Abstract

A new single-polarization wavelength splitter based on the photonic crystal fiber (PCF) has been proposed. The full-vector finite-element method (FEM) is applied to analyze the single-polarization single-mode guiding properties. Splitting of two different wavelengths is realized by adjusting the structural parameters. The semi-vector three-dimensional beam propagation method is employed to confirm the wavelength splitting characteristics of the PCF. Numerical simulations show that the wavelengths of 1.3 μm and 1.55 μm are split for a fiber length of 10.7 mm with single-polarization guiding in each core. The crosstalk between the two cores is low over appreciable optical bandwidths.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. St. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
  2. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
    [CrossRef]
  3. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963(1997).
    [CrossRef]
  4. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
  5. X. Sun, “Wavelength-selective coupling of dual-core photonic crystal fiber with a hybrid light-guiding mechanism,” Opt. Lett. 32, 2484–2486 (2007).
    [CrossRef]
  6. M. Y. Chen and R. J. Yu, “Coupling characteristics of dual-core rectangular lattice photonic crystal fibres,” J. Opt. A: Pure Appl. Opt . 6, 805–808 (2004).
  7. K. Saitoh, Y. Sato, and M. Koshiba, “Polarization splitter in three-core photonic crystal fibers,” Opt. Express 12, 3940–3946 (2004).
    [CrossRef]
  8. K. Saitoh and M. Koshiba, “Single-polarization single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 15, 1384–1386 (2003).
  9. H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, “Absolutely single polarization photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 182–184(2004).
  10. F. Zhang, M. Zhang, X. Y. Liu, and P. D. Ye, “Design of wideband single-polarization single-mode photonic crystal fiber,” J. Lightwave Technol. 25, 1184–1188(2007).
  11. Y. Yue, G. Kai, Z. Wang, C. Zhang, Y. Lu, Y. Li, T. Sun, J. Long, J. Liu, Y. Liu, S. Yuan, and X. Dong, “Broadband single-polarization single-mode photonic crystal fiber coupler,” IEEE Photon. Technol. Lett. 18, 2032–2034(2006).
  12. J. Li, K. Duan, Y. Wang, X. Cao, Y. Guo, and X. Lin, “Design of a single-polarization single-mode photonic crystal fiber double-core coupler,” Optik 120, 490–496(2009).
  13. H.-l. Li, S.-q. Lou, W.-g. Chen, L.-w. Wang, and S.-s. Jian, “An asymmetric dual-core single-polarization single-mode photonic crystal fiber coupler,” Optoelectron. Lett. 6, 272–274 (2010).
    [CrossRef]
  14. L. Zhang and C. Yang, “Polarization splitter based on photonic crystal fibers,” Opt. Express 11, 1015–1020(2003).
    [CrossRef]
  15. L. Rosa, F. Poli, M. Foroni, A. Cucinotta, and S. Selleri, “Polarization splitter based on a square-lattice photonic crystal fiber,” Opt. Lett. 31, 441–443 (2006).
    [CrossRef]
  16. N. Florous, K. Saitoh, and M. Koshiba, “A novel approach for designing photonic crystal fiber splitters with polarization-independent propagation characteristics,” Opt. Express 13, 7365–7373 (2005).
    [CrossRef]
  17. G. P. Agrawal, Nonlinear Fibre Optics, 2nd ed. (Academic, 1995).
  18. B. H. Lee, J. B. Eom, J. Kim, D. S. Moon, U.-C. Paek, and G.-H. Yang, “Photonic crystal fiber coupler,” Opt. Lett. 27, 812–814 (2002).
    [CrossRef]
  19. K. Saitoh and M. Koshiba, “Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic waveguides,” J. Lightwave Technol. 19, 405–413 (2001).
    [CrossRef]

2010

H.-l. Li, S.-q. Lou, W.-g. Chen, L.-w. Wang, and S.-s. Jian, “An asymmetric dual-core single-polarization single-mode photonic crystal fiber coupler,” Optoelectron. Lett. 6, 272–274 (2010).
[CrossRef]

2009

J. Li, K. Duan, Y. Wang, X. Cao, Y. Guo, and X. Lin, “Design of a single-polarization single-mode photonic crystal fiber double-core coupler,” Optik 120, 490–496(2009).

2007

2006

Y. Yue, G. Kai, Z. Wang, C. Zhang, Y. Lu, Y. Li, T. Sun, J. Long, J. Liu, Y. Liu, S. Yuan, and X. Dong, “Broadband single-polarization single-mode photonic crystal fiber coupler,” IEEE Photon. Technol. Lett. 18, 2032–2034(2006).

L. Rosa, F. Poli, M. Foroni, A. Cucinotta, and S. Selleri, “Polarization splitter based on a square-lattice photonic crystal fiber,” Opt. Lett. 31, 441–443 (2006).
[CrossRef]

2005

2004

K. Saitoh, Y. Sato, and M. Koshiba, “Polarization splitter in three-core photonic crystal fibers,” Opt. Express 12, 3940–3946 (2004).
[CrossRef]

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, “Absolutely single polarization photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 182–184(2004).

M. Y. Chen and R. J. Yu, “Coupling characteristics of dual-core rectangular lattice photonic crystal fibres,” J. Opt. A: Pure Appl. Opt . 6, 805–808 (2004).

2003

K. Saitoh and M. Koshiba, “Single-polarization single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 15, 1384–1386 (2003).

P. St. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).

L. Zhang and C. Yang, “Polarization splitter based on photonic crystal fibers,” Opt. Express 11, 1015–1020(2003).
[CrossRef]

2002

2001

1998

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).

1997

1996

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fibre Optics, 2nd ed. (Academic, 1995).

Atkin, D. M.

Birks, T. A.

Broeng, J.

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).

Cao, X.

J. Li, K. Duan, Y. Wang, X. Cao, Y. Guo, and X. Lin, “Design of a single-polarization single-mode photonic crystal fiber double-core coupler,” Optik 120, 490–496(2009).

Chen, M. Y.

M. Y. Chen and R. J. Yu, “Coupling characteristics of dual-core rectangular lattice photonic crystal fibres,” J. Opt. A: Pure Appl. Opt . 6, 805–808 (2004).

Chen, W.-g.

H.-l. Li, S.-q. Lou, W.-g. Chen, L.-w. Wang, and S.-s. Jian, “An asymmetric dual-core single-polarization single-mode photonic crystal fiber coupler,” Optoelectron. Lett. 6, 272–274 (2010).
[CrossRef]

Cucinotta, A.

Dong, X.

Y. Yue, G. Kai, Z. Wang, C. Zhang, Y. Lu, Y. Li, T. Sun, J. Long, J. Liu, Y. Liu, S. Yuan, and X. Dong, “Broadband single-polarization single-mode photonic crystal fiber coupler,” IEEE Photon. Technol. Lett. 18, 2032–2034(2006).

Duan, K.

J. Li, K. Duan, Y. Wang, X. Cao, Y. Guo, and X. Lin, “Design of a single-polarization single-mode photonic crystal fiber double-core coupler,” Optik 120, 490–496(2009).

Eom, J. B.

Florous, N.

Foroni, M.

Guo, Y.

J. Li, K. Duan, Y. Wang, X. Cao, Y. Guo, and X. Lin, “Design of a single-polarization single-mode photonic crystal fiber double-core coupler,” Optik 120, 490–496(2009).

Jian, S.-s.

H.-l. Li, S.-q. Lou, W.-g. Chen, L.-w. Wang, and S.-s. Jian, “An asymmetric dual-core single-polarization single-mode photonic crystal fiber coupler,” Optoelectron. Lett. 6, 272–274 (2010).
[CrossRef]

Kai, G.

Y. Yue, G. Kai, Z. Wang, C. Zhang, Y. Lu, Y. Li, T. Sun, J. Long, J. Liu, Y. Liu, S. Yuan, and X. Dong, “Broadband single-polarization single-mode photonic crystal fiber coupler,” IEEE Photon. Technol. Lett. 18, 2032–2034(2006).

Kawanishi, S.

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, “Absolutely single polarization photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 182–184(2004).

Kim, J.

Knight, J. C.

Koshiba, M.

Koyanagi, S.

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, “Absolutely single polarization photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 182–184(2004).

Kubota, H.

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, “Absolutely single polarization photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 182–184(2004).

Lee, B. H.

Li, H.-l.

H.-l. Li, S.-q. Lou, W.-g. Chen, L.-w. Wang, and S.-s. Jian, “An asymmetric dual-core single-polarization single-mode photonic crystal fiber coupler,” Optoelectron. Lett. 6, 272–274 (2010).
[CrossRef]

Li, J.

J. Li, K. Duan, Y. Wang, X. Cao, Y. Guo, and X. Lin, “Design of a single-polarization single-mode photonic crystal fiber double-core coupler,” Optik 120, 490–496(2009).

Li, Y.

Y. Yue, G. Kai, Z. Wang, C. Zhang, Y. Lu, Y. Li, T. Sun, J. Long, J. Liu, Y. Liu, S. Yuan, and X. Dong, “Broadband single-polarization single-mode photonic crystal fiber coupler,” IEEE Photon. Technol. Lett. 18, 2032–2034(2006).

Lin, X.

J. Li, K. Duan, Y. Wang, X. Cao, Y. Guo, and X. Lin, “Design of a single-polarization single-mode photonic crystal fiber double-core coupler,” Optik 120, 490–496(2009).

Liu, J.

Y. Yue, G. Kai, Z. Wang, C. Zhang, Y. Lu, Y. Li, T. Sun, J. Long, J. Liu, Y. Liu, S. Yuan, and X. Dong, “Broadband single-polarization single-mode photonic crystal fiber coupler,” IEEE Photon. Technol. Lett. 18, 2032–2034(2006).

Liu, X. Y.

Liu, Y.

Y. Yue, G. Kai, Z. Wang, C. Zhang, Y. Lu, Y. Li, T. Sun, J. Long, J. Liu, Y. Liu, S. Yuan, and X. Dong, “Broadband single-polarization single-mode photonic crystal fiber coupler,” IEEE Photon. Technol. Lett. 18, 2032–2034(2006).

Long, J.

Y. Yue, G. Kai, Z. Wang, C. Zhang, Y. Lu, Y. Li, T. Sun, J. Long, J. Liu, Y. Liu, S. Yuan, and X. Dong, “Broadband single-polarization single-mode photonic crystal fiber coupler,” IEEE Photon. Technol. Lett. 18, 2032–2034(2006).

Lou, S.-q.

H.-l. Li, S.-q. Lou, W.-g. Chen, L.-w. Wang, and S.-s. Jian, “An asymmetric dual-core single-polarization single-mode photonic crystal fiber coupler,” Optoelectron. Lett. 6, 272–274 (2010).
[CrossRef]

Lu, Y.

Y. Yue, G. Kai, Z. Wang, C. Zhang, Y. Lu, Y. Li, T. Sun, J. Long, J. Liu, Y. Liu, S. Yuan, and X. Dong, “Broadband single-polarization single-mode photonic crystal fiber coupler,” IEEE Photon. Technol. Lett. 18, 2032–2034(2006).

Moon, D. S.

Paek, U.-C.

Poli, F.

Rosa, L.

Russell, P. St. J.

Saitoh, K.

Sato, Y.

Selleri, S.

St. Russell, P.

P. St. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).

Sun, T.

Y. Yue, G. Kai, Z. Wang, C. Zhang, Y. Lu, Y. Li, T. Sun, J. Long, J. Liu, Y. Liu, S. Yuan, and X. Dong, “Broadband single-polarization single-mode photonic crystal fiber coupler,” IEEE Photon. Technol. Lett. 18, 2032–2034(2006).

Sun, X.

Tanaka, M.

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, “Absolutely single polarization photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 182–184(2004).

Wang, L.-w.

H.-l. Li, S.-q. Lou, W.-g. Chen, L.-w. Wang, and S.-s. Jian, “An asymmetric dual-core single-polarization single-mode photonic crystal fiber coupler,” Optoelectron. Lett. 6, 272–274 (2010).
[CrossRef]

Wang, Y.

J. Li, K. Duan, Y. Wang, X. Cao, Y. Guo, and X. Lin, “Design of a single-polarization single-mode photonic crystal fiber double-core coupler,” Optik 120, 490–496(2009).

Wang, Z.

Y. Yue, G. Kai, Z. Wang, C. Zhang, Y. Lu, Y. Li, T. Sun, J. Long, J. Liu, Y. Liu, S. Yuan, and X. Dong, “Broadband single-polarization single-mode photonic crystal fiber coupler,” IEEE Photon. Technol. Lett. 18, 2032–2034(2006).

Yamaguchi, S.

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, “Absolutely single polarization photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 182–184(2004).

Yang, C.

Yang, G.-H.

Ye, P. D.

Yu, R. J.

M. Y. Chen and R. J. Yu, “Coupling characteristics of dual-core rectangular lattice photonic crystal fibres,” J. Opt. A: Pure Appl. Opt . 6, 805–808 (2004).

Yuan, S.

Y. Yue, G. Kai, Z. Wang, C. Zhang, Y. Lu, Y. Li, T. Sun, J. Long, J. Liu, Y. Liu, S. Yuan, and X. Dong, “Broadband single-polarization single-mode photonic crystal fiber coupler,” IEEE Photon. Technol. Lett. 18, 2032–2034(2006).

Yue, Y.

Y. Yue, G. Kai, Z. Wang, C. Zhang, Y. Lu, Y. Li, T. Sun, J. Long, J. Liu, Y. Liu, S. Yuan, and X. Dong, “Broadband single-polarization single-mode photonic crystal fiber coupler,” IEEE Photon. Technol. Lett. 18, 2032–2034(2006).

Zhang, C.

Y. Yue, G. Kai, Z. Wang, C. Zhang, Y. Lu, Y. Li, T. Sun, J. Long, J. Liu, Y. Liu, S. Yuan, and X. Dong, “Broadband single-polarization single-mode photonic crystal fiber coupler,” IEEE Photon. Technol. Lett. 18, 2032–2034(2006).

Zhang, F.

Zhang, L.

Zhang, M.

IEEE Photon. Technol. Lett.

K. Saitoh and M. Koshiba, “Single-polarization single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 15, 1384–1386 (2003).

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, “Absolutely single polarization photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 182–184(2004).

Y. Yue, G. Kai, Z. Wang, C. Zhang, Y. Lu, Y. Li, T. Sun, J. Long, J. Liu, Y. Liu, S. Yuan, and X. Dong, “Broadband single-polarization single-mode photonic crystal fiber coupler,” IEEE Photon. Technol. Lett. 18, 2032–2034(2006).

J. Lightwave Technol.

J. Opt. A: Pure Appl. Opt

M. Y. Chen and R. J. Yu, “Coupling characteristics of dual-core rectangular lattice photonic crystal fibres,” J. Opt. A: Pure Appl. Opt . 6, 805–808 (2004).

Opt. Express

Opt. Lett.

Optik

J. Li, K. Duan, Y. Wang, X. Cao, Y. Guo, and X. Lin, “Design of a single-polarization single-mode photonic crystal fiber double-core coupler,” Optik 120, 490–496(2009).

Optoelectron. Lett.

H.-l. Li, S.-q. Lou, W.-g. Chen, L.-w. Wang, and S.-s. Jian, “An asymmetric dual-core single-polarization single-mode photonic crystal fiber coupler,” Optoelectron. Lett. 6, 272–274 (2010).
[CrossRef]

Science

P. St. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).

Other

G. P. Agrawal, Nonlinear Fibre Optics, 2nd ed. (Academic, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Cross section of the proposed single-polarization wavelength splitter.

Fig. 2.
Fig. 2.

Electric field component of x-polarized mode: (a) odd mode; (b) even mode.

Fig. 3.
Fig. 3.

Effective indices of two orthogonal polarization modes and cladding index as a function of wavelength for the dual-core SPSM PCF. The hole pitch Λx=2.6μm, Λy=1.8μm, d1=2.2μm, d2=1.8μm, d3=1.26μm, and d4=1μm.

Fig. 4.
Fig. 4.

Coupling length ratio for x-polarization modes at 1.3 μm and 1.55 μm as a function of the parameter d2 for various values of the small hole diameter d4.

Fig. 5.
Fig. 5.

Effective indices of two orthogonal polarization modes and cladding index as a function of wavelength for the PCF-splitter. The hole pitch Λx=2.6μm, Λy=1.8μm, d1=2.2μm, d2=1.55μm, d3=1.26μm, and d4=1μm.

Fig. 6.
Fig. 6.

Effective indices of two orthogonal polarization modes and cladding index as the functions of wavelength for the PCF-splitter. The hole pitch Λx=2.6μm, Λy=1.8μm, d1=2.2μm, d2=1.77μm, d3=1.26μm, and d4=1μm.

Fig. 7.
Fig. 7.

Confinement losses of the two orthogonal polarization modes (odd modes) as a function of wavelength for the PCF-splitter. The parameters are Λx=2.6μm, Λy=1.8μm, d1=2.2μm, d2=1.55μm (solid line), d2=1.77μm (dash line), d3=1.26μm, and d4=1μm.

Fig. 8.
Fig. 8.

Normalized power distribution in the PCF-splitter at 1.3 μm and 1.55 μm for core A and core B.

Fig. 9.
Fig. 9.

Electric field distribution of the single-polarization PCF wavelength splitter for (a) λ=1.3μm and z=0mm, (b) λ=1.3μm and z=5mm, (c) λ=1.3μm and z=10.7mm, (d) λ=1.55μm and z=0mm, (e) λ=1.55μm and z=5mm, (f) λ=1.55μm and z=10.7mm.

Fig. 10.
Fig. 10.

Crosstalk between the two cores of the PCF-splitter and the available bandwidth for (a) λd1=1.3μm and (b) λd2=1.55μm.

Tables (1)

Tables Icon

Table 1. Confinement Loss of the Two Orthogonal Polarization Modes for the PCF-Splitter at Wavelength of 1.3 μm and 1.55 μm after a Propagation of the Physical Length

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Ex(x,y,z)=a+Exeven(x,y)einxevenkz+aExodd(x,y)einxoddkz,
Ey(x,y,z)=a+Eyeven(x,y)einyevenkz+aEyodd(x,y)einyoddkz,
δx,y=kz(nx,yevennx,yodd).
Lic=πβievenβiodd=λ2(nievenniodd),
Pout,A=Pincos2(π2zLic),
Pout,B=Pinsin2(π2zLic),
L=mLcx(λ1)=nLcx(λ2),
Lcx(λ1)Lcx(λ2)=λ1λ2nxeven(λ2)nxodd(λ2)nxeven(λ1)nxodd(λ1).
Crosstalk=10log10[P(λu)P(λd)][dB],

Metrics