Abstract

We design and fabricate a hybrid refractive–diffractive cubic phase plate (CPP) with a combined conventional blazed grating for generating high quality Airy beams. The grating enables elimination of direct incident illumination in the reconstructed beam. The CPP is fabricated in a negative photoresist on a substrate by laser direct writing lithography with precise exposure control of gray scales. Experimentally measured intensity distribution of the Airy beam is found in good agreement with the theoretical predictions. Furthermore, self-healing and nondiffraction properties of the Airy beam are verified experimentally. The proposed method gives rise to a simple, reliable, and low-cost micro-optical element solution for the generation of high quality Airy beams.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
    [CrossRef] [PubMed]
  2. J. Durnin, “Exact solutions for non-diffracting beams. I. the scalar theory,” J. Opt. Soc. Am. 4, 651–654 (1987).
    [CrossRef]
  3. D. N. Christodoulides, “Riding along an Airy beam,” Nat. Photon. 2, 652–653 (2008).
    [CrossRef]
  4. G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32, 979–981 (2007).
    [CrossRef] [PubMed]
  5. J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, “Self-healing proprieties of optical Airy beams,” Opt. Express 16, 12880–12891 (2008).
    [CrossRef] [PubMed]
  6. B. Yalizay, B. Soylu, and S. Akturk, “Optical element for generation of accelerating Airy beams,” J. Opt. Soc. Am. A 27, 2344–2346 (2010).
    [CrossRef]
  7. Z. Zheng, B.-F. Zhang, H. Chen, J. Ding, and H.-T. Wang, “Optical trapping with focused Airy beams,” Appl. Opt. 50, 43–49 (2011).
    [CrossRef] [PubMed]
  8. D. M. Cottrell, J. A. Davis, and T. M. Hazard, “Direct generation of accelerating Airy beams using a 3/2 phase-only pattern,” Opt. Lett. 34, 2634–2636 (2009).
    [CrossRef] [PubMed]
  9. J. van der Gracht, E. R. Dowski, M. G. Taylor, and D. M. Deaver, “Broadband behavior of an optical-digital focus-invariant system,” Opt. Lett. 21, 919–921 (1996).
    [CrossRef] [PubMed]
  10. M. S. Mirotznik, J. van der Gracht, D. Pustai, and S. Mathews, “Design of cubic-phase optical elements using subwavelength microstructures,” Opt. Express 16, 1250–1259(2008).
    [CrossRef] [PubMed]
  11. H. T. Dai, X. W. Sun, D. Luo, and Y. J. Liu, “Airy beams generated by a binary phase element made of polymer-dispersed liquid crystals,” Opt. Express 17, 19365–19370(2009).
    [CrossRef] [PubMed]
  12. S. Sinzinger and V. Arrizón, “High-efficiency detour-phase holograms,” Opt. Lett. 22, 928–930 (1997).
    [CrossRef] [PubMed]
  13. V. Arrizón, S. Kinne, and S. Sinzinger, “Efficient detour-phase encoding of one-dimensional multilevel phase diffractive elements,” Appl. Opt. 37, 5454–5460 (1998).
    [CrossRef]
  14. G.F.Jin, ed., Binary Optics (National Defence Industrial Press, 1998), Chap. 2, pp. 22–25.

2011 (1)

2010 (1)

2009 (2)

2008 (3)

2007 (1)

1998 (1)

1997 (1)

1996 (1)

1987 (2)

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef] [PubMed]

J. Durnin, “Exact solutions for non-diffracting beams. I. the scalar theory,” J. Opt. Soc. Am. 4, 651–654 (1987).
[CrossRef]

Akturk, S.

Arrizón, V.

Broky, J.

Chen, H.

Christodoulides, D. N.

Cottrell, D. M.

Dai, H. T.

Davis, J. A.

Deaver, D. M.

Ding, J.

Dogariu, A.

Dowski, E. R.

Durnin, J.

J. Durnin, “Exact solutions for non-diffracting beams. I. the scalar theory,” J. Opt. Soc. Am. 4, 651–654 (1987).
[CrossRef]

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef] [PubMed]

Eberly, J. H.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef] [PubMed]

Hazard, T. M.

Kinne, S.

Liu, Y. J.

Luo, D.

Mathews, S.

Miceli, J. J.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef] [PubMed]

Mirotznik, M. S.

Pustai, D.

Sinzinger, S.

Siviloglou, G. A.

Soylu, B.

Sun, X. W.

Taylor, M. G.

van der Gracht, J.

Wang, H.-T.

Yalizay, B.

Zhang, B.-F.

Zheng, Z.

Appl. Opt. (2)

J. Opt. Soc. Am. (1)

J. Durnin, “Exact solutions for non-diffracting beams. I. the scalar theory,” J. Opt. Soc. Am. 4, 651–654 (1987).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nat. Photon. (1)

D. N. Christodoulides, “Riding along an Airy beam,” Nat. Photon. 2, 652–653 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef] [PubMed]

Other (1)

G.F.Jin, ed., Binary Optics (National Defence Industrial Press, 1998), Chap. 2, pp. 22–25.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Phase distribution of the usual CPP, (b) light intensity distribution of the CPP in simulation, and (c) intensity distribution of the usual CPP.

Fig. 2
Fig. 2

(a) Wedge-shaped structure, (b) blazed grating, (c) multistep blazed grating, and (d) CPP with the blazed grating.

Fig. 3
Fig. 3

Fabricated CPP with the blazed grating.

Fig. 4
Fig. 4

Intensity distribution of the hybrid CPP at a distance of 60 cm .

Fig. 5
Fig. 5

Intensity distribution of an Airy beam: (a) unblocked, (b)  2 cm from where the main lobe was blocked, and (c)  4 cm from where the main lobe was blocked.

Fig. 6
Fig. 6

Intensity distribution of an Airy beam at (a)  5 mm , (b)  0 mm , and (c)  5 mm from the focus; intensity distribution of a parallel beam at (d)  5 mm , (e)  0 mm , and (f)  5 mm from the focus.

Tables (1)

Tables Icon

Table 1 Measured and Designed Step Height of the Grating CPP

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

T ( x , y ) = exp [ i α ( x 3 + y 3 ) λ ] , | x | R , | y | R ,
T q ( x , y ) = exp [ i k x ] ,
ϕ = mod ( α ( x 3 + y 3 ) 2 R 3 + k x 2 R , 2 π ) ,
h ( m ) = m × λ 16 ( n 1 ) × ϕ 2 π , m = 1 , 2 , , 16.

Metrics