Abstract

We report an all-normal-dispersion, low-repetition-rate, high-energy, twin-pulse, passively mode locked ytterbium-doped fiber laser. The mode-locking mechanism of the laser is based on nonlinear polarization evolution and strong pulse shaping with a cascade long-period fiber grating bandpass filtering in a highly chirped pulse. The laser generates a highly stable twin-pulse group with 248ps and 296ps duration simultaneously and maximum pulse energy of 26.8nJ—each pulse at a 2.5445MHz repetition rate. Energy quantization is observed, which demonstrates the nonparabolic nature of these pulses. The laser can also work in third-harmonic mode locking with 17.8nJ energy (at a repetition rate of 7.65MHz and pulse width of 780ps).

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Sharma, C. S. Kim, and J. U. Kang, “Highly stable tunable dual-wavelength Q-switched fiber laser for DIAL applications,” IEEE Photon. Technol. Lett. 16, 1277–1279(2004).
    [CrossRef]
  2. T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35, 94–96 (2010).
    [CrossRef] [PubMed]
  3. W. H. Renninger, A. Chong, and F. W. Wise, “Giant-chirp oscillators for short-pulse fiber amplifiers,” Opt. Lett. 33, 3025–3027 (2008).
    [CrossRef] [PubMed]
  4. S. Kobtsev, S. Kukarin, and Y. Fedotov, “Ultra-low repetition rate mode-locked fiber laser with high-energy pulses,” Opt. Express 16, 21936–21941 (2008).
    [CrossRef] [PubMed]
  5. X. Tian, M. Tang, P. P. Shum, Y. Gong, C. Lin, S. Fu, and T. Zhang, “High-energy laser pulse with a submegahertz repetition rate from a passively mode-locked fiber laser,” Opt. Lett. 34, 1432–1434 (2009).
    [CrossRef] [PubMed]
  6. H. Wang, Y. Wang, W. Zhao, W. Zhang, T. Zhang, X. Hu, Z. Yang, H. Liu, K. Duan, X. Liu, C. Li, D. Shen, Z. Sui, and B. Liu, “All-fiber mode-locked nanosecond laser employing intracavity chirped fiber gratings,” Opt. Express 18, 7263–7268 (2010)
    [CrossRef] [PubMed]
  7. E. J. R. Kelleher, J. C. Travers, E. P. Ippen, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Generation and direct measurement of giant chirp in a passively mode-locked laser,” Opt. Lett. 34, 3526–3528 (2009).
    [CrossRef] [PubMed]
  8. R. Herda and O. G. Okhotnikov, “Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror,” IEEE J. Quantum Electron. 40, 893–899 (2004).
    [CrossRef]
  9. L. M. Zhao, D. Y. Tang, and J. Wu,“Gain-guided solitons in a positive group-dispersion fiber laser,” Opt. Lett. 31, 1788–1790 (2006).
    [CrossRef] [PubMed]
  10. A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ,” Opt. Lett. 32, 2408–2410 (2007).
    [CrossRef] [PubMed]
  11. B. G. Bale, J. N. Kutz, A. Chong, W. H. Renninger, and F. W. Wise, “Spectral filtering for mode locking in the normal dispersive regime,” Opt. Lett. 33, 941–943 (2008).
    [CrossRef] [PubMed]
  12. J. W. Lou, M. Currie, and F. K. Fatemi, “Experimental measurements of solitary pulse characteristics from an all-normal-dispersion Yb-doped fiber laser,” Opt. Express 15, 4960–4965 (2007).
    [CrossRef] [PubMed]
  13. K. Özgören and F. Ö. Ilday, “All-fiber all-normal dispersion laser with a fiber-based Lyot filter,” Opt. Lett. 35, 1296–1298(2010)
    [CrossRef] [PubMed]
  14. D. F. Liu, X. J. Zhu, C. H. Wang, J. J. Yu, G. J. Zhang, E. X. Fang, and J. Wang, “Passive harmonically mode-locked Yb3+-doped fiber laser free from anomalous dispersion,” IEEE Photon. Technol. Lett. 22, 1726–1728 (2010).
    [CrossRef]
  15. J. H. Lin and K.-H. Lin, “Multiple pulsing and harmonic mode-locking in an all-normal-dispersion Nd:GdVO4 laser using a nonlinear mirror,” J. Phys. B: At. Mol. Opt. Phys. 43, 065402(2010).
    [CrossRef]
  16. A. Haboucha, A. Komarov, H. Leblond, F. Sanchez, and G. Martel, “Mechanism of multiple pulse formation in the normal dispersion regime of passively mode-locked fiber ring lasers,” Opt. Fiber Technol. 14, 262–267 (2008).
    [CrossRef]
  17. F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008)
    [CrossRef]
  18. W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008)
    [CrossRef]
  19. S. Gray, A. B. Grudinin, W. H. Loh, and D. N. Payne, “Femtosecond harmonically mode-locked fiber laser with time jitter below 1 ps,” Opt. Lett. 20, 189–191 (1995).
    [CrossRef] [PubMed]
  20. A. B. Grudinin and S. Gray, “Passive harmonic mode-locking in soliton fiber lasers,” J. Opt. Soc. Am. B 14, 144–154 (1997)
    [CrossRef]
  21. A. Fellegara and S. Wabnitz, “Electrostrictive cross-phase modulation of periodic pulse trains in optical fibers,” Opt. Lett. 23, 1357–1359 (1998).
    [CrossRef]
  22. H. Kalaycioglu, B. Oktem, Ç. Senel, P. P. Paltani, and F. Ö. Ilday, “Microjoule-energy, 1 MHz repetition rate pulses from all-fiber-integrated nonlinear chirped-pulse amplifier,” Opt. Lett. 35, 959–961 (2010).
    [CrossRef] [PubMed]
  23. M.-C. Amann, T. BoschM. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
    [CrossRef]

2010 (6)

2009 (2)

2008 (6)

A. Haboucha, A. Komarov, H. Leblond, F. Sanchez, and G. Martel, “Mechanism of multiple pulse formation in the normal dispersion regime of passively mode-locked fiber ring lasers,” Opt. Fiber Technol. 14, 262–267 (2008).
[CrossRef]

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008)
[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008)
[CrossRef]

B. G. Bale, J. N. Kutz, A. Chong, W. H. Renninger, and F. W. Wise, “Spectral filtering for mode locking in the normal dispersive regime,” Opt. Lett. 33, 941–943 (2008).
[CrossRef] [PubMed]

W. H. Renninger, A. Chong, and F. W. Wise, “Giant-chirp oscillators for short-pulse fiber amplifiers,” Opt. Lett. 33, 3025–3027 (2008).
[CrossRef] [PubMed]

S. Kobtsev, S. Kukarin, and Y. Fedotov, “Ultra-low repetition rate mode-locked fiber laser with high-energy pulses,” Opt. Express 16, 21936–21941 (2008).
[CrossRef] [PubMed]

2007 (2)

2006 (1)

2004 (2)

R. Herda and O. G. Okhotnikov, “Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror,” IEEE J. Quantum Electron. 40, 893–899 (2004).
[CrossRef]

U. Sharma, C. S. Kim, and J. U. Kang, “Highly stable tunable dual-wavelength Q-switched fiber laser for DIAL applications,” IEEE Photon. Technol. Lett. 16, 1277–1279(2004).
[CrossRef]

2001 (1)

M.-C. Amann, T. BoschM. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[CrossRef]

1998 (1)

1997 (1)

1995 (1)

Amann, M.-C.

M.-C. Amann, T. BoschM. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[CrossRef]

Andersen, T. V.

Bale, B. G.

Bosch, T.

M.-C. Amann, T. BoschM. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[CrossRef]

Chong, A.

Currie, M.

Duan, K.

Eidam, T.

Fang, E. X.

D. F. Liu, X. J. Zhu, C. H. Wang, J. J. Yu, G. J. Zhang, E. X. Fang, and J. Wang, “Passive harmonically mode-locked Yb3+-doped fiber laser free from anomalous dispersion,” IEEE Photon. Technol. Lett. 22, 1726–1728 (2010).
[CrossRef]

Fatemi, F. K.

Fedotov, Y.

Fellegara, A.

Ferrari, A. C.

Fu, S.

Gabler, T.

Gong, Y.

Gray, S.

Grudinin, A. B.

Haboucha, A.

A. Haboucha, A. Komarov, H. Leblond, F. Sanchez, and G. Martel, “Mechanism of multiple pulse formation in the normal dispersion regime of passively mode-locked fiber ring lasers,” Opt. Fiber Technol. 14, 262–267 (2008).
[CrossRef]

Hanf, S.

Herda, R.

R. Herda and O. G. Okhotnikov, “Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror,” IEEE J. Quantum Electron. 40, 893–899 (2004).
[CrossRef]

Hu, X.

Ilday, F. Ö.

Ippen, E. P.

Kalaycioglu, H.

Kang, J. U.

U. Sharma, C. S. Kim, and J. U. Kang, “Highly stable tunable dual-wavelength Q-switched fiber laser for DIAL applications,” IEEE Photon. Technol. Lett. 16, 1277–1279(2004).
[CrossRef]

Kelleher, E. J. R.

Kim, C. S.

U. Sharma, C. S. Kim, and J. U. Kang, “Highly stable tunable dual-wavelength Q-switched fiber laser for DIAL applications,” IEEE Photon. Technol. Lett. 16, 1277–1279(2004).
[CrossRef]

Kobtsev, S.

Komarov, A.

A. Haboucha, A. Komarov, H. Leblond, F. Sanchez, and G. Martel, “Mechanism of multiple pulse formation in the normal dispersion regime of passively mode-locked fiber ring lasers,” Opt. Fiber Technol. 14, 262–267 (2008).
[CrossRef]

Kukarin, S.

Kutz, J. N.

Leblond, H.

A. Haboucha, A. Komarov, H. Leblond, F. Sanchez, and G. Martel, “Mechanism of multiple pulse formation in the normal dispersion regime of passively mode-locked fiber ring lasers,” Opt. Fiber Technol. 14, 262–267 (2008).
[CrossRef]

Lescure, M.

M.-C. Amann, T. BoschM. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[CrossRef]

Li, C.

Limpert, J.

Lin, C.

Lin, J. H.

J. H. Lin and K.-H. Lin, “Multiple pulsing and harmonic mode-locking in an all-normal-dispersion Nd:GdVO4 laser using a nonlinear mirror,” J. Phys. B: At. Mol. Opt. Phys. 43, 065402(2010).
[CrossRef]

Lin, K.-H.

J. H. Lin and K.-H. Lin, “Multiple pulsing and harmonic mode-locking in an all-normal-dispersion Nd:GdVO4 laser using a nonlinear mirror,” J. Phys. B: At. Mol. Opt. Phys. 43, 065402(2010).
[CrossRef]

Liu, B.

Liu, D. F.

D. F. Liu, X. J. Zhu, C. H. Wang, J. J. Yu, G. J. Zhang, E. X. Fang, and J. Wang, “Passive harmonically mode-locked Yb3+-doped fiber laser free from anomalous dispersion,” IEEE Photon. Technol. Lett. 22, 1726–1728 (2010).
[CrossRef]

Liu, H.

Liu, X.

Loh, W. H.

Lou, J. W.

Martel, G.

A. Haboucha, A. Komarov, H. Leblond, F. Sanchez, and G. Martel, “Mechanism of multiple pulse formation in the normal dispersion regime of passively mode-locked fiber ring lasers,” Opt. Fiber Technol. 14, 262–267 (2008).
[CrossRef]

Myllyla, R.

M.-C. Amann, T. BoschM. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[CrossRef]

Okhotnikov, O. G.

R. Herda and O. G. Okhotnikov, “Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror,” IEEE J. Quantum Electron. 40, 893–899 (2004).
[CrossRef]

Oktem, B.

Özgören, K.

Paltani, P. P.

Payne, D. N.

Popov, S. V.

Renninger, W. H.

Rioux, M.

M.-C. Amann, T. BoschM. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[CrossRef]

Sanchez, F.

A. Haboucha, A. Komarov, H. Leblond, F. Sanchez, and G. Martel, “Mechanism of multiple pulse formation in the normal dispersion regime of passively mode-locked fiber ring lasers,” Opt. Fiber Technol. 14, 262–267 (2008).
[CrossRef]

Schreiber, T.

Seise, E.

Senel, Ç.

Sharma, U.

U. Sharma, C. S. Kim, and J. U. Kang, “Highly stable tunable dual-wavelength Q-switched fiber laser for DIAL applications,” IEEE Photon. Technol. Lett. 16, 1277–1279(2004).
[CrossRef]

Shen, D.

Shum, P. P.

Sui, Z.

Sun, Z.

Tang, D. Y.

Tang, M.

Taylor, J. R.

Tian, X.

Travers, J. C.

Tünnermann, A.

Wabnitz, S.

Wang, C. H.

D. F. Liu, X. J. Zhu, C. H. Wang, J. J. Yu, G. J. Zhang, E. X. Fang, and J. Wang, “Passive harmonically mode-locked Yb3+-doped fiber laser free from anomalous dispersion,” IEEE Photon. Technol. Lett. 22, 1726–1728 (2010).
[CrossRef]

Wang, H.

Wang, J.

D. F. Liu, X. J. Zhu, C. H. Wang, J. J. Yu, G. J. Zhang, E. X. Fang, and J. Wang, “Passive harmonically mode-locked Yb3+-doped fiber laser free from anomalous dispersion,” IEEE Photon. Technol. Lett. 22, 1726–1728 (2010).
[CrossRef]

Wang, Y.

Wirth, C.

Wise, F. W.

Wu, J.

Yang, Z.

Yu, J. J.

D. F. Liu, X. J. Zhu, C. H. Wang, J. J. Yu, G. J. Zhang, E. X. Fang, and J. Wang, “Passive harmonically mode-locked Yb3+-doped fiber laser free from anomalous dispersion,” IEEE Photon. Technol. Lett. 22, 1726–1728 (2010).
[CrossRef]

Zhang, G. J.

D. F. Liu, X. J. Zhu, C. H. Wang, J. J. Yu, G. J. Zhang, E. X. Fang, and J. Wang, “Passive harmonically mode-locked Yb3+-doped fiber laser free from anomalous dispersion,” IEEE Photon. Technol. Lett. 22, 1726–1728 (2010).
[CrossRef]

Zhang, T.

Zhang, W.

Zhao, L. M.

Zhao, W.

Zhu, X. J.

D. F. Liu, X. J. Zhu, C. H. Wang, J. J. Yu, G. J. Zhang, E. X. Fang, and J. Wang, “Passive harmonically mode-locked Yb3+-doped fiber laser free from anomalous dispersion,” IEEE Photon. Technol. Lett. 22, 1726–1728 (2010).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. Herda and O. G. Okhotnikov, “Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror,” IEEE J. Quantum Electron. 40, 893–899 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

D. F. Liu, X. J. Zhu, C. H. Wang, J. J. Yu, G. J. Zhang, E. X. Fang, and J. Wang, “Passive harmonically mode-locked Yb3+-doped fiber laser free from anomalous dispersion,” IEEE Photon. Technol. Lett. 22, 1726–1728 (2010).
[CrossRef]

U. Sharma, C. S. Kim, and J. U. Kang, “Highly stable tunable dual-wavelength Q-switched fiber laser for DIAL applications,” IEEE Photon. Technol. Lett. 16, 1277–1279(2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. B: At. Mol. Opt. Phys. (1)

J. H. Lin and K.-H. Lin, “Multiple pulsing and harmonic mode-locking in an all-normal-dispersion Nd:GdVO4 laser using a nonlinear mirror,” J. Phys. B: At. Mol. Opt. Phys. 43, 065402(2010).
[CrossRef]

Laser Photon. Rev. (1)

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008)
[CrossRef]

Opt. Eng. (1)

M.-C. Amann, T. BoschM. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[CrossRef]

Opt. Express (3)

Opt. Fiber Technol. (1)

A. Haboucha, A. Komarov, H. Leblond, F. Sanchez, and G. Martel, “Mechanism of multiple pulse formation in the normal dispersion regime of passively mode-locked fiber ring lasers,” Opt. Fiber Technol. 14, 262–267 (2008).
[CrossRef]

Opt. Lett. (11)

S. Gray, A. B. Grudinin, W. H. Loh, and D. N. Payne, “Femtosecond harmonically mode-locked fiber laser with time jitter below 1 ps,” Opt. Lett. 20, 189–191 (1995).
[CrossRef] [PubMed]

X. Tian, M. Tang, P. P. Shum, Y. Gong, C. Lin, S. Fu, and T. Zhang, “High-energy laser pulse with a submegahertz repetition rate from a passively mode-locked fiber laser,” Opt. Lett. 34, 1432–1434 (2009).
[CrossRef] [PubMed]

E. J. R. Kelleher, J. C. Travers, E. P. Ippen, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Generation and direct measurement of giant chirp in a passively mode-locked laser,” Opt. Lett. 34, 3526–3528 (2009).
[CrossRef] [PubMed]

T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35, 94–96 (2010).
[CrossRef] [PubMed]

H. Kalaycioglu, B. Oktem, Ç. Senel, P. P. Paltani, and F. Ö. Ilday, “Microjoule-energy, 1 MHz repetition rate pulses from all-fiber-integrated nonlinear chirped-pulse amplifier,” Opt. Lett. 35, 959–961 (2010).
[CrossRef] [PubMed]

A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ,” Opt. Lett. 32, 2408–2410 (2007).
[CrossRef] [PubMed]

B. G. Bale, J. N. Kutz, A. Chong, W. H. Renninger, and F. W. Wise, “Spectral filtering for mode locking in the normal dispersive regime,” Opt. Lett. 33, 941–943 (2008).
[CrossRef] [PubMed]

W. H. Renninger, A. Chong, and F. W. Wise, “Giant-chirp oscillators for short-pulse fiber amplifiers,” Opt. Lett. 33, 3025–3027 (2008).
[CrossRef] [PubMed]

K. Özgören and F. Ö. Ilday, “All-fiber all-normal dispersion laser with a fiber-based Lyot filter,” Opt. Lett. 35, 1296–1298(2010)
[CrossRef] [PubMed]

A. Fellegara and S. Wabnitz, “Electrostrictive cross-phase modulation of periodic pulse trains in optical fibers,” Opt. Lett. 23, 1357–1359 (1998).
[CrossRef]

L. M. Zhao, D. Y. Tang, and J. Wu,“Gain-guided solitons in a positive group-dispersion fiber laser,” Opt. Lett. 31, 1788–1790 (2006).
[CrossRef] [PubMed]

Phys. Rev. A (1)

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008)
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the low-repetition-rate, mode-locked Y b 3 + -doped ring fiber laser with an LPG filter: SMF, 70 m single-mode fiber; WDM, 980 / 1060 wavelength division multiplexer; λ / 4 and λ / 2 , quarter and half-wave plates; Cascade FLPG BP, cascade long-period fiber grating bandpass filter; and PBS, polarization beam splitter.

Fig. 2
Fig. 2

Measured output power versus pump power with a mode-locking threshold of 110 mW .

Fig. 3
Fig. 3

Mode-locking twin-pulse train measured by a high-speed photodiode and 12.5 GHz oscilloscope.

Fig. 4
Fig. 4

(a) Radio-frequency spectrum of the twin-pulse mode locking: 70 MHz bandwidth, RBW = 500 Hz (black curve, measured by rf analyzer) and calculated from the pulse train measured by an oscilloscope (blue curve). (b) Radio-frequency spectrum: repetition frequency, f R = 2.5435 MHz ; bandwidth, 100 kHz ; and RBW = 1 kHz . (c) Radio-frequency spectrum: repetition frequency, f R = 30.53 MHz ; bandwidth, 50 kHz ; and RBW = 51 Hz . (d) Typical output spectrum on a linear scale for twin mode-locking pulses.

Fig. 5
Fig. 5

Typical output of twin pulses measured by a high-speed photodiode and 12.5 GHz oscilloscope. Inset, twin-pulse train.

Fig. 6
Fig. 6

(a) Output pulse train of third-harmonic mode-locking laser measured by a high-speed photodiode and 12.5 GHz oscilloscope. (b) Output pulse of third-harmonic mode-locking laser measured by high-speed photodiode and 12.5 GHz oscilloscope. (c) Output spectrum of the third-harmonic mode-locking laser.

Fig. 7
Fig. 7

(a) Radio-frequency spectrum of third-harmonic mode-locking laser: bandwidth, 100 kHz and RBW, 1 kHz . (b) Radio-frequency spectrum of third-harmonic mode-locking laser: bandwidth, 70 MHz and RBW, 1 kHz .

Metrics