Abstract

This paper reports a maskless multiple-beam laser lithography technique for large-area nanostructure/microstructure fabrication. This lithography technique can flexibly generate arbitrary nanostructures/microstructures over a large area at a high speed. The feature size of the nanostructures/microstructures can be controlled by exposure time and moving speed of the nanostage. Functional predesigned patterns, including split-ring resonator metamaterials for terahertz waves, can be obtained. More complicated structures can be made by single- and double-exposure schemes to make hybrid nanostructures/microstructures and tune surface plasmonic resonance properties. Meanwhile, microstructures with large height to lateral dimension ratios (2.5D microstructures) fabricated on silicon substrates can be used as mold tools for soft lithography. This technology shows its unique capacity to create various nanostructures/microstructures for extensive applications.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. A. Kyriazidou, H. F. Contopanagos, and N. G. Alexopoulos, “Monolithic waveguide filters using printed photonic-bandgap materials,” IEEE Trans. Microwave Theory Tech. 49, 297–307(2001).
    [CrossRef]
  2. K. L. Gunderson, S. Kruglyak, M. S. Graige, F. Garcia, B. G. Kermani, C. Zhao, D. Che, T. Dickinson, E. Wickham, J. Bierle, D. Doucet, M. Milewski, R. Yang, C. Siegmund, J. Haas, L. Zhou, A. Oliphant, J.-B. Fan, S. Barnard, and M. S. Chee, “Decoding randomly ordered DNA arrays,” Genome Res. 14, 870–877 (2004).
    [CrossRef]
  3. J. M. Bustillo, R. T. Howe, and R. S. Muller, “Surface micromachining for microelectromechanical systems,” Proc. IEEE 86, 1552–1574 (1998).
    [CrossRef]
  4. A. W. Martinez, S. T. Phillips, and G. M. Whitesides, “Three-dimensional microfluidic devices fabricated in layered paper and tape,” Proc. Natl. Acad. Sci. USA 105, 19606–19611(2008).
    [CrossRef]
  5. J. M. Kim, M. Patil, W. G. Jeong, I. B. Hur, C. Shin, S. M. Jung, M. H. Choi, and S. S. Choi, “Haze generation effect by pellicle and packing box on photomask,” Proc. SPIE 6730, 673040(2007).
    [CrossRef]
  6. I. Brodie, E. R. Westerberg, D. R. Cone, J. J. Muray, N. Williams, and L. Gasiorek, “A multiple-electron-beam exposure system for high-throughput, direct-write submicrometer lithography,” IEEE Trans. Electron Devices 28, 1422–1428(1981).
    [CrossRef]
  7. S. Leggatt and M. C. Hutley, “Microlens arrays for interconnection of single mode fibre arrays,” Electron. Lett. 27, 238–240 (1991).
    [CrossRef]
  8. M. E. Motamedi, “Micro-opto-electro-mechanical systems,” Opt. Eng. 33, 3505–3517 (1994).
    [CrossRef]
  9. D. S. Ko, “A decompression method for the fabrication of polymer microlens arrays,” Infrared Phys. Technol. 45, 177–180 (2004).
    [CrossRef]
  10. C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. Senthil Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89, 191125(2006).
    [CrossRef]
  11. R. D. Piner, J. Zhu, F. Xu, S. Hong, and C. A. Mirkin, “Dip-pen nanolithography,” Science 283, 661–663 (1999).
    [CrossRef]
  12. Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast-laser-induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89, 041108 (2006).
    [CrossRef]
  13. M. C. Chou, C. T. Pan, S. C. Shen, M. F. Chen, K. L. Lin, and S. T. Wu, “A novel method to fabricate gapless hexagonal micro-lens array,” Sens. Actuators A 118, 298–306 (2005).
    [CrossRef]
  14. B. Besold and N. Lindlein, “Practical limitations of Talbot imaging with microlens arrays,” Pure Appl. Opt. 6, 691–698(1997).
    [CrossRef]
  15. R. Menon, A. Patel, D. Gil, and H. I. Smith, “Maskless lithography,” Mater. Today 8(2), 26–33 (2005).
    [CrossRef]
  16. C. S. Lim, M. H. Hong, Y. Lin, G. X. Chen, A. Senthil Kumar, M. Rahman, L. S. Tan, J. Y. H. Fuh, and G. C. Lim, “Sub-micron surface patterning by laser irradiation through microlens arrays,” J. Mater. Process. Technol. 192, 328–333(2007).
    [CrossRef]
  17. H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).
    [CrossRef]
  18. N. R. Han, Z. C. Chen, C. S. Lim, B. Ng, and M. H. Hong, “Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates,” Opt. Express 19, 6990–6998 (2011).
    [CrossRef]
  19. Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95, 043113(2009).
    [CrossRef]
  20. H. Wu, T. W. Odom, and G. M. Whitesides, “Connectivity of features in microlens array reduction photolithography: generation of various patterns with a single photomask,” J. Am. Chem. Soc. 124, 7288–7289(2002).
    [CrossRef]
  21. J. Serpe, J. Kim, and L. A. Lyon, “Colloidal hydrogel microlenses,” Adv. Mater. 16, 184–187 (2004).
    [CrossRef]
  22. H. T. Dai, Y. J. Liu, X. W. Sun, and D. Luo, “A negative–positive tunable liquid-crystal microlens array by printing,” Opt. Express 17, 4317–4323 (2009).
    [CrossRef]

2011

2009

Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95, 043113(2009).
[CrossRef]

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).
[CrossRef]

H. T. Dai, Y. J. Liu, X. W. Sun, and D. Luo, “A negative–positive tunable liquid-crystal microlens array by printing,” Opt. Express 17, 4317–4323 (2009).
[CrossRef]

2008

A. W. Martinez, S. T. Phillips, and G. M. Whitesides, “Three-dimensional microfluidic devices fabricated in layered paper and tape,” Proc. Natl. Acad. Sci. USA 105, 19606–19611(2008).
[CrossRef]

2007

J. M. Kim, M. Patil, W. G. Jeong, I. B. Hur, C. Shin, S. M. Jung, M. H. Choi, and S. S. Choi, “Haze generation effect by pellicle and packing box on photomask,” Proc. SPIE 6730, 673040(2007).
[CrossRef]

C. S. Lim, M. H. Hong, Y. Lin, G. X. Chen, A. Senthil Kumar, M. Rahman, L. S. Tan, J. Y. H. Fuh, and G. C. Lim, “Sub-micron surface patterning by laser irradiation through microlens arrays,” J. Mater. Process. Technol. 192, 328–333(2007).
[CrossRef]

2006

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. Senthil Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89, 191125(2006).
[CrossRef]

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast-laser-induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89, 041108 (2006).
[CrossRef]

2005

M. C. Chou, C. T. Pan, S. C. Shen, M. F. Chen, K. L. Lin, and S. T. Wu, “A novel method to fabricate gapless hexagonal micro-lens array,” Sens. Actuators A 118, 298–306 (2005).
[CrossRef]

R. Menon, A. Patel, D. Gil, and H. I. Smith, “Maskless lithography,” Mater. Today 8(2), 26–33 (2005).
[CrossRef]

2004

K. L. Gunderson, S. Kruglyak, M. S. Graige, F. Garcia, B. G. Kermani, C. Zhao, D. Che, T. Dickinson, E. Wickham, J. Bierle, D. Doucet, M. Milewski, R. Yang, C. Siegmund, J. Haas, L. Zhou, A. Oliphant, J.-B. Fan, S. Barnard, and M. S. Chee, “Decoding randomly ordered DNA arrays,” Genome Res. 14, 870–877 (2004).
[CrossRef]

D. S. Ko, “A decompression method for the fabrication of polymer microlens arrays,” Infrared Phys. Technol. 45, 177–180 (2004).
[CrossRef]

J. Serpe, J. Kim, and L. A. Lyon, “Colloidal hydrogel microlenses,” Adv. Mater. 16, 184–187 (2004).
[CrossRef]

2002

H. Wu, T. W. Odom, and G. M. Whitesides, “Connectivity of features in microlens array reduction photolithography: generation of various patterns with a single photomask,” J. Am. Chem. Soc. 124, 7288–7289(2002).
[CrossRef]

2001

C. A. Kyriazidou, H. F. Contopanagos, and N. G. Alexopoulos, “Monolithic waveguide filters using printed photonic-bandgap materials,” IEEE Trans. Microwave Theory Tech. 49, 297–307(2001).
[CrossRef]

1999

R. D. Piner, J. Zhu, F. Xu, S. Hong, and C. A. Mirkin, “Dip-pen nanolithography,” Science 283, 661–663 (1999).
[CrossRef]

1998

J. M. Bustillo, R. T. Howe, and R. S. Muller, “Surface micromachining for microelectromechanical systems,” Proc. IEEE 86, 1552–1574 (1998).
[CrossRef]

1997

B. Besold and N. Lindlein, “Practical limitations of Talbot imaging with microlens arrays,” Pure Appl. Opt. 6, 691–698(1997).
[CrossRef]

1994

M. E. Motamedi, “Micro-opto-electro-mechanical systems,” Opt. Eng. 33, 3505–3517 (1994).
[CrossRef]

1991

S. Leggatt and M. C. Hutley, “Microlens arrays for interconnection of single mode fibre arrays,” Electron. Lett. 27, 238–240 (1991).
[CrossRef]

1981

I. Brodie, E. R. Westerberg, D. R. Cone, J. J. Muray, N. Williams, and L. Gasiorek, “A multiple-electron-beam exposure system for high-throughput, direct-write submicrometer lithography,” IEEE Trans. Electron Devices 28, 1422–1428(1981).
[CrossRef]

Alexopoulos, N. G.

C. A. Kyriazidou, H. F. Contopanagos, and N. G. Alexopoulos, “Monolithic waveguide filters using printed photonic-bandgap materials,” IEEE Trans. Microwave Theory Tech. 49, 297–307(2001).
[CrossRef]

Averitt, R. D.

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).
[CrossRef]

Azad, A. K.

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).
[CrossRef]

Barnard, S.

K. L. Gunderson, S. Kruglyak, M. S. Graige, F. Garcia, B. G. Kermani, C. Zhao, D. Che, T. Dickinson, E. Wickham, J. Bierle, D. Doucet, M. Milewski, R. Yang, C. Siegmund, J. Haas, L. Zhou, A. Oliphant, J.-B. Fan, S. Barnard, and M. S. Chee, “Decoding randomly ordered DNA arrays,” Genome Res. 14, 870–877 (2004).
[CrossRef]

Bartal, G.

Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95, 043113(2009).
[CrossRef]

Besold, B.

B. Besold and N. Lindlein, “Practical limitations of Talbot imaging with microlens arrays,” Pure Appl. Opt. 6, 691–698(1997).
[CrossRef]

Bierle, J.

K. L. Gunderson, S. Kruglyak, M. S. Graige, F. Garcia, B. G. Kermani, C. Zhao, D. Che, T. Dickinson, E. Wickham, J. Bierle, D. Doucet, M. Milewski, R. Yang, C. Siegmund, J. Haas, L. Zhou, A. Oliphant, J.-B. Fan, S. Barnard, and M. S. Chee, “Decoding randomly ordered DNA arrays,” Genome Res. 14, 870–877 (2004).
[CrossRef]

Brodie, I.

I. Brodie, E. R. Westerberg, D. R. Cone, J. J. Muray, N. Williams, and L. Gasiorek, “A multiple-electron-beam exposure system for high-throughput, direct-write submicrometer lithography,” IEEE Trans. Electron Devices 28, 1422–1428(1981).
[CrossRef]

Bustillo, J. M.

J. M. Bustillo, R. T. Howe, and R. S. Muller, “Surface micromachining for microelectromechanical systems,” Proc. IEEE 86, 1552–1574 (1998).
[CrossRef]

Che, D.

K. L. Gunderson, S. Kruglyak, M. S. Graige, F. Garcia, B. G. Kermani, C. Zhao, D. Che, T. Dickinson, E. Wickham, J. Bierle, D. Doucet, M. Milewski, R. Yang, C. Siegmund, J. Haas, L. Zhou, A. Oliphant, J.-B. Fan, S. Barnard, and M. S. Chee, “Decoding randomly ordered DNA arrays,” Genome Res. 14, 870–877 (2004).
[CrossRef]

Chee, M. S.

K. L. Gunderson, S. Kruglyak, M. S. Graige, F. Garcia, B. G. Kermani, C. Zhao, D. Che, T. Dickinson, E. Wickham, J. Bierle, D. Doucet, M. Milewski, R. Yang, C. Siegmund, J. Haas, L. Zhou, A. Oliphant, J.-B. Fan, S. Barnard, and M. S. Chee, “Decoding randomly ordered DNA arrays,” Genome Res. 14, 870–877 (2004).
[CrossRef]

Chen, G. X.

C. S. Lim, M. H. Hong, Y. Lin, G. X. Chen, A. Senthil Kumar, M. Rahman, L. S. Tan, J. Y. H. Fuh, and G. C. Lim, “Sub-micron surface patterning by laser irradiation through microlens arrays,” J. Mater. Process. Technol. 192, 328–333(2007).
[CrossRef]

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast-laser-induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89, 041108 (2006).
[CrossRef]

Chen, H. T.

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).
[CrossRef]

Chen, M. F.

M. C. Chou, C. T. Pan, S. C. Shen, M. F. Chen, K. L. Lin, and S. T. Wu, “A novel method to fabricate gapless hexagonal micro-lens array,” Sens. Actuators A 118, 298–306 (2005).
[CrossRef]

Chen, Z. C.

Choi, M. H.

J. M. Kim, M. Patil, W. G. Jeong, I. B. Hur, C. Shin, S. M. Jung, M. H. Choi, and S. S. Choi, “Haze generation effect by pellicle and packing box on photomask,” Proc. SPIE 6730, 673040(2007).
[CrossRef]

Choi, S. S.

J. M. Kim, M. Patil, W. G. Jeong, I. B. Hur, C. Shin, S. M. Jung, M. H. Choi, and S. S. Choi, “Haze generation effect by pellicle and packing box on photomask,” Proc. SPIE 6730, 673040(2007).
[CrossRef]

Chong, T. C.

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast-laser-induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89, 041108 (2006).
[CrossRef]

Chou, M. C.

M. C. Chou, C. T. Pan, S. C. Shen, M. F. Chen, K. L. Lin, and S. T. Wu, “A novel method to fabricate gapless hexagonal micro-lens array,” Sens. Actuators A 118, 298–306 (2005).
[CrossRef]

Cich, M. J.

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).
[CrossRef]

Cone, D. R.

I. Brodie, E. R. Westerberg, D. R. Cone, J. J. Muray, N. Williams, and L. Gasiorek, “A multiple-electron-beam exposure system for high-throughput, direct-write submicrometer lithography,” IEEE Trans. Electron Devices 28, 1422–1428(1981).
[CrossRef]

Contopanagos, H. F.

C. A. Kyriazidou, H. F. Contopanagos, and N. G. Alexopoulos, “Monolithic waveguide filters using printed photonic-bandgap materials,” IEEE Trans. Microwave Theory Tech. 49, 297–307(2001).
[CrossRef]

Cubukcu,

Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95, 043113(2009).
[CrossRef]

Dai, H. T.

Dickinson, T.

K. L. Gunderson, S. Kruglyak, M. S. Graige, F. Garcia, B. G. Kermani, C. Zhao, D. Che, T. Dickinson, E. Wickham, J. Bierle, D. Doucet, M. Milewski, R. Yang, C. Siegmund, J. Haas, L. Zhou, A. Oliphant, J.-B. Fan, S. Barnard, and M. S. Chee, “Decoding randomly ordered DNA arrays,” Genome Res. 14, 870–877 (2004).
[CrossRef]

Doucet, D.

K. L. Gunderson, S. Kruglyak, M. S. Graige, F. Garcia, B. G. Kermani, C. Zhao, D. Che, T. Dickinson, E. Wickham, J. Bierle, D. Doucet, M. Milewski, R. Yang, C. Siegmund, J. Haas, L. Zhou, A. Oliphant, J.-B. Fan, S. Barnard, and M. S. Chee, “Decoding randomly ordered DNA arrays,” Genome Res. 14, 870–877 (2004).
[CrossRef]

Fan, J.-B.

K. L. Gunderson, S. Kruglyak, M. S. Graige, F. Garcia, B. G. Kermani, C. Zhao, D. Che, T. Dickinson, E. Wickham, J. Bierle, D. Doucet, M. Milewski, R. Yang, C. Siegmund, J. Haas, L. Zhou, A. Oliphant, J.-B. Fan, S. Barnard, and M. S. Chee, “Decoding randomly ordered DNA arrays,” Genome Res. 14, 870–877 (2004).
[CrossRef]

Fuh, J. Y. H.

C. S. Lim, M. H. Hong, Y. Lin, G. X. Chen, A. Senthil Kumar, M. Rahman, L. S. Tan, J. Y. H. Fuh, and G. C. Lim, “Sub-micron surface patterning by laser irradiation through microlens arrays,” J. Mater. Process. Technol. 192, 328–333(2007).
[CrossRef]

Garcia, F.

K. L. Gunderson, S. Kruglyak, M. S. Graige, F. Garcia, B. G. Kermani, C. Zhao, D. Che, T. Dickinson, E. Wickham, J. Bierle, D. Doucet, M. Milewski, R. Yang, C. Siegmund, J. Haas, L. Zhou, A. Oliphant, J.-B. Fan, S. Barnard, and M. S. Chee, “Decoding randomly ordered DNA arrays,” Genome Res. 14, 870–877 (2004).
[CrossRef]

Gasiorek, L.

I. Brodie, E. R. Westerberg, D. R. Cone, J. J. Muray, N. Williams, and L. Gasiorek, “A multiple-electron-beam exposure system for high-throughput, direct-write submicrometer lithography,” IEEE Trans. Electron Devices 28, 1422–1428(1981).
[CrossRef]

Gil, D.

R. Menon, A. Patel, D. Gil, and H. I. Smith, “Maskless lithography,” Mater. Today 8(2), 26–33 (2005).
[CrossRef]

Graige, M. S.

K. L. Gunderson, S. Kruglyak, M. S. Graige, F. Garcia, B. G. Kermani, C. Zhao, D. Che, T. Dickinson, E. Wickham, J. Bierle, D. Doucet, M. Milewski, R. Yang, C. Siegmund, J. Haas, L. Zhou, A. Oliphant, J.-B. Fan, S. Barnard, and M. S. Chee, “Decoding randomly ordered DNA arrays,” Genome Res. 14, 870–877 (2004).
[CrossRef]

Gunderson, K. L.

K. L. Gunderson, S. Kruglyak, M. S. Graige, F. Garcia, B. G. Kermani, C. Zhao, D. Che, T. Dickinson, E. Wickham, J. Bierle, D. Doucet, M. Milewski, R. Yang, C. Siegmund, J. Haas, L. Zhou, A. Oliphant, J.-B. Fan, S. Barnard, and M. S. Chee, “Decoding randomly ordered DNA arrays,” Genome Res. 14, 870–877 (2004).
[CrossRef]

Haas, J.

K. L. Gunderson, S. Kruglyak, M. S. Graige, F. Garcia, B. G. Kermani, C. Zhao, D. Che, T. Dickinson, E. Wickham, J. Bierle, D. Doucet, M. Milewski, R. Yang, C. Siegmund, J. Haas, L. Zhou, A. Oliphant, J.-B. Fan, S. Barnard, and M. S. Chee, “Decoding randomly ordered DNA arrays,” Genome Res. 14, 870–877 (2004).
[CrossRef]

Han, N. R.

Hong, M. H.

N. R. Han, Z. C. Chen, C. S. Lim, B. Ng, and M. H. Hong, “Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates,” Opt. Express 19, 6990–6998 (2011).
[CrossRef]

C. S. Lim, M. H. Hong, Y. Lin, G. X. Chen, A. Senthil Kumar, M. Rahman, L. S. Tan, J. Y. H. Fuh, and G. C. Lim, “Sub-micron surface patterning by laser irradiation through microlens arrays,” J. Mater. Process. Technol. 192, 328–333(2007).
[CrossRef]

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. Senthil Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89, 191125(2006).
[CrossRef]

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast-laser-induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89, 041108 (2006).
[CrossRef]

Hong, S.

R. D. Piner, J. Zhu, F. Xu, S. Hong, and C. A. Mirkin, “Dip-pen nanolithography,” Science 283, 661–663 (1999).
[CrossRef]

Howe, R. T.

J. M. Bustillo, R. T. Howe, and R. S. Muller, “Surface micromachining for microelectromechanical systems,” Proc. IEEE 86, 1552–1574 (1998).
[CrossRef]

Hur, I. B.

J. M. Kim, M. Patil, W. G. Jeong, I. B. Hur, C. Shin, S. M. Jung, M. H. Choi, and S. S. Choi, “Haze generation effect by pellicle and packing box on photomask,” Proc. SPIE 6730, 673040(2007).
[CrossRef]

Hutley, M. C.

S. Leggatt and M. C. Hutley, “Microlens arrays for interconnection of single mode fibre arrays,” Electron. Lett. 27, 238–240 (1991).
[CrossRef]

Jeong, W. G.

J. M. Kim, M. Patil, W. G. Jeong, I. B. Hur, C. Shin, S. M. Jung, M. H. Choi, and S. S. Choi, “Haze generation effect by pellicle and packing box on photomask,” Proc. SPIE 6730, 673040(2007).
[CrossRef]

Jung, S. M.

J. M. Kim, M. Patil, W. G. Jeong, I. B. Hur, C. Shin, S. M. Jung, M. H. Choi, and S. S. Choi, “Haze generation effect by pellicle and packing box on photomask,” Proc. SPIE 6730, 673040(2007).
[CrossRef]

Kermani, B. G.

K. L. Gunderson, S. Kruglyak, M. S. Graige, F. Garcia, B. G. Kermani, C. Zhao, D. Che, T. Dickinson, E. Wickham, J. Bierle, D. Doucet, M. Milewski, R. Yang, C. Siegmund, J. Haas, L. Zhou, A. Oliphant, J.-B. Fan, S. Barnard, and M. S. Chee, “Decoding randomly ordered DNA arrays,” Genome Res. 14, 870–877 (2004).
[CrossRef]

Kim, J.

J. Serpe, J. Kim, and L. A. Lyon, “Colloidal hydrogel microlenses,” Adv. Mater. 16, 184–187 (2004).
[CrossRef]

Kim, J. M.

J. M. Kim, M. Patil, W. G. Jeong, I. B. Hur, C. Shin, S. M. Jung, M. H. Choi, and S. S. Choi, “Haze generation effect by pellicle and packing box on photomask,” Proc. SPIE 6730, 673040(2007).
[CrossRef]

Ko, D. S.

D. S. Ko, “A decompression method for the fabrication of polymer microlens arrays,” Infrared Phys. Technol. 45, 177–180 (2004).
[CrossRef]

Kruglyak, S.

K. L. Gunderson, S. Kruglyak, M. S. Graige, F. Garcia, B. G. Kermani, C. Zhao, D. Che, T. Dickinson, E. Wickham, J. Bierle, D. Doucet, M. Milewski, R. Yang, C. Siegmund, J. Haas, L. Zhou, A. Oliphant, J.-B. Fan, S. Barnard, and M. S. Chee, “Decoding randomly ordered DNA arrays,” Genome Res. 14, 870–877 (2004).
[CrossRef]

Kyriazidou, C. A.

C. A. Kyriazidou, H. F. Contopanagos, and N. G. Alexopoulos, “Monolithic waveguide filters using printed photonic-bandgap materials,” IEEE Trans. Microwave Theory Tech. 49, 297–307(2001).
[CrossRef]

Leggatt, S.

S. Leggatt and M. C. Hutley, “Microlens arrays for interconnection of single mode fibre arrays,” Electron. Lett. 27, 238–240 (1991).
[CrossRef]

Lim, C. S.

N. R. Han, Z. C. Chen, C. S. Lim, B. Ng, and M. H. Hong, “Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates,” Opt. Express 19, 6990–6998 (2011).
[CrossRef]

C. S. Lim, M. H. Hong, Y. Lin, G. X. Chen, A. Senthil Kumar, M. Rahman, L. S. Tan, J. Y. H. Fuh, and G. C. Lim, “Sub-micron surface patterning by laser irradiation through microlens arrays,” J. Mater. Process. Technol. 192, 328–333(2007).
[CrossRef]

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. Senthil Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89, 191125(2006).
[CrossRef]

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast-laser-induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89, 041108 (2006).
[CrossRef]

Lim, G. C.

C. S. Lim, M. H. Hong, Y. Lin, G. X. Chen, A. Senthil Kumar, M. Rahman, L. S. Tan, J. Y. H. Fuh, and G. C. Lim, “Sub-micron surface patterning by laser irradiation through microlens arrays,” J. Mater. Process. Technol. 192, 328–333(2007).
[CrossRef]

Lin, K. L.

M. C. Chou, C. T. Pan, S. C. Shen, M. F. Chen, K. L. Lin, and S. T. Wu, “A novel method to fabricate gapless hexagonal micro-lens array,” Sens. Actuators A 118, 298–306 (2005).
[CrossRef]

Lin, Y.

C. S. Lim, M. H. Hong, Y. Lin, G. X. Chen, A. Senthil Kumar, M. Rahman, L. S. Tan, J. Y. H. Fuh, and G. C. Lim, “Sub-micron surface patterning by laser irradiation through microlens arrays,” J. Mater. Process. Technol. 192, 328–333(2007).
[CrossRef]

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast-laser-induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89, 041108 (2006).
[CrossRef]

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. Senthil Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89, 191125(2006).
[CrossRef]

Lindlein, N.

B. Besold and N. Lindlein, “Practical limitations of Talbot imaging with microlens arrays,” Pure Appl. Opt. 6, 691–698(1997).
[CrossRef]

Liu, Y. J.

Luk’yanchuk, B. S.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. Senthil Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89, 191125(2006).
[CrossRef]

Luo, D.

Lyon, L. A.

J. Serpe, J. Kim, and L. A. Lyon, “Colloidal hydrogel microlenses,” Adv. Mater. 16, 184–187 (2004).
[CrossRef]

Martinez, A. W.

A. W. Martinez, S. T. Phillips, and G. M. Whitesides, “Three-dimensional microfluidic devices fabricated in layered paper and tape,” Proc. Natl. Acad. Sci. USA 105, 19606–19611(2008).
[CrossRef]

Menon, R.

R. Menon, A. Patel, D. Gil, and H. I. Smith, “Maskless lithography,” Mater. Today 8(2), 26–33 (2005).
[CrossRef]

Milewski, M.

K. L. Gunderson, S. Kruglyak, M. S. Graige, F. Garcia, B. G. Kermani, C. Zhao, D. Che, T. Dickinson, E. Wickham, J. Bierle, D. Doucet, M. Milewski, R. Yang, C. Siegmund, J. Haas, L. Zhou, A. Oliphant, J.-B. Fan, S. Barnard, and M. S. Chee, “Decoding randomly ordered DNA arrays,” Genome Res. 14, 870–877 (2004).
[CrossRef]

Mirkin, C. A.

R. D. Piner, J. Zhu, F. Xu, S. Hong, and C. A. Mirkin, “Dip-pen nanolithography,” Science 283, 661–663 (1999).
[CrossRef]

Motamedi, M. E.

M. E. Motamedi, “Micro-opto-electro-mechanical systems,” Opt. Eng. 33, 3505–3517 (1994).
[CrossRef]

Muller, R. S.

J. M. Bustillo, R. T. Howe, and R. S. Muller, “Surface micromachining for microelectromechanical systems,” Proc. IEEE 86, 1552–1574 (1998).
[CrossRef]

Muray, J. J.

I. Brodie, E. R. Westerberg, D. R. Cone, J. J. Muray, N. Williams, and L. Gasiorek, “A multiple-electron-beam exposure system for high-throughput, direct-write submicrometer lithography,” IEEE Trans. Electron Devices 28, 1422–1428(1981).
[CrossRef]

Ng, B.

Odom, T. W.

H. Wu, T. W. Odom, and G. M. Whitesides, “Connectivity of features in microlens array reduction photolithography: generation of various patterns with a single photomask,” J. Am. Chem. Soc. 124, 7288–7289(2002).
[CrossRef]

Oliphant, A.

K. L. Gunderson, S. Kruglyak, M. S. Graige, F. Garcia, B. G. Kermani, C. Zhao, D. Che, T. Dickinson, E. Wickham, J. Bierle, D. Doucet, M. Milewski, R. Yang, C. Siegmund, J. Haas, L. Zhou, A. Oliphant, J.-B. Fan, S. Barnard, and M. S. Chee, “Decoding randomly ordered DNA arrays,” Genome Res. 14, 870–877 (2004).
[CrossRef]

Padilla, W. J.

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).
[CrossRef]

Pan, C. T.

M. C. Chou, C. T. Pan, S. C. Shen, M. F. Chen, K. L. Lin, and S. T. Wu, “A novel method to fabricate gapless hexagonal micro-lens array,” Sens. Actuators A 118, 298–306 (2005).
[CrossRef]

Park, Y. S.

Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95, 043113(2009).
[CrossRef]

Patel, A.

R. Menon, A. Patel, D. Gil, and H. I. Smith, “Maskless lithography,” Mater. Today 8(2), 26–33 (2005).
[CrossRef]

Patil, M.

J. M. Kim, M. Patil, W. G. Jeong, I. B. Hur, C. Shin, S. M. Jung, M. H. Choi, and S. S. Choi, “Haze generation effect by pellicle and packing box on photomask,” Proc. SPIE 6730, 673040(2007).
[CrossRef]

Phillips, S. T.

A. W. Martinez, S. T. Phillips, and G. M. Whitesides, “Three-dimensional microfluidic devices fabricated in layered paper and tape,” Proc. Natl. Acad. Sci. USA 105, 19606–19611(2008).
[CrossRef]

Piner, R. D.

R. D. Piner, J. Zhu, F. Xu, S. Hong, and C. A. Mirkin, “Dip-pen nanolithography,” Science 283, 661–663 (1999).
[CrossRef]

Rahman, M.

C. S. Lim, M. H. Hong, Y. Lin, G. X. Chen, A. Senthil Kumar, M. Rahman, L. S. Tan, J. Y. H. Fuh, and G. C. Lim, “Sub-micron surface patterning by laser irradiation through microlens arrays,” J. Mater. Process. Technol. 192, 328–333(2007).
[CrossRef]

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. Senthil Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89, 191125(2006).
[CrossRef]

Senthil Kumar, A.

C. S. Lim, M. H. Hong, Y. Lin, G. X. Chen, A. Senthil Kumar, M. Rahman, L. S. Tan, J. Y. H. Fuh, and G. C. Lim, “Sub-micron surface patterning by laser irradiation through microlens arrays,” J. Mater. Process. Technol. 192, 328–333(2007).
[CrossRef]

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. Senthil Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89, 191125(2006).
[CrossRef]

Serpe, J.

J. Serpe, J. Kim, and L. A. Lyon, “Colloidal hydrogel microlenses,” Adv. Mater. 16, 184–187 (2004).
[CrossRef]

Shen, S. C.

M. C. Chou, C. T. Pan, S. C. Shen, M. F. Chen, K. L. Lin, and S. T. Wu, “A novel method to fabricate gapless hexagonal micro-lens array,” Sens. Actuators A 118, 298–306 (2005).
[CrossRef]

Shi, L. P.

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast-laser-induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89, 041108 (2006).
[CrossRef]

Shin, C.

J. M. Kim, M. Patil, W. G. Jeong, I. B. Hur, C. Shin, S. M. Jung, M. H. Choi, and S. S. Choi, “Haze generation effect by pellicle and packing box on photomask,” Proc. SPIE 6730, 673040(2007).
[CrossRef]

Siegmund, C.

K. L. Gunderson, S. Kruglyak, M. S. Graige, F. Garcia, B. G. Kermani, C. Zhao, D. Che, T. Dickinson, E. Wickham, J. Bierle, D. Doucet, M. Milewski, R. Yang, C. Siegmund, J. Haas, L. Zhou, A. Oliphant, J.-B. Fan, S. Barnard, and M. S. Chee, “Decoding randomly ordered DNA arrays,” Genome Res. 14, 870–877 (2004).
[CrossRef]

Smith, H. I.

R. Menon, A. Patel, D. Gil, and H. I. Smith, “Maskless lithography,” Mater. Today 8(2), 26–33 (2005).
[CrossRef]

Sun, X. W.

Tan, L. S.

C. S. Lim, M. H. Hong, Y. Lin, G. X. Chen, A. Senthil Kumar, M. Rahman, L. S. Tan, J. Y. H. Fuh, and G. C. Lim, “Sub-micron surface patterning by laser irradiation through microlens arrays,” J. Mater. Process. Technol. 192, 328–333(2007).
[CrossRef]

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast-laser-induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89, 041108 (2006).
[CrossRef]

Taylor, A. J.

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).
[CrossRef]

Wang, Z. B.

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast-laser-induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89, 041108 (2006).
[CrossRef]

Westerberg, E. R.

I. Brodie, E. R. Westerberg, D. R. Cone, J. J. Muray, N. Williams, and L. Gasiorek, “A multiple-electron-beam exposure system for high-throughput, direct-write submicrometer lithography,” IEEE Trans. Electron Devices 28, 1422–1428(1981).
[CrossRef]

Whitesides, G. M.

A. W. Martinez, S. T. Phillips, and G. M. Whitesides, “Three-dimensional microfluidic devices fabricated in layered paper and tape,” Proc. Natl. Acad. Sci. USA 105, 19606–19611(2008).
[CrossRef]

H. Wu, T. W. Odom, and G. M. Whitesides, “Connectivity of features in microlens array reduction photolithography: generation of various patterns with a single photomask,” J. Am. Chem. Soc. 124, 7288–7289(2002).
[CrossRef]

Wickham, E.

K. L. Gunderson, S. Kruglyak, M. S. Graige, F. Garcia, B. G. Kermani, C. Zhao, D. Che, T. Dickinson, E. Wickham, J. Bierle, D. Doucet, M. Milewski, R. Yang, C. Siegmund, J. Haas, L. Zhou, A. Oliphant, J.-B. Fan, S. Barnard, and M. S. Chee, “Decoding randomly ordered DNA arrays,” Genome Res. 14, 870–877 (2004).
[CrossRef]

Williams, N.

I. Brodie, E. R. Westerberg, D. R. Cone, J. J. Muray, N. Williams, and L. Gasiorek, “A multiple-electron-beam exposure system for high-throughput, direct-write submicrometer lithography,” IEEE Trans. Electron Devices 28, 1422–1428(1981).
[CrossRef]

Wu, H.

H. Wu, T. W. Odom, and G. M. Whitesides, “Connectivity of features in microlens array reduction photolithography: generation of various patterns with a single photomask,” J. Am. Chem. Soc. 124, 7288–7289(2002).
[CrossRef]

Wu, S. T.

M. C. Chou, C. T. Pan, S. C. Shen, M. F. Chen, K. L. Lin, and S. T. Wu, “A novel method to fabricate gapless hexagonal micro-lens array,” Sens. Actuators A 118, 298–306 (2005).
[CrossRef]

Xie, Q.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. Senthil Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89, 191125(2006).
[CrossRef]

Xu, F.

R. D. Piner, J. Zhu, F. Xu, S. Hong, and C. A. Mirkin, “Dip-pen nanolithography,” Science 283, 661–663 (1999).
[CrossRef]

Yang, R.

K. L. Gunderson, S. Kruglyak, M. S. Graige, F. Garcia, B. G. Kermani, C. Zhao, D. Che, T. Dickinson, E. Wickham, J. Bierle, D. Doucet, M. Milewski, R. Yang, C. Siegmund, J. Haas, L. Zhou, A. Oliphant, J.-B. Fan, S. Barnard, and M. S. Chee, “Decoding randomly ordered DNA arrays,” Genome Res. 14, 870–877 (2004).
[CrossRef]

Zhang, S.

Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95, 043113(2009).
[CrossRef]

Zhang, X.

Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95, 043113(2009).
[CrossRef]

Zhao, C.

K. L. Gunderson, S. Kruglyak, M. S. Graige, F. Garcia, B. G. Kermani, C. Zhao, D. Che, T. Dickinson, E. Wickham, J. Bierle, D. Doucet, M. Milewski, R. Yang, C. Siegmund, J. Haas, L. Zhou, A. Oliphant, J.-B. Fan, S. Barnard, and M. S. Chee, “Decoding randomly ordered DNA arrays,” Genome Res. 14, 870–877 (2004).
[CrossRef]

Zhou, L.

K. L. Gunderson, S. Kruglyak, M. S. Graige, F. Garcia, B. G. Kermani, C. Zhao, D. Che, T. Dickinson, E. Wickham, J. Bierle, D. Doucet, M. Milewski, R. Yang, C. Siegmund, J. Haas, L. Zhou, A. Oliphant, J.-B. Fan, S. Barnard, and M. S. Chee, “Decoding randomly ordered DNA arrays,” Genome Res. 14, 870–877 (2004).
[CrossRef]

Zhu, J.

R. D. Piner, J. Zhu, F. Xu, S. Hong, and C. A. Mirkin, “Dip-pen nanolithography,” Science 283, 661–663 (1999).
[CrossRef]

Adv. Mater.

J. Serpe, J. Kim, and L. A. Lyon, “Colloidal hydrogel microlenses,” Adv. Mater. 16, 184–187 (2004).
[CrossRef]

Appl. Phys. Lett.

Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95, 043113(2009).
[CrossRef]

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. Senthil Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89, 191125(2006).
[CrossRef]

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast-laser-induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89, 041108 (2006).
[CrossRef]

Electron. Lett.

S. Leggatt and M. C. Hutley, “Microlens arrays for interconnection of single mode fibre arrays,” Electron. Lett. 27, 238–240 (1991).
[CrossRef]

Genome Res.

K. L. Gunderson, S. Kruglyak, M. S. Graige, F. Garcia, B. G. Kermani, C. Zhao, D. Che, T. Dickinson, E. Wickham, J. Bierle, D. Doucet, M. Milewski, R. Yang, C. Siegmund, J. Haas, L. Zhou, A. Oliphant, J.-B. Fan, S. Barnard, and M. S. Chee, “Decoding randomly ordered DNA arrays,” Genome Res. 14, 870–877 (2004).
[CrossRef]

IEEE Trans. Electron Devices

I. Brodie, E. R. Westerberg, D. R. Cone, J. J. Muray, N. Williams, and L. Gasiorek, “A multiple-electron-beam exposure system for high-throughput, direct-write submicrometer lithography,” IEEE Trans. Electron Devices 28, 1422–1428(1981).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

C. A. Kyriazidou, H. F. Contopanagos, and N. G. Alexopoulos, “Monolithic waveguide filters using printed photonic-bandgap materials,” IEEE Trans. Microwave Theory Tech. 49, 297–307(2001).
[CrossRef]

Infrared Phys. Technol.

D. S. Ko, “A decompression method for the fabrication of polymer microlens arrays,” Infrared Phys. Technol. 45, 177–180 (2004).
[CrossRef]

J. Am. Chem. Soc.

H. Wu, T. W. Odom, and G. M. Whitesides, “Connectivity of features in microlens array reduction photolithography: generation of various patterns with a single photomask,” J. Am. Chem. Soc. 124, 7288–7289(2002).
[CrossRef]

J. Mater. Process. Technol.

C. S. Lim, M. H. Hong, Y. Lin, G. X. Chen, A. Senthil Kumar, M. Rahman, L. S. Tan, J. Y. H. Fuh, and G. C. Lim, “Sub-micron surface patterning by laser irradiation through microlens arrays,” J. Mater. Process. Technol. 192, 328–333(2007).
[CrossRef]

Mater. Today

R. Menon, A. Patel, D. Gil, and H. I. Smith, “Maskless lithography,” Mater. Today 8(2), 26–33 (2005).
[CrossRef]

Nat. Photonics

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).
[CrossRef]

Opt. Eng.

M. E. Motamedi, “Micro-opto-electro-mechanical systems,” Opt. Eng. 33, 3505–3517 (1994).
[CrossRef]

Opt. Express

Proc. IEEE

J. M. Bustillo, R. T. Howe, and R. S. Muller, “Surface micromachining for microelectromechanical systems,” Proc. IEEE 86, 1552–1574 (1998).
[CrossRef]

Proc. Natl. Acad. Sci. USA

A. W. Martinez, S. T. Phillips, and G. M. Whitesides, “Three-dimensional microfluidic devices fabricated in layered paper and tape,” Proc. Natl. Acad. Sci. USA 105, 19606–19611(2008).
[CrossRef]

Proc. SPIE

J. M. Kim, M. Patil, W. G. Jeong, I. B. Hur, C. Shin, S. M. Jung, M. H. Choi, and S. S. Choi, “Haze generation effect by pellicle and packing box on photomask,” Proc. SPIE 6730, 673040(2007).
[CrossRef]

Pure Appl. Opt.

B. Besold and N. Lindlein, “Practical limitations of Talbot imaging with microlens arrays,” Pure Appl. Opt. 6, 691–698(1997).
[CrossRef]

Science

R. D. Piner, J. Zhu, F. Xu, S. Hong, and C. A. Mirkin, “Dip-pen nanolithography,” Science 283, 661–663 (1999).
[CrossRef]

Sens. Actuators A

M. C. Chou, C. T. Pan, S. C. Shen, M. F. Chen, K. L. Lin, and S. T. Wu, “A novel method to fabricate gapless hexagonal micro-lens array,” Sens. Actuators A 118, 298–306 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup of laser MLA lithography.

Fig. 2
Fig. 2

(a)–(d) Characters, logo, and IC design patterns and terahertz SRR metamaterials fabricated by laser MLA lithography and (e) terahertz transmission spectrum of the SRR metamaterials in (d).

Fig. 3
Fig. 3

(a) Double exposure patterned hybrid structures on photoresist by laser MLA lithography. (b), (c) Structures of single- and double-exposure patterned gold thin films on quartz substrates and (d) NIR spectra of unpatterned and single- and double-exposure patterned gold thin films.

Fig. 4
Fig. 4

(a), (b) SEM images of three-dimensional microstructures fabricated on Si substrates by laser MLA lithography and (c), (d) SEM images of three-dimensional microstructures formed on PDMS by soft lithography with the structures in (a) and (b) as the molding tools.

Metrics