Abstract

We report an all-normal-dispersion, low-repetition-rate, high-energy, twin-pulse, passively mode locked ytterbium-doped fiber laser. The mode-locking mechanism of the laser is based on nonlinear polarization evolution and strong pulse shaping with a cascade long-period fiber grating bandpass filtering in a highly chirped pulse. The laser generates a highly stable twin-pulse group with 248ps and 296ps duration simultaneously and maximum pulse energy of 26.8nJ—each pulse at a 2.5445MHz repetition rate. Energy quantization is observed, which demonstrates the nonparabolic nature of these pulses. The laser can also work in third-harmonic mode locking with 17.8nJ energy (at a repetition rate of 7.65MHz and pulse width of 780ps).

© 2011 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription