Abstract

A wavelength-encoded interferometric high-temperature sensor based on an all-solid photonic bandgap fiber (AS-PBF) is reported. It consists of a small piece of AS-PBF spliced core offset with standard single-mode fibers. Two core modes LP01 and LP11 are conveniently utilized as optical arms to form Mach– Zehnder-type interference at both the first and the second photonic bandgaps, and the maximum extinction ratio exceeds 25dB. Experimental and theoretical investigation of its response to temperature confirms that high temperatures up to 700°C can be effectively sensed using such an AS-PBF interferometer, and benefiting from a large effective thermo-optic coefficient of fiber structure, the sensitivity can be significantly enhanced (71.5pm/°C at 600°C).

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89, 091119 (2006).
    [CrossRef]
  2. Y. Liu and L. Wei, “Low-cost high-sensitivity strain and temperature sensing using graded-index multimode fibers,” Appl. Opt. 46, 2516–2519 (2007).
    [CrossRef] [PubMed]
  3. J. Zhu, A. Zhang, T. Xia, S. He, and W. Xue, “Fiber-optic high-temperature sensor based on thin-core fiber modal interferometer,” IEEE Sens. J. 10, 1415–1418 (2010).
    [CrossRef]
  4. B. Dong, L. Wei, and D. Zhou, “Miniature high-sensitivity high-temperature fiber sensor with a dispersion compensation fiber-based interferometer,” Appl. Opt. 48, 6466–6469 (2009).
    [CrossRef] [PubMed]
  5. L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, and Y. Chung, “High temperature fiber sensor with high sensitivity based on core diameter mismatch,” Opt. Express 16, 11369–11375(2008).
    [CrossRef] [PubMed]
  6. D. Monzon-Hernandez, V. P. Minkovich, and J. Villatoro, “High-temperature sensing with tapers made of microstructured optical fiber,” IEEE Photon. Technol. Lett. 18, 511–513 (2006).
    [CrossRef]
  7. G. Coviello, V. Finazzi, J. Villatoro, and V. Pruneri, “Thermally stabilized PCF-based sensor for temperature measurements up to 1000 °C,” Opt. Express 17, 21551–21559 (2009).
    [CrossRef] [PubMed]
  8. S. H. Aref, R. Amezcua-Correa, J. P. Carvalho, O. Frazao, P. Caldas, J. L. Santos, F. M. Araujo, H. Latifi, F. Farahi, L. A. Ferreira, and J. C. Knight, “Modal interferometer based on hollow-core photonic crystal fiber for strain and temperature measurement,” Opt. Express 17, 18669–18675(2009).
    [CrossRef]
  9. G. Ren, P. Shum, L. Zhang, X. Yu, W. Tong, and J. Luo, “Low-loss all-solid photonic bandgap fiber,” Opt. Lett. 32, 1023–1025 (2007).
    [CrossRef] [PubMed]
  10. B. Dong, D. Zhou, L. Wei, W. Liu, and J. W. Y. Lit, “Temperature- and phase-independent lateral force sensor based on a core-offset multi-mode fiber interferometer,” Opt. Express 16, 19291–19296 (2008).
    [CrossRef]

2010 (1)

J. Zhu, A. Zhang, T. Xia, S. He, and W. Xue, “Fiber-optic high-temperature sensor based on thin-core fiber modal interferometer,” IEEE Sens. J. 10, 1415–1418 (2010).
[CrossRef]

2009 (3)

2008 (2)

2007 (2)

2006 (2)

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89, 091119 (2006).
[CrossRef]

D. Monzon-Hernandez, V. P. Minkovich, and J. Villatoro, “High-temperature sensing with tapers made of microstructured optical fiber,” IEEE Photon. Technol. Lett. 18, 511–513 (2006).
[CrossRef]

Amezcua-Correa, R.

Araujo, F. M.

Aref, S. H.

Caldas, P.

Carvalho, J. P.

Chung, Y.

Coviello, G.

Dong, B.

Farahi, F.

Ferreira, L. A.

Finazzi, V.

Frazao, O.

He, S.

J. Zhu, A. Zhang, T. Xia, S. He, and W. Xue, “Fiber-optic high-temperature sensor based on thin-core fiber modal interferometer,” IEEE Sens. J. 10, 1415–1418 (2010).
[CrossRef]

Hwang, D.

Knight, J. C.

Latifi, H.

Li, E.

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89, 091119 (2006).
[CrossRef]

Lit, J. W. Y.

Liu, W.

Liu, Y.

Luo, J.

Minkovich, V. P.

D. Monzon-Hernandez, V. P. Minkovich, and J. Villatoro, “High-temperature sensing with tapers made of microstructured optical fiber,” IEEE Photon. Technol. Lett. 18, 511–513 (2006).
[CrossRef]

Monzon-Hernandez, D.

D. Monzon-Hernandez, V. P. Minkovich, and J. Villatoro, “High-temperature sensing with tapers made of microstructured optical fiber,” IEEE Photon. Technol. Lett. 18, 511–513 (2006).
[CrossRef]

Moon, D. S.

Moon, S.

Nguyen, L. V.

Pruneri, V.

Ren, G.

Santos, J. L.

Shum, P.

Tong, W.

Villatoro, J.

G. Coviello, V. Finazzi, J. Villatoro, and V. Pruneri, “Thermally stabilized PCF-based sensor for temperature measurements up to 1000 °C,” Opt. Express 17, 21551–21559 (2009).
[CrossRef] [PubMed]

D. Monzon-Hernandez, V. P. Minkovich, and J. Villatoro, “High-temperature sensing with tapers made of microstructured optical fiber,” IEEE Photon. Technol. Lett. 18, 511–513 (2006).
[CrossRef]

Wang, X.

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89, 091119 (2006).
[CrossRef]

Wei, L.

Xia, T.

J. Zhu, A. Zhang, T. Xia, S. He, and W. Xue, “Fiber-optic high-temperature sensor based on thin-core fiber modal interferometer,” IEEE Sens. J. 10, 1415–1418 (2010).
[CrossRef]

Xue, W.

J. Zhu, A. Zhang, T. Xia, S. He, and W. Xue, “Fiber-optic high-temperature sensor based on thin-core fiber modal interferometer,” IEEE Sens. J. 10, 1415–1418 (2010).
[CrossRef]

Yu, X.

Zhang, A.

J. Zhu, A. Zhang, T. Xia, S. He, and W. Xue, “Fiber-optic high-temperature sensor based on thin-core fiber modal interferometer,” IEEE Sens. J. 10, 1415–1418 (2010).
[CrossRef]

Zhang, C.

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89, 091119 (2006).
[CrossRef]

Zhang, L.

Zhou, D.

Zhu, J.

J. Zhu, A. Zhang, T. Xia, S. He, and W. Xue, “Fiber-optic high-temperature sensor based on thin-core fiber modal interferometer,” IEEE Sens. J. 10, 1415–1418 (2010).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89, 091119 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

D. Monzon-Hernandez, V. P. Minkovich, and J. Villatoro, “High-temperature sensing with tapers made of microstructured optical fiber,” IEEE Photon. Technol. Lett. 18, 511–513 (2006).
[CrossRef]

IEEE Sens. J. (1)

J. Zhu, A. Zhang, T. Xia, S. He, and W. Xue, “Fiber-optic high-temperature sensor based on thin-core fiber modal interferometer,” IEEE Sens. J. 10, 1415–1418 (2010).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Cross section of the all-solid photonic bandgap fiber, (b) enlarged unit cell of the high-index rod, (c) schematic of experimental setup with the AS-PBF MZ interferometer.

Fig. 2
Fig. 2

Core-mode effective indices and bandgaps (gray region) of the all-solid photonic bandgap fiber, the topmost curve is the transmission of a 0.5 m all-solid photonic bandgap fiber.

Fig. 3
Fig. 3

(a) AS-PBF MZ interference spectra (solid curve) and transmission spectra of a 0.5 m AS-PBF(dashed curve); (b) Sinusoidal interference spectra around 1550 nm with AS-PBFs of different lengths.

Fig. 4
Fig. 4

Fringe spacing of the MZ interfer ometers with different lengths of AS-PBF around 1550 nm . Filled circles and solid curve are the measured and fitted values, respectively.

Fig. 5
Fig. 5

(a) High-temperature responses of transmission dip at 1530 nm . (b) Interference spectra at 100 ° C , 300 ° C , 500 ° C and 700 ° C .

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Λ = λ 2 Δ n eff ( 1 L ) ,
λ min = 2 Δ n eff L 2 m + 1 , m = 0 , 1 , 2 , .
Δ λ = λ min ( ξ + α ) Δ T ,

Metrics