Abstract

This study realizes integrated polarizer and RGB (red, green, and blue) color filters using single- and multiple-layered subwavelength metallic grating structures. A hybrid numerical scheme based on the rigorous coupled-wave analysis method and a genetic algorithm is used to determine the optimal values of the grating period, filling factor, and grating thickness of three different grating structures, namely, a single-layer grating, a double-layer grating, and a double-layer grating with a lateral shift. The optical performance of the various structures is evaluated and compared in terms of the transmission efficiency at the center wavelengths 700.0nm, 546.1nm, and 435.8nm of red, green, and blue light, respectively, and the extinction ratio over the visible wavelength spectrum (380780nm). It is shown that the double-layer grating achieves a transmission efficiency of about 50% and an extinction ratio of around 60dB. Thus, this grating structure provides a convenient and effective means of achieving the polarizing and filtering functions in LCD panels using a single device.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Wiley-Interscience, 1999), pp. 1–19.
  2. M. Xu, H. Urbach, D. de Boer, and H. Cornelissen, “Wire-grid diffraction gratings used as polarizing beam splitter for visible light and applied in liquid crystal on silicon,” Opt. Express 13, 2303–2320 (2005).
    [CrossRef] [PubMed]
  3. Y. Ekinci, H. H. Solak, C. David, and H. Sigg, “Bilayer Al wire-grids as broadband and high-performance polarizers,” Opt. Express 14, 2323–2334 (2006).
    [CrossRef] [PubMed]
  4. D.-R. Chiou, K.-Y. Yeh, and L.-J. Chen, “Adjustable pretilt angle of nematic 4-n-pentyl-4′-cyanobiphenyl on self-assembled monolayers formed from organosilanes on square-wave grating silica surfaces,” Appl. Phys. Lett. 88, 133123(2006).
    [CrossRef]
  5. H.-S. Lee, Y.-T. Yoon, S.-S. Lee, S.-H. Kim, and K.-D. Lee, “Color filter based on a subwavelength patterned metal grating,” Opt. Express 15, 15457–15463 (2007).
    [CrossRef] [PubMed]
  6. Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates,” IEEE Photonics Technol. Lett. 18, 2126–2128 (2006).
    [CrossRef]
  7. D. Kim and K. Burke, “Design of a grating-based thin-film filter for broadband spectropolarimetry,” Appl. Opt. 42, 6321–6326 (2003).
    [CrossRef] [PubMed]
  8. C.-Y. Chen and Y.-L. Lo, “Integration of a-Si:H solar cell with novel twist nematic liquid crystal cell for adjustable brightness and enhanced power characteristics,” Solar Energy Mater. Sol. Cells 93, 1268–1275 (2009).
    [CrossRef]
  9. C.-Y. Chen and Y.-L. Lo, “Feasibility study on TN-LC cell with two cross embedded wire-grid polarizers as alignment and electrode for projection displays,” Appl. Opt. 48, 6558–6566(2009).
    [CrossRef] [PubMed]
  10. K.-W. Chien and H.-P. D. Shieh, “Design and fabrication of an integrated polarized light guide for liquid-crystal-display illumination,” Appl. Opt. 43, 1830–1834 (2004).
    [CrossRef] [PubMed]
  11. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).
    [CrossRef]
  12. J. H. Holland, Adaption in Natural and Artificial Systems (Cambridge, 1992), pp. 32–36.
  13. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).
    [CrossRef]
  14. E. D. Palik, Handbook of Optical Constant of Solids(Academic, 1985), pp. 749–763.
  15. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface relief gratings: Enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995).
    [CrossRef]
  16. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996).
    [CrossRef]
  17. Y. B. Chen, Z. M. Zhang, and P. J. Timans, “Radiative properties of patterned wafers with nanoscale linewidth,” J. Heat Transfer 129, 79–90 (2007).
    [CrossRef]
  18. Z. Michalewicz, Genetic Algorithms + Data Structures =Evolution Programs (Spring-Verlag, 1992), pp. 101–105.
  19. T.-C. Yu and Y.-L. Lo, “A novel heterodyne polarimeter for the multiple-parameter measurements of twisted nematic liquid crystal cell using a genetic algorithm approach,” J. Lightwave Technol. 25, 946–951 (2007).
    [CrossRef]
  20. J. Guild, “The colorimetric properties of the spectrum,” Philos. Trans. R. Soc. London 230, 149–187 (1931).
    [CrossRef]
  21. A. K. Azad, Y. Zhao, W. Zhang, and M. He, “Effect of dielectric properties of metals on terahertz transmission in subwavelength hole arrays,” Opt. Lett. 31, 2637–2639 (2006).
    [CrossRef] [PubMed]
  22. G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90, 3825–3830 (2001).
    [CrossRef]
  23. H. B. Chan, Z. Marcet, K. Woo, D. B. Tanner, D. W. Carr, J. E. Bower, R. A. Cirelli, E. Ferry, F. Klemens, J. Miner, C. S. Pai, and J. A. Taylor, “Optical transmission through double-layer metallic subwavelength slit arrays,” Opt. Lett. 31, 516–518(2006).
    [CrossRef] [PubMed]
  24. Y.-T. Yoon, H.-S. Lee, S.-S. Lee, S. H. Kim, J.-D. Park, and K.-D. Lee, “Color filter incorporating a subwavelength patterned grating in poly silicon,” Opt. Express 16, 2374–2380(2008).
    [CrossRef] [PubMed]
  25. Q. Chen and D. R. S. Cumming, “High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films,” Opt. Express 18, 14056–14062 (2010).
    [CrossRef] [PubMed]
  26. Y.-T. Yoon and S.-S. Lee, “Transmission type color filter incorporating a silver film based etalon,” Opt. Express 18, 5344–5349 (2010).
    [CrossRef] [PubMed]
  27. J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30 nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89, 141105–141103 (2006).
    [CrossRef]
  28. M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon, and S. Y. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,” Appl. Phys. Lett. 84, 5299–5301 (2004).
    [CrossRef]
  29. M. D. Austin, W. Zhang, H. Ge, D. Wasserman, S. A. Lyon, and S. Y. Chou, “6 nm half-pitch lines and 0.04 μm2 static random access memory patterns by nanoimprint lithography,” Nanotechnology 16, 1058 (2005).
    [CrossRef]
  30. Z. Yu, L. Chen, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of nanoscale gratings with reduced line edge roughness using nanoimprint lithography,” J. Vac. Sci. Technol. B 21, 2089–2092 (2003).
    [CrossRef]

2010 (2)

2009 (2)

C.-Y. Chen and Y.-L. Lo, “Integration of a-Si:H solar cell with novel twist nematic liquid crystal cell for adjustable brightness and enhanced power characteristics,” Solar Energy Mater. Sol. Cells 93, 1268–1275 (2009).
[CrossRef]

C.-Y. Chen and Y.-L. Lo, “Feasibility study on TN-LC cell with two cross embedded wire-grid polarizers as alignment and electrode for projection displays,” Appl. Opt. 48, 6558–6566(2009).
[CrossRef] [PubMed]

2008 (1)

2007 (3)

2006 (6)

A. K. Azad, Y. Zhao, W. Zhang, and M. He, “Effect of dielectric properties of metals on terahertz transmission in subwavelength hole arrays,” Opt. Lett. 31, 2637–2639 (2006).
[CrossRef] [PubMed]

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates,” IEEE Photonics Technol. Lett. 18, 2126–2128 (2006).
[CrossRef]

Y. Ekinci, H. H. Solak, C. David, and H. Sigg, “Bilayer Al wire-grids as broadband and high-performance polarizers,” Opt. Express 14, 2323–2334 (2006).
[CrossRef] [PubMed]

D.-R. Chiou, K.-Y. Yeh, and L.-J. Chen, “Adjustable pretilt angle of nematic 4-n-pentyl-4′-cyanobiphenyl on self-assembled monolayers formed from organosilanes on square-wave grating silica surfaces,” Appl. Phys. Lett. 88, 133123(2006).
[CrossRef]

H. B. Chan, Z. Marcet, K. Woo, D. B. Tanner, D. W. Carr, J. E. Bower, R. A. Cirelli, E. Ferry, F. Klemens, J. Miner, C. S. Pai, and J. A. Taylor, “Optical transmission through double-layer metallic subwavelength slit arrays,” Opt. Lett. 31, 516–518(2006).
[CrossRef] [PubMed]

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30 nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89, 141105–141103 (2006).
[CrossRef]

2005 (2)

M. D. Austin, W. Zhang, H. Ge, D. Wasserman, S. A. Lyon, and S. Y. Chou, “6 nm half-pitch lines and 0.04 μm2 static random access memory patterns by nanoimprint lithography,” Nanotechnology 16, 1058 (2005).
[CrossRef]

M. Xu, H. Urbach, D. de Boer, and H. Cornelissen, “Wire-grid diffraction gratings used as polarizing beam splitter for visible light and applied in liquid crystal on silicon,” Opt. Express 13, 2303–2320 (2005).
[CrossRef] [PubMed]

2004 (2)

K.-W. Chien and H.-P. D. Shieh, “Design and fabrication of an integrated polarized light guide for liquid-crystal-display illumination,” Appl. Opt. 43, 1830–1834 (2004).
[CrossRef] [PubMed]

M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon, and S. Y. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,” Appl. Phys. Lett. 84, 5299–5301 (2004).
[CrossRef]

2003 (2)

Z. Yu, L. Chen, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of nanoscale gratings with reduced line edge roughness using nanoimprint lithography,” J. Vac. Sci. Technol. B 21, 2089–2092 (2003).
[CrossRef]

D. Kim and K. Burke, “Design of a grating-based thin-film filter for broadband spectropolarimetry,” Appl. Opt. 42, 6321–6326 (2003).
[CrossRef] [PubMed]

2001 (1)

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90, 3825–3830 (2001).
[CrossRef]

1998 (1)

1996 (1)

1995 (2)

1931 (1)

J. Guild, “The colorimetric properties of the spectrum,” Philos. Trans. R. Soc. London 230, 149–187 (1931).
[CrossRef]

Aussenegg, F. R.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90, 3825–3830 (2001).
[CrossRef]

Austin, M. D.

M. D. Austin, W. Zhang, H. Ge, D. Wasserman, S. A. Lyon, and S. Y. Chou, “6 nm half-pitch lines and 0.04 μm2 static random access memory patterns by nanoimprint lithography,” Nanotechnology 16, 1058 (2005).
[CrossRef]

M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon, and S. Y. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,” Appl. Phys. Lett. 84, 5299–5301 (2004).
[CrossRef]

Azad, A. K.

Bower, J. E.

Burke, K.

Carr, D. W.

Chan, H. B.

Chen, C.-Y.

C.-Y. Chen and Y.-L. Lo, “Integration of a-Si:H solar cell with novel twist nematic liquid crystal cell for adjustable brightness and enhanced power characteristics,” Solar Energy Mater. Sol. Cells 93, 1268–1275 (2009).
[CrossRef]

C.-Y. Chen and Y.-L. Lo, “Feasibility study on TN-LC cell with two cross embedded wire-grid polarizers as alignment and electrode for projection displays,” Appl. Opt. 48, 6558–6566(2009).
[CrossRef] [PubMed]

Chen, L.

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30 nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89, 141105–141103 (2006).
[CrossRef]

Z. Yu, L. Chen, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of nanoscale gratings with reduced line edge roughness using nanoimprint lithography,” J. Vac. Sci. Technol. B 21, 2089–2092 (2003).
[CrossRef]

Chen, L.-J.

D.-R. Chiou, K.-Y. Yeh, and L.-J. Chen, “Adjustable pretilt angle of nematic 4-n-pentyl-4′-cyanobiphenyl on self-assembled monolayers formed from organosilanes on square-wave grating silica surfaces,” Appl. Phys. Lett. 88, 133123(2006).
[CrossRef]

Chen, Q.

Chen, Y. B.

Y. B. Chen, Z. M. Zhang, and P. J. Timans, “Radiative properties of patterned wafers with nanoscale linewidth,” J. Heat Transfer 129, 79–90 (2007).
[CrossRef]

Chien, K.-W.

Chiou, D.-R.

D.-R. Chiou, K.-Y. Yeh, and L.-J. Chen, “Adjustable pretilt angle of nematic 4-n-pentyl-4′-cyanobiphenyl on self-assembled monolayers formed from organosilanes on square-wave grating silica surfaces,” Appl. Phys. Lett. 88, 133123(2006).
[CrossRef]

Chou, S. Y.

M. D. Austin, W. Zhang, H. Ge, D. Wasserman, S. A. Lyon, and S. Y. Chou, “6 nm half-pitch lines and 0.04 μm2 static random access memory patterns by nanoimprint lithography,” Nanotechnology 16, 1058 (2005).
[CrossRef]

M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon, and S. Y. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,” Appl. Phys. Lett. 84, 5299–5301 (2004).
[CrossRef]

Z. Yu, L. Chen, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of nanoscale gratings with reduced line edge roughness using nanoimprint lithography,” J. Vac. Sci. Technol. B 21, 2089–2092 (2003).
[CrossRef]

Cirelli, R. A.

Cornelissen, H.

Cumming, D. R. S.

David, C.

de Boer, D.

Deng, X.

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30 nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89, 141105–141103 (2006).
[CrossRef]

Ditlbacher, H.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90, 3825–3830 (2001).
[CrossRef]

Djurisic, A. B.

Ekinci, Y.

Elazar, J. M.

Ferry, E.

Gaylord, T. K.

Ge, H.

M. D. Austin, W. Zhang, H. Ge, D. Wasserman, S. A. Lyon, and S. Y. Chou, “6 nm half-pitch lines and 0.04 μm2 static random access memory patterns by nanoimprint lithography,” Nanotechnology 16, 1058 (2005).
[CrossRef]

M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon, and S. Y. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,” Appl. Phys. Lett. 84, 5299–5301 (2004).
[CrossRef]

Z. Yu, L. Chen, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of nanoscale gratings with reduced line edge roughness using nanoimprint lithography,” J. Vac. Sci. Technol. B 21, 2089–2092 (2003).
[CrossRef]

Gotschy, W.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90, 3825–3830 (2001).
[CrossRef]

Grann, E. B.

Gu, C.

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Wiley-Interscience, 1999), pp. 1–19.

Guild, J.

J. Guild, “The colorimetric properties of the spectrum,” Philos. Trans. R. Soc. London 230, 149–187 (1931).
[CrossRef]

Hane, K.

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates,” IEEE Photonics Technol. Lett. 18, 2126–2128 (2006).
[CrossRef]

He, M.

Holland, J. H.

J. H. Holland, Adaption in Natural and Artificial Systems (Cambridge, 1992), pp. 32–36.

Kanamori, Y.

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates,” IEEE Photonics Technol. Lett. 18, 2126–2128 (2006).
[CrossRef]

Kim, D.

Kim, S. H.

Kim, S.-H.

Klemens, F.

Krenn, J. R.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90, 3825–3830 (2001).
[CrossRef]

Lamprecht, B.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90, 3825–3830 (2001).
[CrossRef]

Lee, H.-S.

Lee, K.-D.

Lee, S.-S.

Leitner, A.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90, 3825–3830 (2001).
[CrossRef]

Li, L.

Li, M.

M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon, and S. Y. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,” Appl. Phys. Lett. 84, 5299–5301 (2004).
[CrossRef]

Liu, F.

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30 nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89, 141105–141103 (2006).
[CrossRef]

Liu, X.

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30 nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89, 141105–141103 (2006).
[CrossRef]

Lo, Y.-L.

Lyon, S. A.

M. D. Austin, W. Zhang, H. Ge, D. Wasserman, S. A. Lyon, and S. Y. Chou, “6 nm half-pitch lines and 0.04 μm2 static random access memory patterns by nanoimprint lithography,” Nanotechnology 16, 1058 (2005).
[CrossRef]

M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon, and S. Y. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,” Appl. Phys. Lett. 84, 5299–5301 (2004).
[CrossRef]

Majewski, M. L.

Marcet, Z.

Michalewicz, Z.

Z. Michalewicz, Genetic Algorithms + Data Structures =Evolution Programs (Spring-Verlag, 1992), pp. 101–105.

Miner, J.

Moharam, M. G.

Pai, C. S.

Palik, E. D.

E. D. Palik, Handbook of Optical Constant of Solids(Academic, 1985), pp. 749–763.

Park, J.-D.

Pommet, D. A.

Rakic, A. D.

Schider, G.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90, 3825–3830 (2001).
[CrossRef]

Sciortino, P.

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30 nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89, 141105–141103 (2006).
[CrossRef]

Shieh, H.-P. D.

Shimono, M.

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates,” IEEE Photonics Technol. Lett. 18, 2126–2128 (2006).
[CrossRef]

Sigg, H.

Solak, H. H.

Tanner, D. B.

Taylor, J. A.

Timans, P. J.

Y. B. Chen, Z. M. Zhang, and P. J. Timans, “Radiative properties of patterned wafers with nanoscale linewidth,” J. Heat Transfer 129, 79–90 (2007).
[CrossRef]

Urbach, H.

Walters, F.

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30 nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89, 141105–141103 (2006).
[CrossRef]

Wang, J. J.

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30 nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89, 141105–141103 (2006).
[CrossRef]

Wasserman, D.

M. D. Austin, W. Zhang, H. Ge, D. Wasserman, S. A. Lyon, and S. Y. Chou, “6 nm half-pitch lines and 0.04 μm2 static random access memory patterns by nanoimprint lithography,” Nanotechnology 16, 1058 (2005).
[CrossRef]

M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon, and S. Y. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,” Appl. Phys. Lett. 84, 5299–5301 (2004).
[CrossRef]

Woo, K.

Wu, W.

M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon, and S. Y. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,” Appl. Phys. Lett. 84, 5299–5301 (2004).
[CrossRef]

Z. Yu, L. Chen, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of nanoscale gratings with reduced line edge roughness using nanoimprint lithography,” J. Vac. Sci. Technol. B 21, 2089–2092 (2003).
[CrossRef]

Xu, M.

Yeh, K.-Y.

D.-R. Chiou, K.-Y. Yeh, and L.-J. Chen, “Adjustable pretilt angle of nematic 4-n-pentyl-4′-cyanobiphenyl on self-assembled monolayers formed from organosilanes on square-wave grating silica surfaces,” Appl. Phys. Lett. 88, 133123(2006).
[CrossRef]

Yeh, P.

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Wiley-Interscience, 1999), pp. 1–19.

Yoon, Y.-T.

Yu, T.-C.

Yu, Z.

M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon, and S. Y. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,” Appl. Phys. Lett. 84, 5299–5301 (2004).
[CrossRef]

Z. Yu, L. Chen, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of nanoscale gratings with reduced line edge roughness using nanoimprint lithography,” J. Vac. Sci. Technol. B 21, 2089–2092 (2003).
[CrossRef]

Zhang, W.

A. K. Azad, Y. Zhao, W. Zhang, and M. He, “Effect of dielectric properties of metals on terahertz transmission in subwavelength hole arrays,” Opt. Lett. 31, 2637–2639 (2006).
[CrossRef] [PubMed]

M. D. Austin, W. Zhang, H. Ge, D. Wasserman, S. A. Lyon, and S. Y. Chou, “6 nm half-pitch lines and 0.04 μm2 static random access memory patterns by nanoimprint lithography,” Nanotechnology 16, 1058 (2005).
[CrossRef]

Zhang, Z. M.

Y. B. Chen, Z. M. Zhang, and P. J. Timans, “Radiative properties of patterned wafers with nanoscale linewidth,” J. Heat Transfer 129, 79–90 (2007).
[CrossRef]

Zhao, Y.

Appl. Opt. (4)

Appl. Phys. Lett. (3)

D.-R. Chiou, K.-Y. Yeh, and L.-J. Chen, “Adjustable pretilt angle of nematic 4-n-pentyl-4′-cyanobiphenyl on self-assembled monolayers formed from organosilanes on square-wave grating silica surfaces,” Appl. Phys. Lett. 88, 133123(2006).
[CrossRef]

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30 nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89, 141105–141103 (2006).
[CrossRef]

M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon, and S. Y. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,” Appl. Phys. Lett. 84, 5299–5301 (2004).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates,” IEEE Photonics Technol. Lett. 18, 2126–2128 (2006).
[CrossRef]

J. Appl. Phys. (1)

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90, 3825–3830 (2001).
[CrossRef]

J. Heat Transfer (1)

Y. B. Chen, Z. M. Zhang, and P. J. Timans, “Radiative properties of patterned wafers with nanoscale linewidth,” J. Heat Transfer 129, 79–90 (2007).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (3)

J. Vac. Sci. Technol. B (1)

Z. Yu, L. Chen, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of nanoscale gratings with reduced line edge roughness using nanoimprint lithography,” J. Vac. Sci. Technol. B 21, 2089–2092 (2003).
[CrossRef]

Nanotechnology (1)

M. D. Austin, W. Zhang, H. Ge, D. Wasserman, S. A. Lyon, and S. Y. Chou, “6 nm half-pitch lines and 0.04 μm2 static random access memory patterns by nanoimprint lithography,” Nanotechnology 16, 1058 (2005).
[CrossRef]

Opt. Express (6)

Opt. Lett. (2)

Philos. Trans. R. Soc. London (1)

J. Guild, “The colorimetric properties of the spectrum,” Philos. Trans. R. Soc. London 230, 149–187 (1931).
[CrossRef]

Solar Energy Mater. Sol. Cells (1)

C.-Y. Chen and Y.-L. Lo, “Integration of a-Si:H solar cell with novel twist nematic liquid crystal cell for adjustable brightness and enhanced power characteristics,” Solar Energy Mater. Sol. Cells 93, 1268–1275 (2009).
[CrossRef]

Other (4)

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Wiley-Interscience, 1999), pp. 1–19.

J. H. Holland, Adaption in Natural and Artificial Systems (Cambridge, 1992), pp. 32–36.

E. D. Palik, Handbook of Optical Constant of Solids(Academic, 1985), pp. 749–763.

Z. Michalewicz, Genetic Algorithms + Data Structures =Evolution Programs (Spring-Verlag, 1992), pp. 101–105.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic illustration of three subwavelength metallic gratings considered in present study. (a) Single-layer grating, (b) double-layer grating, and (c) double-layer grating with lateral shift. Note that in both double-layer grating structures, Λ is the grating period, f 1 and f 2 are the filling factors of the upper and lower layers, respectively, and d 1 and d 2 are the thicknesses of the upper and lower layers, respectively. Note also that in the second double-layer grating structure, s is the lateral shift between the upper and lower layers.

Fig. 2
Fig. 2

Basic structure of GA used to determine optimal SWMG parameters.

Fig. 3
Fig. 3

TM wave diffraction spectra of aluminum single-layer grating for incoming light with normal incidence. (a) Transmittance, (b) reflectance, and (c) absorptance.

Fig. 4
Fig. 4

Extinction ratios of Al single-layer gratings.

Fig. 5
Fig. 5

TM wave diffraction spectra of Ag double-layer grating for incoming light with normal incidence. (a) Transmittance, (b) reflectance, (c) absorptance.

Fig. 6
Fig. 6

Extinction ratios of Ag double-layer gratings.

Fig. 7
Fig. 7

TM wave diffraction spectra of Ag double-layer gratings with lateral shifts of s / Λ = 0 , 0.15, 0.20, and 0.35 and incoming light with normal incidence angle. (a) Transmittance, (b) reflectance, (c) absorptance.

Fig. 8
Fig. 8

Extinction ratios of Ag double-layer gratings with lateral shifts of s / Λ = 0 , 0.15, 0.20, and 0.35.

Tables (1)

Tables Icon

Table 1 Comparisons of Previous Color Filters, Polarizers, and the Proposed Polarized-Color Filter.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

k I , III = 2 π n I , III λ = n I , III k ,
E I ( x , z ) = exp [ i ( k x x + k z z ) ] + j R j exp [ i ( k x x j + k I , z j z ) ] ,
k x j = k [ n I sin θ j ( λ / Λ ) ] = k x K j .
k I , z j = { ( k I 2 k x j 2 ) 1 / 2 , k I > k x j i ( k x j 2 k I 2 ) 1 / 2 , k x j > k I .
E III ( x , z ) = j T j exp { i [ k x j x + k III , z j ( z d ) ] } ,
E II ( x , z ) = j S j ( z ) exp ( i k x j x ) ,
get closer :     { x 1 = x 1 + δ ( x 1 x 2 ) x 2 = x 1 δ ( x 1 x 2 ) ,
pull away :     { x 1 = x 1 + δ ( x 2 x 1 ) x 2 = x 1 δ ( x 2 x 1 ) ,
x = x + random _ value ,
F fitness = m = 1 401 [ T ide , TM ( m ) T cal , TM ( m ) ] 2 + [ T ide , TE ( m ) T cal , TE ( m ) ] 2 ,
| k x j | > k l , l = I , III .
| k [ n I sin θ j ( λ / Λ ) ] | > k n l .
Λ < 152 nm .

Metrics