Abstract

In this work, it is shown that the differential loss between the TE- and TM-polarized fundamental modes in a highly birefringent photonic crystal fiber (PCF) can be enhanced by bending the fiber. As a result, a design approach for single-mode single-polarization operation has been developed and is discussed. A rigorous full-vectorial H-field-based finite element approach, which includes the conformal transformation and the perfectly matched layer, is used to determine the single-polarization properties of such a highly birefringent PCF by exploiting its differential bending losses.

© 2011 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mode degeneration in bent photonic crystal fiber study by using the finite element method

B. M. Azizur Rahman, Namassivayane Kejalakshmy, Muhammad Uthman, Arti Agrawal, Tiparatana Wongcharoen, and Kenneth T. V. Grattan
Appl. Opt. 48(31) G131-G138 (2009)

Polarization-maintaining low-loss porous-core spiral photonic crystal fiber for terahertz wave guidance

Md. Rabiul Hasan, Md. Shamim Anower, Md. Ariful Islam, and S. M. A. Razzak
Appl. Opt. 55(15) 4145-4152 (2016)

High birefringence photonic crystal fiber with a complex unit cell of asymmetric elliptical air hole cladding

Yuh-Sien Sun, Yuan-Fong Chau, Han-Hsuan Yeh, Lin-Fang Shen, Tzong-Jer Yang, and Din Ping Tsai
Appl. Opt. 46(22) 5276-5281 (2007)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription