Abstract

We compare three technological approaches for quarter-wave retarders within the context of polarimetric-imaging applications in the long-wave infrared (LWIR) spectrum. Performance of a commercial cadmium sulfide (CdS) crystalline waveplate, a multilayer meanderline structure, and a silicon (Si) form-birefringent retarder are evaluated under conditions of 8–12 μm broadband radiation emerging from an F/1 focusing objective. Metrics used for this comparison are the spectrally dependent axial ratio, retardance, and polarization-averaged power transmittance, which are averaged over the angular range of interest. These parameters correspond to the characteristics that would be observed at the focal-plane array (FPA) detector of an LWIR imaging polarimeter.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Carrozi, R. Karlsson, and J. Bergman, “Parameters characterizing electromagnetic wave polarization,” Phys. Rev. E 61, 2024–2028 (2000).
    [CrossRef]
  2. D. Goldstein, Polarized Light, 2nd ed. (Marcel Dekker, 2003).
  3. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (Elsevier, 1977).
  4. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, (Cambridge University, 1995).
  5. H. Kikuta, K. Numata, M. Muto, K. Iwata, H. Toyota, K. Moriwaki, T. Yotuya, and H. Sato, “Polarization imaging camera with form birefringent micro-retarder array,” in Frontiers in Optics, Technical Digest (CD) (Optical Society of America, 2003), paper ThRR3.
  6. C. S. L. Chun, “Microscale waveplates for polarimetric infrared imaging,” Proc. SPIE 5074, 286–297 (2003).
  7. S. A. Kemme, A. A. Cruz-Cabrera, R. R. Boye, T. Carter, S. Samora, C. Alford, J. R. Wendt, G. A. Vawter, and J. L. Smith, “Micropolarizing device for long wavelength infrared polarization imaging,” Sandia Report SAND2006-6889 (Sandia National Laboratories, 2006).
  8. R. B. Boye, S. A. Kemme, J. R. Wendt, A. A. Cruz-Cabrera, G. A. Vawter, C. R. Alford, T. R. Carter, and S. Samora, “Fabrication and measurement of wideband achromatic waveplates for the mid-infrared region using subwavelength features,” J. Microlith. Microfab. Microsyst. 5, 043007 (2006).
  9. E. L. Geiszelmann, S. F. Jacobs, and H. E. Morrow, “Simple quartz birefringent quarter-wave plate for use at 3.39 μm,” J. Opt. Soc. Am. 59, 1381–1383 (1969).
    [CrossRef]
  10. M. Fox, Optical Properties of Solids (Oxford University, 2001).
  11. P. D. Hale and G. W. Gay, “Stability of birefringent linear retarders,” Appl. Opt. 27, 5146–5153 (1988).
  12. S. L. Wadsworth and G. D. Boreman, “Analysis of throughput for multilayer infrared meanderline waveplates,” Opt. Express 18, 13345–13360 (2010).
    [CrossRef]
  13. S. L. Wadsworth and G. D. Boreman, “Broadband infrared meanderline reflective quarter-wave plate,” Opt. Express 19, 10604–10612 (2011).
    [CrossRef]
  14. J. S. Tharp, J. Alda, and G. D. Boreman, “Off-axis behavior of an infrared meander-line waveplate,” Opt. Lett. 32, 2852–2854 (2007).
    [CrossRef]
  15. J. S. Tharp, B. A. Lail, B. A. Munk, and G. D. Boreman, “Design and demonstration of an infrared meanderline phase retarder,” IEEE Trans. Antennas Propag. 55, 2983–2988 (2007).
  16. D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, “Subwavelength transmission grating retarders for use at 10.6 μm,” Appl. Opt. 35, 6195–6202 (1996).
  17. F. Xu, R.-C. Tyan, P.-C. Sun, Y. Fainman, C.-C. Cheng, and A. Scherer, “Fabrication, modeling, and characterization of form-birefringent nanostructures,” Opt. Lett. 20, 2457–2459 (1995).
    [CrossRef]
  18. G. P. Nordin and P. C. Deguzman, “Broadband form birefringent quarter-wave plate for the mid-infrared wavelength region,” Opt. Express 5, 163–168 (1999).
    [CrossRef]
  19. R. T. Remski, “Analysis of photonic bandgap surfaces using Ansoft HFSS,” Microwave Journal 43, 51–68 (2000).
  20. J.-C. Zhang, Y.-Z. Yin, and J.-P. Ma, “Multifunctional meander line polarizer,” Prog. Elect. Research Lett. 6, 55–60 (2009).
  21. W. R. Folks, J. C. Ginn, D. J. Shelton, J. S. Tharp, and G. D. Boreman, “Spectroscopic ellipsometry of materials for infrared micro-device fabrication,” Phys. Status Solidi C 5, 1113–1116 (2008).
  22. D. F. Bezuidenhout, K. D. Clarke, and R. Pretorius, “The optical properties of YF3 films,” Thin Solid Films 155, 17–30 (1987).
    [CrossRef]
  23. H. A. Macleod, Thin-Film Optical Filters (Elsevier, 1969).
  24. J. E. Raynolds, B. A. Munk, J. B. Pryor, and R. J. Marhefka, “Ohmic loss in frequency-selective surfaces,” J. Appl. Phys. 93, 5346–5358 (2003).

2011 (1)

2010 (1)

2009 (1)

J.-C. Zhang, Y.-Z. Yin, and J.-P. Ma, “Multifunctional meander line polarizer,” Prog. Elect. Research Lett. 6, 55–60 (2009).

2008 (1)

W. R. Folks, J. C. Ginn, D. J. Shelton, J. S. Tharp, and G. D. Boreman, “Spectroscopic ellipsometry of materials for infrared micro-device fabrication,” Phys. Status Solidi C 5, 1113–1116 (2008).

2007 (2)

J. S. Tharp, J. Alda, and G. D. Boreman, “Off-axis behavior of an infrared meander-line waveplate,” Opt. Lett. 32, 2852–2854 (2007).
[CrossRef]

J. S. Tharp, B. A. Lail, B. A. Munk, and G. D. Boreman, “Design and demonstration of an infrared meanderline phase retarder,” IEEE Trans. Antennas Propag. 55, 2983–2988 (2007).

2006 (1)

R. B. Boye, S. A. Kemme, J. R. Wendt, A. A. Cruz-Cabrera, G. A. Vawter, C. R. Alford, T. R. Carter, and S. Samora, “Fabrication and measurement of wideband achromatic waveplates for the mid-infrared region using subwavelength features,” J. Microlith. Microfab. Microsyst. 5, 043007 (2006).

2003 (2)

C. S. L. Chun, “Microscale waveplates for polarimetric infrared imaging,” Proc. SPIE 5074, 286–297 (2003).

J. E. Raynolds, B. A. Munk, J. B. Pryor, and R. J. Marhefka, “Ohmic loss in frequency-selective surfaces,” J. Appl. Phys. 93, 5346–5358 (2003).

2000 (2)

R. T. Remski, “Analysis of photonic bandgap surfaces using Ansoft HFSS,” Microwave Journal 43, 51–68 (2000).

T. Carrozi, R. Karlsson, and J. Bergman, “Parameters characterizing electromagnetic wave polarization,” Phys. Rev. E 61, 2024–2028 (2000).
[CrossRef]

1999 (1)

1996 (1)

1995 (1)

1988 (1)

1987 (1)

D. F. Bezuidenhout, K. D. Clarke, and R. Pretorius, “The optical properties of YF3 films,” Thin Solid Films 155, 17–30 (1987).
[CrossRef]

1969 (1)

Alda, J.

Alford, C.

S. A. Kemme, A. A. Cruz-Cabrera, R. R. Boye, T. Carter, S. Samora, C. Alford, J. R. Wendt, G. A. Vawter, and J. L. Smith, “Micropolarizing device for long wavelength infrared polarization imaging,” Sandia Report SAND2006-6889 (Sandia National Laboratories, 2006).

Alford, C. R.

R. B. Boye, S. A. Kemme, J. R. Wendt, A. A. Cruz-Cabrera, G. A. Vawter, C. R. Alford, T. R. Carter, and S. Samora, “Fabrication and measurement of wideband achromatic waveplates for the mid-infrared region using subwavelength features,” J. Microlith. Microfab. Microsyst. 5, 043007 (2006).

Azzam, R. M. A.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (Elsevier, 1977).

Bashara, N. M.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (Elsevier, 1977).

Bergman, J.

T. Carrozi, R. Karlsson, and J. Bergman, “Parameters characterizing electromagnetic wave polarization,” Phys. Rev. E 61, 2024–2028 (2000).
[CrossRef]

Bezuidenhout, D. F.

D. F. Bezuidenhout, K. D. Clarke, and R. Pretorius, “The optical properties of YF3 films,” Thin Solid Films 155, 17–30 (1987).
[CrossRef]

Boreman, G. D.

S. L. Wadsworth and G. D. Boreman, “Broadband infrared meanderline reflective quarter-wave plate,” Opt. Express 19, 10604–10612 (2011).
[CrossRef]

S. L. Wadsworth and G. D. Boreman, “Analysis of throughput for multilayer infrared meanderline waveplates,” Opt. Express 18, 13345–13360 (2010).
[CrossRef]

W. R. Folks, J. C. Ginn, D. J. Shelton, J. S. Tharp, and G. D. Boreman, “Spectroscopic ellipsometry of materials for infrared micro-device fabrication,” Phys. Status Solidi C 5, 1113–1116 (2008).

J. S. Tharp, B. A. Lail, B. A. Munk, and G. D. Boreman, “Design and demonstration of an infrared meanderline phase retarder,” IEEE Trans. Antennas Propag. 55, 2983–2988 (2007).

J. S. Tharp, J. Alda, and G. D. Boreman, “Off-axis behavior of an infrared meander-line waveplate,” Opt. Lett. 32, 2852–2854 (2007).
[CrossRef]

Boye, R. B.

R. B. Boye, S. A. Kemme, J. R. Wendt, A. A. Cruz-Cabrera, G. A. Vawter, C. R. Alford, T. R. Carter, and S. Samora, “Fabrication and measurement of wideband achromatic waveplates for the mid-infrared region using subwavelength features,” J. Microlith. Microfab. Microsyst. 5, 043007 (2006).

Boye, R. R.

S. A. Kemme, A. A. Cruz-Cabrera, R. R. Boye, T. Carter, S. Samora, C. Alford, J. R. Wendt, G. A. Vawter, and J. L. Smith, “Micropolarizing device for long wavelength infrared polarization imaging,” Sandia Report SAND2006-6889 (Sandia National Laboratories, 2006).

Brundrett, D. L.

Carrozi, T.

T. Carrozi, R. Karlsson, and J. Bergman, “Parameters characterizing electromagnetic wave polarization,” Phys. Rev. E 61, 2024–2028 (2000).
[CrossRef]

Carter, T.

S. A. Kemme, A. A. Cruz-Cabrera, R. R. Boye, T. Carter, S. Samora, C. Alford, J. R. Wendt, G. A. Vawter, and J. L. Smith, “Micropolarizing device for long wavelength infrared polarization imaging,” Sandia Report SAND2006-6889 (Sandia National Laboratories, 2006).

Carter, T. R.

R. B. Boye, S. A. Kemme, J. R. Wendt, A. A. Cruz-Cabrera, G. A. Vawter, C. R. Alford, T. R. Carter, and S. Samora, “Fabrication and measurement of wideband achromatic waveplates for the mid-infrared region using subwavelength features,” J. Microlith. Microfab. Microsyst. 5, 043007 (2006).

Cheng, C.-C.

Chun, C. S. L.

C. S. L. Chun, “Microscale waveplates for polarimetric infrared imaging,” Proc. SPIE 5074, 286–297 (2003).

Clarke, K. D.

D. F. Bezuidenhout, K. D. Clarke, and R. Pretorius, “The optical properties of YF3 films,” Thin Solid Films 155, 17–30 (1987).
[CrossRef]

Cruz-Cabrera, A. A.

R. B. Boye, S. A. Kemme, J. R. Wendt, A. A. Cruz-Cabrera, G. A. Vawter, C. R. Alford, T. R. Carter, and S. Samora, “Fabrication and measurement of wideband achromatic waveplates for the mid-infrared region using subwavelength features,” J. Microlith. Microfab. Microsyst. 5, 043007 (2006).

S. A. Kemme, A. A. Cruz-Cabrera, R. R. Boye, T. Carter, S. Samora, C. Alford, J. R. Wendt, G. A. Vawter, and J. L. Smith, “Micropolarizing device for long wavelength infrared polarization imaging,” Sandia Report SAND2006-6889 (Sandia National Laboratories, 2006).

Deguzman, P. C.

Fainman, Y.

Folks, W. R.

W. R. Folks, J. C. Ginn, D. J. Shelton, J. S. Tharp, and G. D. Boreman, “Spectroscopic ellipsometry of materials for infrared micro-device fabrication,” Phys. Status Solidi C 5, 1113–1116 (2008).

Fox, M.

M. Fox, Optical Properties of Solids (Oxford University, 2001).

Gay, G. W.

Gaylord, T. K.

Geiszelmann, E. L.

Ginn, J. C.

W. R. Folks, J. C. Ginn, D. J. Shelton, J. S. Tharp, and G. D. Boreman, “Spectroscopic ellipsometry of materials for infrared micro-device fabrication,” Phys. Status Solidi C 5, 1113–1116 (2008).

Glytsis, E. N.

Goldstein, D.

D. Goldstein, Polarized Light, 2nd ed. (Marcel Dekker, 2003).

Hale, P. D.

Iwata, K.

H. Kikuta, K. Numata, M. Muto, K. Iwata, H. Toyota, K. Moriwaki, T. Yotuya, and H. Sato, “Polarization imaging camera with form birefringent micro-retarder array,” in Frontiers in Optics, Technical Digest (CD) (Optical Society of America, 2003), paper ThRR3.

Jacobs, S. F.

Karlsson, R.

T. Carrozi, R. Karlsson, and J. Bergman, “Parameters characterizing electromagnetic wave polarization,” Phys. Rev. E 61, 2024–2028 (2000).
[CrossRef]

Kemme, S. A.

R. B. Boye, S. A. Kemme, J. R. Wendt, A. A. Cruz-Cabrera, G. A. Vawter, C. R. Alford, T. R. Carter, and S. Samora, “Fabrication and measurement of wideband achromatic waveplates for the mid-infrared region using subwavelength features,” J. Microlith. Microfab. Microsyst. 5, 043007 (2006).

S. A. Kemme, A. A. Cruz-Cabrera, R. R. Boye, T. Carter, S. Samora, C. Alford, J. R. Wendt, G. A. Vawter, and J. L. Smith, “Micropolarizing device for long wavelength infrared polarization imaging,” Sandia Report SAND2006-6889 (Sandia National Laboratories, 2006).

Kikuta, H.

H. Kikuta, K. Numata, M. Muto, K. Iwata, H. Toyota, K. Moriwaki, T. Yotuya, and H. Sato, “Polarization imaging camera with form birefringent micro-retarder array,” in Frontiers in Optics, Technical Digest (CD) (Optical Society of America, 2003), paper ThRR3.

Lail, B. A.

J. S. Tharp, B. A. Lail, B. A. Munk, and G. D. Boreman, “Design and demonstration of an infrared meanderline phase retarder,” IEEE Trans. Antennas Propag. 55, 2983–2988 (2007).

Ma, J.-P.

J.-C. Zhang, Y.-Z. Yin, and J.-P. Ma, “Multifunctional meander line polarizer,” Prog. Elect. Research Lett. 6, 55–60 (2009).

Macleod, H. A.

H. A. Macleod, Thin-Film Optical Filters (Elsevier, 1969).

Mandel, L.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, (Cambridge University, 1995).

Marhefka, R. J.

J. E. Raynolds, B. A. Munk, J. B. Pryor, and R. J. Marhefka, “Ohmic loss in frequency-selective surfaces,” J. Appl. Phys. 93, 5346–5358 (2003).

Moriwaki, K.

H. Kikuta, K. Numata, M. Muto, K. Iwata, H. Toyota, K. Moriwaki, T. Yotuya, and H. Sato, “Polarization imaging camera with form birefringent micro-retarder array,” in Frontiers in Optics, Technical Digest (CD) (Optical Society of America, 2003), paper ThRR3.

Morrow, H. E.

Munk, B. A.

J. S. Tharp, B. A. Lail, B. A. Munk, and G. D. Boreman, “Design and demonstration of an infrared meanderline phase retarder,” IEEE Trans. Antennas Propag. 55, 2983–2988 (2007).

J. E. Raynolds, B. A. Munk, J. B. Pryor, and R. J. Marhefka, “Ohmic loss in frequency-selective surfaces,” J. Appl. Phys. 93, 5346–5358 (2003).

Muto, M.

H. Kikuta, K. Numata, M. Muto, K. Iwata, H. Toyota, K. Moriwaki, T. Yotuya, and H. Sato, “Polarization imaging camera with form birefringent micro-retarder array,” in Frontiers in Optics, Technical Digest (CD) (Optical Society of America, 2003), paper ThRR3.

Nordin, G. P.

Numata, K.

H. Kikuta, K. Numata, M. Muto, K. Iwata, H. Toyota, K. Moriwaki, T. Yotuya, and H. Sato, “Polarization imaging camera with form birefringent micro-retarder array,” in Frontiers in Optics, Technical Digest (CD) (Optical Society of America, 2003), paper ThRR3.

Pretorius, R.

D. F. Bezuidenhout, K. D. Clarke, and R. Pretorius, “The optical properties of YF3 films,” Thin Solid Films 155, 17–30 (1987).
[CrossRef]

Pryor, J. B.

J. E. Raynolds, B. A. Munk, J. B. Pryor, and R. J. Marhefka, “Ohmic loss in frequency-selective surfaces,” J. Appl. Phys. 93, 5346–5358 (2003).

Raynolds, J. E.

J. E. Raynolds, B. A. Munk, J. B. Pryor, and R. J. Marhefka, “Ohmic loss in frequency-selective surfaces,” J. Appl. Phys. 93, 5346–5358 (2003).

Remski, R. T.

R. T. Remski, “Analysis of photonic bandgap surfaces using Ansoft HFSS,” Microwave Journal 43, 51–68 (2000).

Samora, S.

R. B. Boye, S. A. Kemme, J. R. Wendt, A. A. Cruz-Cabrera, G. A. Vawter, C. R. Alford, T. R. Carter, and S. Samora, “Fabrication and measurement of wideband achromatic waveplates for the mid-infrared region using subwavelength features,” J. Microlith. Microfab. Microsyst. 5, 043007 (2006).

S. A. Kemme, A. A. Cruz-Cabrera, R. R. Boye, T. Carter, S. Samora, C. Alford, J. R. Wendt, G. A. Vawter, and J. L. Smith, “Micropolarizing device for long wavelength infrared polarization imaging,” Sandia Report SAND2006-6889 (Sandia National Laboratories, 2006).

Sato, H.

H. Kikuta, K. Numata, M. Muto, K. Iwata, H. Toyota, K. Moriwaki, T. Yotuya, and H. Sato, “Polarization imaging camera with form birefringent micro-retarder array,” in Frontiers in Optics, Technical Digest (CD) (Optical Society of America, 2003), paper ThRR3.

Scherer, A.

Shelton, D. J.

W. R. Folks, J. C. Ginn, D. J. Shelton, J. S. Tharp, and G. D. Boreman, “Spectroscopic ellipsometry of materials for infrared micro-device fabrication,” Phys. Status Solidi C 5, 1113–1116 (2008).

Smith, J. L.

S. A. Kemme, A. A. Cruz-Cabrera, R. R. Boye, T. Carter, S. Samora, C. Alford, J. R. Wendt, G. A. Vawter, and J. L. Smith, “Micropolarizing device for long wavelength infrared polarization imaging,” Sandia Report SAND2006-6889 (Sandia National Laboratories, 2006).

Sun, P.-C.

Tharp, J. S.

W. R. Folks, J. C. Ginn, D. J. Shelton, J. S. Tharp, and G. D. Boreman, “Spectroscopic ellipsometry of materials for infrared micro-device fabrication,” Phys. Status Solidi C 5, 1113–1116 (2008).

J. S. Tharp, J. Alda, and G. D. Boreman, “Off-axis behavior of an infrared meander-line waveplate,” Opt. Lett. 32, 2852–2854 (2007).
[CrossRef]

J. S. Tharp, B. A. Lail, B. A. Munk, and G. D. Boreman, “Design and demonstration of an infrared meanderline phase retarder,” IEEE Trans. Antennas Propag. 55, 2983–2988 (2007).

Toyota, H.

H. Kikuta, K. Numata, M. Muto, K. Iwata, H. Toyota, K. Moriwaki, T. Yotuya, and H. Sato, “Polarization imaging camera with form birefringent micro-retarder array,” in Frontiers in Optics, Technical Digest (CD) (Optical Society of America, 2003), paper ThRR3.

Tyan, R.-C.

Vawter, G. A.

R. B. Boye, S. A. Kemme, J. R. Wendt, A. A. Cruz-Cabrera, G. A. Vawter, C. R. Alford, T. R. Carter, and S. Samora, “Fabrication and measurement of wideband achromatic waveplates for the mid-infrared region using subwavelength features,” J. Microlith. Microfab. Microsyst. 5, 043007 (2006).

S. A. Kemme, A. A. Cruz-Cabrera, R. R. Boye, T. Carter, S. Samora, C. Alford, J. R. Wendt, G. A. Vawter, and J. L. Smith, “Micropolarizing device for long wavelength infrared polarization imaging,” Sandia Report SAND2006-6889 (Sandia National Laboratories, 2006).

Wadsworth, S. L.

Wendt, J. R.

R. B. Boye, S. A. Kemme, J. R. Wendt, A. A. Cruz-Cabrera, G. A. Vawter, C. R. Alford, T. R. Carter, and S. Samora, “Fabrication and measurement of wideband achromatic waveplates for the mid-infrared region using subwavelength features,” J. Microlith. Microfab. Microsyst. 5, 043007 (2006).

S. A. Kemme, A. A. Cruz-Cabrera, R. R. Boye, T. Carter, S. Samora, C. Alford, J. R. Wendt, G. A. Vawter, and J. L. Smith, “Micropolarizing device for long wavelength infrared polarization imaging,” Sandia Report SAND2006-6889 (Sandia National Laboratories, 2006).

Wolf, E.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, (Cambridge University, 1995).

Xu, F.

Yin, Y.-Z.

J.-C. Zhang, Y.-Z. Yin, and J.-P. Ma, “Multifunctional meander line polarizer,” Prog. Elect. Research Lett. 6, 55–60 (2009).

Yotuya, T.

H. Kikuta, K. Numata, M. Muto, K. Iwata, H. Toyota, K. Moriwaki, T. Yotuya, and H. Sato, “Polarization imaging camera with form birefringent micro-retarder array,” in Frontiers in Optics, Technical Digest (CD) (Optical Society of America, 2003), paper ThRR3.

Zhang, J.-C.

J.-C. Zhang, Y.-Z. Yin, and J.-P. Ma, “Multifunctional meander line polarizer,” Prog. Elect. Research Lett. 6, 55–60 (2009).

Appl. Opt. (2)

IEEE Trans. Antennas Propag. (1)

J. S. Tharp, B. A. Lail, B. A. Munk, and G. D. Boreman, “Design and demonstration of an infrared meanderline phase retarder,” IEEE Trans. Antennas Propag. 55, 2983–2988 (2007).

J. Appl. Phys. (1)

J. E. Raynolds, B. A. Munk, J. B. Pryor, and R. J. Marhefka, “Ohmic loss in frequency-selective surfaces,” J. Appl. Phys. 93, 5346–5358 (2003).

J. Microlith. Microfab. Microsyst. (1)

R. B. Boye, S. A. Kemme, J. R. Wendt, A. A. Cruz-Cabrera, G. A. Vawter, C. R. Alford, T. R. Carter, and S. Samora, “Fabrication and measurement of wideband achromatic waveplates for the mid-infrared region using subwavelength features,” J. Microlith. Microfab. Microsyst. 5, 043007 (2006).

J. Opt. Soc. Am. (1)

Microwave Journal (1)

R. T. Remski, “Analysis of photonic bandgap surfaces using Ansoft HFSS,” Microwave Journal 43, 51–68 (2000).

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. E (1)

T. Carrozi, R. Karlsson, and J. Bergman, “Parameters characterizing electromagnetic wave polarization,” Phys. Rev. E 61, 2024–2028 (2000).
[CrossRef]

Phys. Status Solidi C (1)

W. R. Folks, J. C. Ginn, D. J. Shelton, J. S. Tharp, and G. D. Boreman, “Spectroscopic ellipsometry of materials for infrared micro-device fabrication,” Phys. Status Solidi C 5, 1113–1116 (2008).

Proc. SPIE (1)

C. S. L. Chun, “Microscale waveplates for polarimetric infrared imaging,” Proc. SPIE 5074, 286–297 (2003).

Prog. Elect. Research Lett. (1)

J.-C. Zhang, Y.-Z. Yin, and J.-P. Ma, “Multifunctional meander line polarizer,” Prog. Elect. Research Lett. 6, 55–60 (2009).

Thin Solid Films (1)

D. F. Bezuidenhout, K. D. Clarke, and R. Pretorius, “The optical properties of YF3 films,” Thin Solid Films 155, 17–30 (1987).
[CrossRef]

Other (7)

H. A. Macleod, Thin-Film Optical Filters (Elsevier, 1969).

S. A. Kemme, A. A. Cruz-Cabrera, R. R. Boye, T. Carter, S. Samora, C. Alford, J. R. Wendt, G. A. Vawter, and J. L. Smith, “Micropolarizing device for long wavelength infrared polarization imaging,” Sandia Report SAND2006-6889 (Sandia National Laboratories, 2006).

M. Fox, Optical Properties of Solids (Oxford University, 2001).

D. Goldstein, Polarized Light, 2nd ed. (Marcel Dekker, 2003).

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (Elsevier, 1977).

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, (Cambridge University, 1995).

H. Kikuta, K. Numata, M. Muto, K. Iwata, H. Toyota, K. Moriwaki, T. Yotuya, and H. Sato, “Polarization imaging camera with form birefringent micro-retarder array,” in Frontiers in Optics, Technical Digest (CD) (Optical Society of America, 2003), paper ThRR3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Three QWP approaches considered for the study, which consist of (a) crystalline CdS waveplate, (b) multilayer meanderline, and (c) Si form-birefringent subwavelength grating. Each component’s respective TE and TM axes (in red) indicate the inherent anisotropy of the birefringent material systems. The simulated form-birefringent grating of (c) was modeled with high-resistivity Si in the LWIR spectrum, with its dimensions scaled from [18].

Fig. 2.
Fig. 2.

Details of the IR-VASE system with axis of rotation (in white) and plane of incidence with surface normal (in red) indicated.

Fig. 3.
Fig. 3.

Depiction of entrance pupil aperture with a finite wedge area representing the average axial response from an angle of incidence within a full F/1 cone.

Fig. 4.
Fig. 4.

Area-averaged polarimetric results for (a) the phase retardance and (b) the axial ratio of the QWP devices in the current study. The data for the CdS and meanderline QWPs were acquired by IR-VASE measurements, whereas the Si form-birefringent grating was simulated using numerical FEM analysis.

Fig. 5.
Fig. 5.

Area-averaged polarimetric data consisting of (a) phase retardance and (b) axial ratio. Results are plotted and compared for the measured 2-layer meanderline QWP that has BCB dielectric incorporated into its structure, and the simulated 2-layer meanderline device with low-loss YF3 film. The data from the Si form-birefringent grating is also shown for comparison purposes.

Fig. 6.
Fig. 6.

Area and polarization-averaged power transmission, where the CdS and meanderline QWPs are measured by IR-VASE, and the Si grating is simulated using the numerical FEM approach.

Fig. 7.
Fig. 7.

Area and polarization-averaged power transmission of a BBAR-coated Si form-birefringent grating and a meanderline QWP with YF3 as the dielectric layer. Both structures were simulated with FEM analysis.

Tables (2)

Tables Icon

Table 1. Values of Wedge Radii r1 and r2 with Respect to the Incident Angle θs (Normalized by Unit Radius r)

Tables Icon

Table 2. Summary of Wavelength and Area-Averaged Data

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

AR=1/(tan[12arcsin{sin(2·ψ)·sin(δ)}]).
Ttotal=12·(Ts+Tp).
P=θi,θs(1/2)·Δθ·((r2(θs))2(r1(θs))2)π·r2··(PTE(θs)·cos2(θi)+PTM(θs)·sin2(θi)),
Awedge=(1/2)·Δθ·((r2(θs))2(r1(θs))2)

Metrics