Abstract

One-end-sealed single-crystal sapphire tubes are presented as a simple, robust, and economical alternative for bulky lightpipe probes. Thermal radiation from a blackbody cavity created at the inner surface of the sealed end is gathered by a simple lens-based collecting system and transmitted via optical fiber to the remote detection unit. Simplicity and applicability of the concept are demonstrated by the combination of commercially available sapphire tubes with a common optical pyrometer. Radiation thermometers with sapphire tubes as invasive probes can be useful for applications requiring immunity to electromagnetic interference, resistance to harsh environments, simple replacement in the case of failure, and enhanced mechanical firmness, enabling wider range probe positioning inside the medium of interest.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. R. N. Childs, J. R. Greenwood, and C. A. Long, “Review of temperature measurement,” Rev. Sci. Instrum. 71, 2959–2978(2000).
    [CrossRef]
  2. A. N. Magunov, “Spectral pyrometry (review),” Instrum. Exp. Tech. 52, 451–472 (2009).
    [CrossRef]
  3. F. Laplant, G. Laurence, and D. Ben-Amotz, “Theoretical and experimental uncertainty in temperature measurement of materials by Raman spectroscopy,” Appl. Spectrosc. 50, 1034–1038 (1996).
    [CrossRef]
  4. M. Megahed, “Estimation of the potential of a fluorescence thermometer for Diesel spray studies,” Appl. Opt. 32, 4790–4796 (1993).
    [CrossRef] [PubMed]
  5. Y. Zhang, G. R. Pickrell, B. Qi, A. Safaai-Jazi, and A. Wang, “Single-crystal sapphire based optical polarimetric sensor for high temperature measurement,” Sensors 6, 823–834(2006).
    [CrossRef]
  6. B. E. Adams, C. W. Schietinger, and K. G. Kreider, “Radiation thermometry in the semiconductor industry,” in Experimental Methods in the Physical Sciences, Vol.  43, Z.M.Zhang, B.K.Tsai, and G.Machin, eds. (Academic, 2010), pp. 137–216.
    [CrossRef]
  7. http://www.raytek.com.
  8. R. R. Dils, “High-temperature optical fiber thermometer,” J. Appl. Phys. 54, 1198–1201 (1983).
    [CrossRef]
  9. B. K. Tsai, “A summary of lightpipe radiation thermometry research at NIST,” J. Res. Natl. Inst. Stand. Technol. 111, 9–30 (2006).
  10. http://www.crytur.cz.
  11. J. Jindra, J. Filip, and B. Mánek, “Multiple growth of profiled sapphire crystals,” J. Cryst. Growth 82, 100–105 (1987).
    [CrossRef]
  12. A. V. Borodin, “Advanced technologies of shaped sapphire fabrication,” J. Cryst. Growth 310, 2141–2147 (2008).
    [CrossRef]
  13. http://www.osioptoelectronics.com.
  14. http://www.clasic.cz.
  15. Y. Qu, E. Puttitwong, J. R. Howell, and O. A. Ezekoye, “Errors associated with light-pipe radiation thermometer temperature measurements,” IEEE Trans. Semicond. Manuf. 20, 26–38 (2007).
    [CrossRef]
  16. H. Erturk and J. R. Howell, “Efficient signal transport model for remote thermometry in full-scale thermal processing systems,” IEEE Trans. Semicond. Manuf. 23, 132–140 (2010).
    [CrossRef]
  17. R. M. Sova, M. J. Linevsky, M. E. Thomas, and F. F. Mark, “High-temperature infrared properties of sapphire, AION, fused silica, yttria, and spinel,” Infrared Phys. Technol. 39, 251–261 (1998).
    [CrossRef]
  18. K. G. Eyink, J. K. Patterson, S. J. Adams, T. W. Haas, and W. V. Lampert, “Use of optical fiber pyrometry in molecular beam epitaxy,” J. Cryst. Growth 175, 262–266 (1997).
    [CrossRef]

2010 (1)

H. Erturk and J. R. Howell, “Efficient signal transport model for remote thermometry in full-scale thermal processing systems,” IEEE Trans. Semicond. Manuf. 23, 132–140 (2010).
[CrossRef]

2009 (1)

A. N. Magunov, “Spectral pyrometry (review),” Instrum. Exp. Tech. 52, 451–472 (2009).
[CrossRef]

2008 (1)

A. V. Borodin, “Advanced technologies of shaped sapphire fabrication,” J. Cryst. Growth 310, 2141–2147 (2008).
[CrossRef]

2007 (1)

Y. Qu, E. Puttitwong, J. R. Howell, and O. A. Ezekoye, “Errors associated with light-pipe radiation thermometer temperature measurements,” IEEE Trans. Semicond. Manuf. 20, 26–38 (2007).
[CrossRef]

2006 (2)

B. K. Tsai, “A summary of lightpipe radiation thermometry research at NIST,” J. Res. Natl. Inst. Stand. Technol. 111, 9–30 (2006).

Y. Zhang, G. R. Pickrell, B. Qi, A. Safaai-Jazi, and A. Wang, “Single-crystal sapphire based optical polarimetric sensor for high temperature measurement,” Sensors 6, 823–834(2006).
[CrossRef]

2000 (1)

P. R. N. Childs, J. R. Greenwood, and C. A. Long, “Review of temperature measurement,” Rev. Sci. Instrum. 71, 2959–2978(2000).
[CrossRef]

1998 (1)

R. M. Sova, M. J. Linevsky, M. E. Thomas, and F. F. Mark, “High-temperature infrared properties of sapphire, AION, fused silica, yttria, and spinel,” Infrared Phys. Technol. 39, 251–261 (1998).
[CrossRef]

1997 (1)

K. G. Eyink, J. K. Patterson, S. J. Adams, T. W. Haas, and W. V. Lampert, “Use of optical fiber pyrometry in molecular beam epitaxy,” J. Cryst. Growth 175, 262–266 (1997).
[CrossRef]

1996 (1)

1993 (1)

1987 (1)

J. Jindra, J. Filip, and B. Mánek, “Multiple growth of profiled sapphire crystals,” J. Cryst. Growth 82, 100–105 (1987).
[CrossRef]

1983 (1)

R. R. Dils, “High-temperature optical fiber thermometer,” J. Appl. Phys. 54, 1198–1201 (1983).
[CrossRef]

Adams, B. E.

B. E. Adams, C. W. Schietinger, and K. G. Kreider, “Radiation thermometry in the semiconductor industry,” in Experimental Methods in the Physical Sciences, Vol.  43, Z.M.Zhang, B.K.Tsai, and G.Machin, eds. (Academic, 2010), pp. 137–216.
[CrossRef]

Adams, S. J.

K. G. Eyink, J. K. Patterson, S. J. Adams, T. W. Haas, and W. V. Lampert, “Use of optical fiber pyrometry in molecular beam epitaxy,” J. Cryst. Growth 175, 262–266 (1997).
[CrossRef]

Ben-Amotz, D.

Borodin, A. V.

A. V. Borodin, “Advanced technologies of shaped sapphire fabrication,” J. Cryst. Growth 310, 2141–2147 (2008).
[CrossRef]

Childs, P. R. N.

P. R. N. Childs, J. R. Greenwood, and C. A. Long, “Review of temperature measurement,” Rev. Sci. Instrum. 71, 2959–2978(2000).
[CrossRef]

Dils, R. R.

R. R. Dils, “High-temperature optical fiber thermometer,” J. Appl. Phys. 54, 1198–1201 (1983).
[CrossRef]

Erturk, H.

H. Erturk and J. R. Howell, “Efficient signal transport model for remote thermometry in full-scale thermal processing systems,” IEEE Trans. Semicond. Manuf. 23, 132–140 (2010).
[CrossRef]

Eyink, K. G.

K. G. Eyink, J. K. Patterson, S. J. Adams, T. W. Haas, and W. V. Lampert, “Use of optical fiber pyrometry in molecular beam epitaxy,” J. Cryst. Growth 175, 262–266 (1997).
[CrossRef]

Ezekoye, O. A.

Y. Qu, E. Puttitwong, J. R. Howell, and O. A. Ezekoye, “Errors associated with light-pipe radiation thermometer temperature measurements,” IEEE Trans. Semicond. Manuf. 20, 26–38 (2007).
[CrossRef]

Filip, J.

J. Jindra, J. Filip, and B. Mánek, “Multiple growth of profiled sapphire crystals,” J. Cryst. Growth 82, 100–105 (1987).
[CrossRef]

Greenwood, J. R.

P. R. N. Childs, J. R. Greenwood, and C. A. Long, “Review of temperature measurement,” Rev. Sci. Instrum. 71, 2959–2978(2000).
[CrossRef]

Haas, T. W.

K. G. Eyink, J. K. Patterson, S. J. Adams, T. W. Haas, and W. V. Lampert, “Use of optical fiber pyrometry in molecular beam epitaxy,” J. Cryst. Growth 175, 262–266 (1997).
[CrossRef]

Howell, J. R.

H. Erturk and J. R. Howell, “Efficient signal transport model for remote thermometry in full-scale thermal processing systems,” IEEE Trans. Semicond. Manuf. 23, 132–140 (2010).
[CrossRef]

Y. Qu, E. Puttitwong, J. R. Howell, and O. A. Ezekoye, “Errors associated with light-pipe radiation thermometer temperature measurements,” IEEE Trans. Semicond. Manuf. 20, 26–38 (2007).
[CrossRef]

Jindra, J.

J. Jindra, J. Filip, and B. Mánek, “Multiple growth of profiled sapphire crystals,” J. Cryst. Growth 82, 100–105 (1987).
[CrossRef]

Kreider, K. G.

B. E. Adams, C. W. Schietinger, and K. G. Kreider, “Radiation thermometry in the semiconductor industry,” in Experimental Methods in the Physical Sciences, Vol.  43, Z.M.Zhang, B.K.Tsai, and G.Machin, eds. (Academic, 2010), pp. 137–216.
[CrossRef]

Lampert, W. V.

K. G. Eyink, J. K. Patterson, S. J. Adams, T. W. Haas, and W. V. Lampert, “Use of optical fiber pyrometry in molecular beam epitaxy,” J. Cryst. Growth 175, 262–266 (1997).
[CrossRef]

Laplant, F.

Laurence, G.

Linevsky, M. J.

R. M. Sova, M. J. Linevsky, M. E. Thomas, and F. F. Mark, “High-temperature infrared properties of sapphire, AION, fused silica, yttria, and spinel,” Infrared Phys. Technol. 39, 251–261 (1998).
[CrossRef]

Long, C. A.

P. R. N. Childs, J. R. Greenwood, and C. A. Long, “Review of temperature measurement,” Rev. Sci. Instrum. 71, 2959–2978(2000).
[CrossRef]

Magunov, A. N.

A. N. Magunov, “Spectral pyrometry (review),” Instrum. Exp. Tech. 52, 451–472 (2009).
[CrossRef]

Mánek, B.

J. Jindra, J. Filip, and B. Mánek, “Multiple growth of profiled sapphire crystals,” J. Cryst. Growth 82, 100–105 (1987).
[CrossRef]

Mark, F. F.

R. M. Sova, M. J. Linevsky, M. E. Thomas, and F. F. Mark, “High-temperature infrared properties of sapphire, AION, fused silica, yttria, and spinel,” Infrared Phys. Technol. 39, 251–261 (1998).
[CrossRef]

Megahed, M.

Patterson, J. K.

K. G. Eyink, J. K. Patterson, S. J. Adams, T. W. Haas, and W. V. Lampert, “Use of optical fiber pyrometry in molecular beam epitaxy,” J. Cryst. Growth 175, 262–266 (1997).
[CrossRef]

Pickrell, G. R.

Y. Zhang, G. R. Pickrell, B. Qi, A. Safaai-Jazi, and A. Wang, “Single-crystal sapphire based optical polarimetric sensor for high temperature measurement,” Sensors 6, 823–834(2006).
[CrossRef]

Puttitwong, E.

Y. Qu, E. Puttitwong, J. R. Howell, and O. A. Ezekoye, “Errors associated with light-pipe radiation thermometer temperature measurements,” IEEE Trans. Semicond. Manuf. 20, 26–38 (2007).
[CrossRef]

Qi, B.

Y. Zhang, G. R. Pickrell, B. Qi, A. Safaai-Jazi, and A. Wang, “Single-crystal sapphire based optical polarimetric sensor for high temperature measurement,” Sensors 6, 823–834(2006).
[CrossRef]

Qu, Y.

Y. Qu, E. Puttitwong, J. R. Howell, and O. A. Ezekoye, “Errors associated with light-pipe radiation thermometer temperature measurements,” IEEE Trans. Semicond. Manuf. 20, 26–38 (2007).
[CrossRef]

Safaai-Jazi, A.

Y. Zhang, G. R. Pickrell, B. Qi, A. Safaai-Jazi, and A. Wang, “Single-crystal sapphire based optical polarimetric sensor for high temperature measurement,” Sensors 6, 823–834(2006).
[CrossRef]

Schietinger, C. W.

B. E. Adams, C. W. Schietinger, and K. G. Kreider, “Radiation thermometry in the semiconductor industry,” in Experimental Methods in the Physical Sciences, Vol.  43, Z.M.Zhang, B.K.Tsai, and G.Machin, eds. (Academic, 2010), pp. 137–216.
[CrossRef]

Sova, R. M.

R. M. Sova, M. J. Linevsky, M. E. Thomas, and F. F. Mark, “High-temperature infrared properties of sapphire, AION, fused silica, yttria, and spinel,” Infrared Phys. Technol. 39, 251–261 (1998).
[CrossRef]

Thomas, M. E.

R. M. Sova, M. J. Linevsky, M. E. Thomas, and F. F. Mark, “High-temperature infrared properties of sapphire, AION, fused silica, yttria, and spinel,” Infrared Phys. Technol. 39, 251–261 (1998).
[CrossRef]

Tsai, B. K.

B. K. Tsai, “A summary of lightpipe radiation thermometry research at NIST,” J. Res. Natl. Inst. Stand. Technol. 111, 9–30 (2006).

Wang, A.

Y. Zhang, G. R. Pickrell, B. Qi, A. Safaai-Jazi, and A. Wang, “Single-crystal sapphire based optical polarimetric sensor for high temperature measurement,” Sensors 6, 823–834(2006).
[CrossRef]

Zhang, Y.

Y. Zhang, G. R. Pickrell, B. Qi, A. Safaai-Jazi, and A. Wang, “Single-crystal sapphire based optical polarimetric sensor for high temperature measurement,” Sensors 6, 823–834(2006).
[CrossRef]

Appl. Opt. (1)

Appl. Spectrosc. (1)

IEEE Trans. Semicond. Manuf. (2)

Y. Qu, E. Puttitwong, J. R. Howell, and O. A. Ezekoye, “Errors associated with light-pipe radiation thermometer temperature measurements,” IEEE Trans. Semicond. Manuf. 20, 26–38 (2007).
[CrossRef]

H. Erturk and J. R. Howell, “Efficient signal transport model for remote thermometry in full-scale thermal processing systems,” IEEE Trans. Semicond. Manuf. 23, 132–140 (2010).
[CrossRef]

Infrared Phys. Technol. (1)

R. M. Sova, M. J. Linevsky, M. E. Thomas, and F. F. Mark, “High-temperature infrared properties of sapphire, AION, fused silica, yttria, and spinel,” Infrared Phys. Technol. 39, 251–261 (1998).
[CrossRef]

Instrum. Exp. Tech. (1)

A. N. Magunov, “Spectral pyrometry (review),” Instrum. Exp. Tech. 52, 451–472 (2009).
[CrossRef]

J. Appl. Phys. (1)

R. R. Dils, “High-temperature optical fiber thermometer,” J. Appl. Phys. 54, 1198–1201 (1983).
[CrossRef]

J. Cryst. Growth (3)

K. G. Eyink, J. K. Patterson, S. J. Adams, T. W. Haas, and W. V. Lampert, “Use of optical fiber pyrometry in molecular beam epitaxy,” J. Cryst. Growth 175, 262–266 (1997).
[CrossRef]

J. Jindra, J. Filip, and B. Mánek, “Multiple growth of profiled sapphire crystals,” J. Cryst. Growth 82, 100–105 (1987).
[CrossRef]

A. V. Borodin, “Advanced technologies of shaped sapphire fabrication,” J. Cryst. Growth 310, 2141–2147 (2008).
[CrossRef]

J. Res. Natl. Inst. Stand. Technol. (1)

B. K. Tsai, “A summary of lightpipe radiation thermometry research at NIST,” J. Res. Natl. Inst. Stand. Technol. 111, 9–30 (2006).

Rev. Sci. Instrum. (1)

P. R. N. Childs, J. R. Greenwood, and C. A. Long, “Review of temperature measurement,” Rev. Sci. Instrum. 71, 2959–2978(2000).
[CrossRef]

Sensors (1)

Y. Zhang, G. R. Pickrell, B. Qi, A. Safaai-Jazi, and A. Wang, “Single-crystal sapphire based optical polarimetric sensor for high temperature measurement,” Sensors 6, 823–834(2006).
[CrossRef]

Other (5)

B. E. Adams, C. W. Schietinger, and K. G. Kreider, “Radiation thermometry in the semiconductor industry,” in Experimental Methods in the Physical Sciences, Vol.  43, Z.M.Zhang, B.K.Tsai, and G.Machin, eds. (Academic, 2010), pp. 137–216.
[CrossRef]

http://www.raytek.com.

http://www.crytur.cz.

http://www.osioptoelectronics.com.

http://www.clasic.cz.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Comparison of the thermocouple sheath made from single-crystal sapphire and ceramics C610 after 20 months of continuous service in molten glass at the temperature of 1250 ° C .

Fig. 2
Fig. 2

Detail of the single-crystal monolithic seals (“as grown” and polished) of the sapphire tubes ( OD 8 mm / ID 5 mm ) used as probes in the present study.

Fig. 3
Fig. 3

Schematic of the optical pyrometer construction and the test facility design. The single-crystal sapphire tube (1) with a blackbody cavity at the inner surface of the sealed end (2) was attached to the optical head (3) by means of the flange joint (4) comprising an adjustable diaphragm (5) for delimiting the field of view. The single- or double-lens (6) imaging system focuses the incoming radiation onto the input aperture of the optical fiber (7). The probe (E) was inserted into the horizontal tubular furnace (D) comprising a single or triple (A–C) resistive-heating segments with independent temperature regulation. The reference temperature at the position of the blackbody emitter (G) was measured with a thermocouple (F) being in thermal contact with a probe tip.

Fig. 4
Fig. 4

Comparison of the pyrometric temperatures (Marathon) with the simultaneous thermocouple readouts. The relative position of the probe tip relates to the furnace housing. The probe was inserted from the left side, and steady-state temperatures were measured from both sides of the hot zone (only the first segment heated, Fig. 3) after reaching thermal equilibrium with the surroundings (typical time delay of 120 s ). Mean temperatures and corresponding standard deviations were calculated from six consecutive measurements. The dependence of differences between thermocouple readouts and optical measurements as a function of the probe position with respect to the hot zone is shown with enlarged temperature scale.

Fig. 5
Fig. 5

Comparison of the pyrometric temperatures using the probe with (Probe A) and without (Probe B) blackbody emitter at the tip. Other experimental conditions were the same as in the previous figure except for the hot zone dimensions (all three segments heated, Fig. 3) and the temperature of the furnace adjusted.

Fig. 6
Fig. 6

Time evolution of the temperatures recorded by a pyrometer (PyroCrytur) each 3 s (averaging time of 1 s ) in the course of stepwise insertion (sudden displacements of 1 cm lasting less than 1 s ) of the probe into the furnace hot zone. Thermocouple readouts after reaching stable temperature are shown for comparison. A two-exponential rise to the final temperature was observed with time constants of 5 ± 1 s and 35 ± 5 s and relative amplitudes of 0.4 ± 0.1 and 0.60 ± 0.1 , respectively (inset).

Fig. 7
Fig. 7

Sapphire probe inserted into the induction furnace. The slug on the melt surface, first iridium cover, and second shield from the ZrO 2 ceramics are visible from the bottom upward.

Fig. 8
Fig. 8

Temperature profiles inside the induction heated furnace for single-crystal growth measured by the sapphire probe. Temperatures were measured in the course of induction heating with a power of 5 and 5.5 kW .

Metrics