, and E. Wintner, “Transportation of megawatt millijoule laser pulses via optical fibers?” Central Eur. J. Phys. 8, 242–248 (2010).
[CrossRef]

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4, 322–327 (2007).
[CrossRef]

Taylor, R. S.

Thareja, R. K.

R. Tambay and R. K. Thareja, “Laser-induced breakdown studies of laboratory air at 0.266, 0.355, 0.532, and 1.06 μm,” J. Appl. Phys. 70, 2890–2892 (1991).
[CrossRef]

Thyagarajan, K.

A. K. Ghatak and K. Thyagarajan, Optical Electronics(Cambridge University, 1989).

Triantos, G.

J. D. Mullett, G. Dearden, R. Dodd, A. T. Shenton, G. Triantos, and K. G. Watkins, “A comparative study of optical fibre types for application in a laser-induced ignition system,” J. Opt. A Pure Appl. Opt. 11, 054007 (2009).
[CrossRef]

Tsunekane, M.

M. Tsunekane and T. Taira, “Temperature and polarization dependences of Cr:YAG transmission for passive Q-switching,” in Lasers and Electro-Optics 2009 and 2009 Conference on Quantum Electronics and Laser Science (IEEE, 2009), pp. 1–2.
[CrossRef]

Tunnermann, A.

Watkins, K. G.

J. D. Mullett, G. Dearden, R. Dodd, A. T. Shenton, G. Triantos, and K. G. Watkins, “A comparative study of optical fibre types for application in a laser-induced ignition system,” J. Opt. A Pure Appl. Opt. 11, 054007 (2009).
[CrossRef]

Weyl, G.

D. I. Rosen and G. Weyl, “Laser-induced breakdown in nitrogen and the rare-gases at 0.53 and 0.35 μm,” J. Phys. D 20, 1264–1276 (1987).
[CrossRef]

Willson, B.

A. P. Yalin, S. Joshi, M. DeFoort, and B. Willson, “Towards multiplexed fiber delivered laser ignition for natural gas engines,” J. Eng. Gas Turbines Power 130, 044502 (2008).
[CrossRef]

Winkelhofer, E.

G. Kroupa, G. Franz, and E. Winkelhofer, “Novel miniaturized high-energy Nd-YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48, 014202 (2009).
[CrossRef]

Wintner, E.

J. Tauer, H. Kofler, E. Schwarz, and E. Wintner, “Transportation of megawatt millijoule laser pulses via optical fibers?” Central Eur. J. Phys. 8, 242–248 (2010).
[CrossRef]

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4, 322–327 (2007).
[CrossRef]

A. Stakhiv, R. Gilber, H. Kopecek, A. M. Zheltikov, and E. Wintner, “Laser ignition of engines via optical fibers?” Laser Phys. 14, 738–747 (2004).

S. O. Konorov, A. B. Fedotov, O. A. Kolevatova, V. I. Beloglazov, N. B. Skibina, A. V. Shcherbakov, E. Wintner, and A. M. Zheltikov, “Laser breakdown with millijoule trains of picosecond pulses transmitted through a hollow-core photonic-crystal fibre,” J. Phys. D 36, 1375–1381 (2003).
[CrossRef]

Woolley, R.

D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, and R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combust. Flame 138, 55–77 (2004).
[CrossRef]

Yalin, A. P.

A. P. Yalin, S. Joshi, M. DeFoort, and B. Willson, “Towards multiplexed fiber delivered laser ignition for natural gas engines,” J. Eng. Gas Turbines Power 130, 044502 (2008).
[CrossRef]

S. Joshi, A. P. Yalin, and A. Galvanauskas, “Use of hollow core fibers, fiber lasers, and photonic crystal fibers for spark delivery and laser ignition in gases,” Appl. Opt. 46, 4057–4064(2007).
[CrossRef] [PubMed]

Yvernault, P.

Zahringer, K.

H. El-Rabii, K. Zahringer, J. C. Rolon, and F. Lacas, “Laser ignition in a lean premixed prevaporized injector,” Combust. Sci. Technol. 176, 1391–1417 (2004).
[CrossRef]

Zheltikov, A. M.

A. Stakhiv, R. Gilber, H. Kopecek, A. M. Zheltikov, and E. Wintner, “Laser ignition of engines via optical fibers?” Laser Phys. 14, 738–747 (2004).

S. O. Konorov, A. B. Fedotov, O. A. Kolevatova, V. I. Beloglazov, N. B. Skibina, A. V. Shcherbakov, E. Wintner, and A. M. Zheltikov, “Laser breakdown with millijoule trains of picosecond pulses transmitted through a hollow-core photonic-crystal fibre,” J. Phys. D 36, 1375–1381 (2003).
[CrossRef]

Appl. Opt. (7)

Appl. Phys. B (1)

H. El-Rabii and G. Gaborel, “Laser ignition of flammable mixtures via a solid core optical fiber,” Appl. Phys. B 87, 139–144 (2007).
[CrossRef]

Bell Syst. Tech. J. (1)

D. Gloge, “Optical power flow in multimode fibers,” Bell Syst. Tech. J. 51, 1767–1783 (1972).

Central Eur. J. Phys. (1)

J. Tauer, H. Kofler, E. Schwarz, and E. Wintner, “Transportation of megawatt millijoule laser pulses via optical fibers?” Central Eur. J. Phys. 8, 242–248 (2010).
[CrossRef]

Combust. Flame (1)

D. Bradley, C. G. W. Sheppard, I. M. Suardjaja, and R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combust. Flame 138, 55–77 (2004).
[CrossRef]

Combust. Sci. Technol. (1)

H. El-Rabii, K. Zahringer, J. C. Rolon, and F. Lacas, “Laser ignition in a lean premixed prevaporized injector,” Combust. Sci. Technol. 176, 1391–1417 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

A. Djordjevich and S. Savovic, “Investigation of mode coupling in step index plastic optical fibers using the power flow equation,” IEEE Photon. Technol. Lett. 12, 1489–1491 (2000).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

M. Rousseau and L. Jeunhomme, “Numerical-solution of coupled-power equation in step-index optical fibers,” IEEE Trans. Microwave Theory Tech. 25, 577–585 (1977).
[CrossRef]

J. Appl. Phys. (1)

R. Tambay and R. K. Thareja, “Laser-induced breakdown studies of laboratory air at 0.266, 0.355, 0.532, and 1.06 μm,” J. Appl. Phys. 70, 2890–2892 (1991).
[CrossRef]

J. Eng. Gas Turbines Power (1)

A. P. Yalin, S. Joshi, M. DeFoort, and B. Willson, “Towards multiplexed fiber delivered laser ignition for natural gas engines,” J. Eng. Gas Turbines Power 130, 044502 (2008).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. A Pure Appl. Opt. (1)

J. D. Mullett, G. Dearden, R. Dodd, A. T. Shenton, G. Triantos, and K. G. Watkins, “A comparative study of optical fibre types for application in a laser-induced ignition system,” J. Opt. A Pure Appl. Opt. 11, 054007 (2009).
[CrossRef]

J. Phys. D (2)

D. I. Rosen and G. Weyl, “Laser-induced breakdown in nitrogen and the rare-gases at 0.53 and 0.35 μm,” J. Phys. D 20, 1264–1276 (1987).
[CrossRef]

S. O. Konorov, A. B. Fedotov, O. A. Kolevatova, V. I. Beloglazov, N. B. Skibina, A. V. Shcherbakov, E. Wintner, and A. M. Zheltikov, “Laser breakdown with millijoule trains of picosecond pulses transmitted through a hollow-core photonic-crystal fibre,” J. Phys. D 36, 1375–1381 (2003).
[CrossRef]

Laser Phys. (1)

A. Stakhiv, R. Gilber, H. Kopecek, A. M. Zheltikov, and E. Wintner, “Laser ignition of engines via optical fibers?” Laser Phys. 14, 738–747 (2004).

Laser Phys. Lett. (1)

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4, 322–327 (2007).
[CrossRef]

Nat. Photon. (1)

D. Graham-Rowe, “Lasers for engine ignition,” Nat. Photon. 2, 515–517 (2008).
[CrossRef]

Opt. Commun. (2)

T. X. Phuoc, “Laser spark ignition: experimental determination of laser-induced breakdown thresholds of combustion gases,” Opt. Commun. 175, 419–423 (2000).
[CrossRef]

C. D. Stacey, R. M. Jenkins, J. Banerji, and A. R. Davies, “Demonstration of fundamental mode only propagation in highly multimode fibre for high power EDFAs,” Opt. Commun. 269, 310–314 (2007).
[CrossRef]

Opt. Eng. (1)

G. Kroupa, G. Franz, and E. Winkelhofer, “Novel miniaturized high-energy Nd-YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48, 014202 (2009).
[CrossRef]

Opt. Express (1)

Opt. Lasers Eng. (1)

T. X. Phuoc, “Laser-induced spark for simultaneous ignition and fuel-to-air ratio measurements,” Opt. Lasers Eng. 44, 520–534 (2006).
[CrossRef]

Opt. Lett. (3)

Other (7)

A. E. Siegman, “Defining, measuring, and optimizing laser-beam quality,” in Laser Resonators and Coherent Optics: Modeling, Technology, and Applications, A.Bhowmik, ed. (SPIE, 1993), pp. 2–12.

A. K. Ghatak and K. Thyagarajan, Optical Electronics(Cambridge University, 1989).

A. Bjarklev, J. Broeng, and A. -S. Bjarklev, Photonic Crystal Fibers (Springer, 2003).
[CrossRef]

nktphotonics, “http://www.nktphotonics.com/files/files/LMA-35-080926.pdf.”

K. -C. Hou, “High-peak-power fiber-laser technology for laser-produced-plasma extreme ultraviolet lithography,” Ph.Ddissertation (University of Michigan, 2008).

M. Tsunekane and T. Taira, “Temperature and polarization dependences of Cr:YAG transmission for passive Q-switching,” in Lasers and Electro-Optics 2009 and 2009 Conference on Quantum Electronics and Laser Science (IEEE, 2009), pp. 1–2.
[CrossRef]

A. Smith, B. Do, R. Schuster, and D. Collier, “Rate equation model of bulk optical damage of silica, and the influence of polishing on surface optical damage of silica,” in Fiber Lasers V: Technology, Systems, and Applications, J.Broeng and C.Headley, eds. (2008), pp. U118–U129.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Setup used for fiber measurements.

Fig. 2
Fig. 2

Output beam profiles for 200 / 330 fiber ( M 2 = 11 ) and 200 / 745 fiber ( M 2 = 2.8 ).

Fig. 3
Fig. 3

Output beam profiles for 100 / 140 fiber ( M 2 = 3.8 ) and 100 / 660 fiber ( M 2 = 1.6 ).

Tables (2)

Tables Icon

Table 1 Fiber Parameters and Measured Beam Quality and Mode-Coupling Coefficients for Testing of 2 m Length Fibers at λ = 633 nm a

Tables Icon

Table 2 Measured Beam Quality and Mode-Coupling Coefficients for 200/745 Fiber of Length 2 m at Three Wavelengths

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

m P m ( z ) z = m α m P m ( z ) + m d m [ P m + 1 ( z ) P m ( z ) ] + ( m 1 ) d m 1 [ P m 1 ( z ) P m ( z ) ] ,
P ( θ , z ) z = α ( θ ) P ( θ , z ) + 1 θ θ ( θ D ( θ ) P ( θ , z ) θ ) ,
m P m ( z ) z = m D Δ θ 2 [ P m + 1 ( z ) P m ( z ) ] + ( m 1 ) D Δ θ 2 [ P m 1 ( z ) P m ( z ) ] ,
P ( θ , z ) z = D θ θ ( θ P ( θ , z ) θ ) .
P m ( z + Δ z ) = P m ( z ) + D Δ z m Δ θ 2 [ m P m + 1 ( z ) + ( m 1 ) P m 1 ( z ) ( 2 m 1 ) P m ( z ) ] ,
P m C ( z ) = 0 ( where     θ C = m C Δ θ ) .
P ( θ , 0 ) = 1 2 π σ 0 exp ( θ 2 2 σ 0 ) ,
P ( θ , z ) = 1 2 π σ z exp ( θ 2 2 σ z ) ,
D = σ z 2 2 σ z 1 2 2 ( z 2 z 1 ) .

Metrics