Abstract

This paper presents an improved system structure of photon-counting chirped amplitude modulation (AM) ladar based on the Geiger-mode avalanche photoelectric detector (GmAPD). The error-pulse probability is investigated with statistical method. The research shows that most of the error pulses that are triggered by noise are distributed in the intensity troughs of the chirped AM waveform. The error-pulse probability is lowered with the sliding window and the threshold. With the average intensity of noise and signal being 0.3 count/sample and 1 count/sample, respectively, the probability of error pulses is reduced from 12% to 1.0%, and the SNR is improved by 2.2 dB in the improved system.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Redman, W. Ruff, and M. Giza, “Photon counting chirped AM ladar: concept, simulation, and initial experimental results,” Proc. SPIE 6214, 62140P (2006).
  2. B. C. Redman, B. Stann, W. Ruff, M. Giza, K. Aliberti, and W. Lawler, “Anti-ship missile tracking with a chirped amplitude modulation ladar,” Proc. SPIE 5413, 113–123 (2004).
  3. B. Stann, B. C. Redman, W. Lawler, M. Giza, and J. Dammann, “Chirped amplitude modulation ladar for range and Doppler measurements and 3-D imaging,” Proc. SPIE 6550, 655005 (2007).
  4. S. Bellis, R. Wilcock, and C. Jackson, “Photon counting imaging: the digital APD,” Proc. SPIE 6068, 60680D(2006).
  5. P. Gatt, S. Johnson, and T. Nichols, “Geiger-mode avalanche photodiode ladar receiver performance characteristics and detection statistics,” Appl. Opt. 48, 3261–3275 (2009).
    [CrossRef]
  6. F. Wang, Y. Zhao, Y. Zhang, and X. Sun, “Range accuracy limitation of pulse ranging systems based on Geiger mode single-photon detectors,” Appl. Opt. 49, 5561–5566 (2010).
    [CrossRef]
  7. I. Prochazka, K. Hamal, B. Greene, and H. Kunimori, “Large-aperture germanium detector package for picosecond photon counting in the 0.5–1.6 mm range,” Opt. Lett. 21, 1375–1377 (1996).
    [CrossRef]
  8. M. Akiba, K. Tsujino, and M. Sasaki, “Ultrahigh-sensitivity single-photon detection with linear-mode silicon avalanche photodiode,” Opt. Lett. 35, 2621–2623 (2010).
    [CrossRef]
  9. Y. Guo, G. Huang, and R. Shu, “3D imaging laser radar using Geiger-mode APDs: analysis and experiments,” Proc. SPIE 7684, 768402 (2010).
  10. M. Henriksson, “Detection probabilities for photon-counting avalanche photodiodes applied to a laser radar system,” Appl. Opt. 44, 5140–5147 (2005).
    [CrossRef]
  11. L. Wu, Y. Zhao, L. Liu, Y. Zhang, and J. Wu, “Varied threshold with laser flight time in scannerless range-gated ladar,” Appl. Opt. 49, H20–H26 (2010).
    [CrossRef]
  12. S. Johnson, P. Gatt, and T. Nichols, “Analysis of Geiger-mode APD laser radars,” Proc. SPIE 5086, 359–368 (2003).

2010

2009

2007

B. Stann, B. C. Redman, W. Lawler, M. Giza, and J. Dammann, “Chirped amplitude modulation ladar for range and Doppler measurements and 3-D imaging,” Proc. SPIE 6550, 655005 (2007).

2006

S. Bellis, R. Wilcock, and C. Jackson, “Photon counting imaging: the digital APD,” Proc. SPIE 6068, 60680D(2006).

B. Redman, W. Ruff, and M. Giza, “Photon counting chirped AM ladar: concept, simulation, and initial experimental results,” Proc. SPIE 6214, 62140P (2006).

2005

2004

B. C. Redman, B. Stann, W. Ruff, M. Giza, K. Aliberti, and W. Lawler, “Anti-ship missile tracking with a chirped amplitude modulation ladar,” Proc. SPIE 5413, 113–123 (2004).

2003

S. Johnson, P. Gatt, and T. Nichols, “Analysis of Geiger-mode APD laser radars,” Proc. SPIE 5086, 359–368 (2003).

1996

Akiba, M.

Aliberti, K.

B. C. Redman, B. Stann, W. Ruff, M. Giza, K. Aliberti, and W. Lawler, “Anti-ship missile tracking with a chirped amplitude modulation ladar,” Proc. SPIE 5413, 113–123 (2004).

Bellis, S.

S. Bellis, R. Wilcock, and C. Jackson, “Photon counting imaging: the digital APD,” Proc. SPIE 6068, 60680D(2006).

Dammann, J.

B. Stann, B. C. Redman, W. Lawler, M. Giza, and J. Dammann, “Chirped amplitude modulation ladar for range and Doppler measurements and 3-D imaging,” Proc. SPIE 6550, 655005 (2007).

Gatt, P.

Giza, M.

B. Stann, B. C. Redman, W. Lawler, M. Giza, and J. Dammann, “Chirped amplitude modulation ladar for range and Doppler measurements and 3-D imaging,” Proc. SPIE 6550, 655005 (2007).

B. Redman, W. Ruff, and M. Giza, “Photon counting chirped AM ladar: concept, simulation, and initial experimental results,” Proc. SPIE 6214, 62140P (2006).

B. C. Redman, B. Stann, W. Ruff, M. Giza, K. Aliberti, and W. Lawler, “Anti-ship missile tracking with a chirped amplitude modulation ladar,” Proc. SPIE 5413, 113–123 (2004).

Greene, B.

Guo, Y.

Y. Guo, G. Huang, and R. Shu, “3D imaging laser radar using Geiger-mode APDs: analysis and experiments,” Proc. SPIE 7684, 768402 (2010).

Hamal, K.

Henriksson, M.

Huang, G.

Y. Guo, G. Huang, and R. Shu, “3D imaging laser radar using Geiger-mode APDs: analysis and experiments,” Proc. SPIE 7684, 768402 (2010).

Jackson, C.

S. Bellis, R. Wilcock, and C. Jackson, “Photon counting imaging: the digital APD,” Proc. SPIE 6068, 60680D(2006).

Johnson, S.

Kunimori, H.

Lawler, W.

B. Stann, B. C. Redman, W. Lawler, M. Giza, and J. Dammann, “Chirped amplitude modulation ladar for range and Doppler measurements and 3-D imaging,” Proc. SPIE 6550, 655005 (2007).

B. C. Redman, B. Stann, W. Ruff, M. Giza, K. Aliberti, and W. Lawler, “Anti-ship missile tracking with a chirped amplitude modulation ladar,” Proc. SPIE 5413, 113–123 (2004).

Liu, L.

Nichols, T.

Prochazka, I.

Redman, B.

B. Redman, W. Ruff, and M. Giza, “Photon counting chirped AM ladar: concept, simulation, and initial experimental results,” Proc. SPIE 6214, 62140P (2006).

Redman, B. C.

B. Stann, B. C. Redman, W. Lawler, M. Giza, and J. Dammann, “Chirped amplitude modulation ladar for range and Doppler measurements and 3-D imaging,” Proc. SPIE 6550, 655005 (2007).

B. C. Redman, B. Stann, W. Ruff, M. Giza, K. Aliberti, and W. Lawler, “Anti-ship missile tracking with a chirped amplitude modulation ladar,” Proc. SPIE 5413, 113–123 (2004).

Ruff, W.

B. Redman, W. Ruff, and M. Giza, “Photon counting chirped AM ladar: concept, simulation, and initial experimental results,” Proc. SPIE 6214, 62140P (2006).

B. C. Redman, B. Stann, W. Ruff, M. Giza, K. Aliberti, and W. Lawler, “Anti-ship missile tracking with a chirped amplitude modulation ladar,” Proc. SPIE 5413, 113–123 (2004).

Sasaki, M.

Shu, R.

Y. Guo, G. Huang, and R. Shu, “3D imaging laser radar using Geiger-mode APDs: analysis and experiments,” Proc. SPIE 7684, 768402 (2010).

Stann, B.

B. Stann, B. C. Redman, W. Lawler, M. Giza, and J. Dammann, “Chirped amplitude modulation ladar for range and Doppler measurements and 3-D imaging,” Proc. SPIE 6550, 655005 (2007).

B. C. Redman, B. Stann, W. Ruff, M. Giza, K. Aliberti, and W. Lawler, “Anti-ship missile tracking with a chirped amplitude modulation ladar,” Proc. SPIE 5413, 113–123 (2004).

Sun, X.

Tsujino, K.

Wang, F.

Wilcock, R.

S. Bellis, R. Wilcock, and C. Jackson, “Photon counting imaging: the digital APD,” Proc. SPIE 6068, 60680D(2006).

Wu, J.

Wu, L.

Zhang, Y.

Zhao, Y.

Appl. Opt.

Opt. Lett.

Proc. SPIE

B. Redman, W. Ruff, and M. Giza, “Photon counting chirped AM ladar: concept, simulation, and initial experimental results,” Proc. SPIE 6214, 62140P (2006).

B. C. Redman, B. Stann, W. Ruff, M. Giza, K. Aliberti, and W. Lawler, “Anti-ship missile tracking with a chirped amplitude modulation ladar,” Proc. SPIE 5413, 113–123 (2004).

B. Stann, B. C. Redman, W. Lawler, M. Giza, and J. Dammann, “Chirped amplitude modulation ladar for range and Doppler measurements and 3-D imaging,” Proc. SPIE 6550, 655005 (2007).

S. Bellis, R. Wilcock, and C. Jackson, “Photon counting imaging: the digital APD,” Proc. SPIE 6068, 60680D(2006).

Y. Guo, G. Huang, and R. Shu, “3D imaging laser radar using Geiger-mode APDs: analysis and experiments,” Proc. SPIE 7684, 768402 (2010).

S. Johnson, P. Gatt, and T. Nichols, “Analysis of Geiger-mode APD laser radars,” Proc. SPIE 5086, 359–368 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

The error-pulse probability of photon-counting chirped AM ladar.

Fig. 2.
Fig. 2.

The improved diagram of photon-counting chirped AM ladar.

Fig. 3.
Fig. 3.

Numerical simulation results of the optimized threshold.

Fig. 4.
Fig. 4.

The comparison of the average error-pulse probability (left) and the comparison of the SNR (right). (a) The average error-pulse probability. (b) SNR.

Fig. 5.
Fig. 5.

The comparison of the IF spectrum without threshold (left) and with threshold (right). (a) IF spectrum without threshold. (b) IF spectrum with threshold.

Tables (1)

Tables Icon

Table 1 Parameters of Photons Counting Ladar

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Ps(k)=(N)kk!exp(N),
Pi={1exp[Nn(i)]}·exp[Ns(i)],
Pi=exp{[Nn(i)+Ns(i)]}.
Pi(x)=k1k2w+1=lΘ(w,w)(1Pi+k1)(1Pi+kl)Pi+kl+1Pk2w+1.
Pup(x=l)=k1k2w+1=lΘ(w,w)(1Pi+k1)(1Pi+kl)Pi+kl+1Pk2w+1.
Plp(x=l)=k1···k2w+1=lΘ(w,w)(1Pi+k1)(1Pi+kl)Pi+kl+1Pk2w+1.
H=x=Y2w+1Plp(x)+x=0YPup(x).
pi=exp[Ns(i)]x>Y2m+1Pi(x).
SNR=(CtotCn)/(4×Ctot),

Metrics