Abstract

In this work, it is shown that the differential loss between the TE- and TM-polarized fundamental modes in a highly birefringent photonic crystal fiber (PCF) can be enhanced by bending the fiber. As a result, a design approach for single-mode single-polarization operation has been developed and is discussed. A rigorous full-vectorial H-field-based finite element approach, which includes the conformal transformation and the perfectly matched layer, is used to determine the single-polarization properties of such a highly birefringent PCF by exploiting its differential bending losses.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4747 (2006).
    [CrossRef]
  2. N. A. Mortensen, “Effective area of photonic crystal fibers,” Opt. Express 10, 341–348 (2002).
    [PubMed]
  3. B. T. Kuhlmey, R. C. McPhedran, and C. M. de Sterke, “Modal cutoff in microstructured optical fibers,” Opt. Lett. 27, 1684–1686 (2002).
    [CrossRef]
  4. N. Kejalakshmy, B. M. A. Rahman, A. Agrawal, T. Wongcharoen, and K. T. V. Grattan, “Characterization of single-polarization single-mode photonic crystal fiber using full-vectorial finite element method,” Appl. Phys. B 93, 223–230 (2008).
    [CrossRef]
  5. B. M. A. Rahman and J. B. Davies, “Finite-element solution of integrated optical waveguide,” J. Lightwave Technol. LT-2, 682–688 (1984).
    [CrossRef]
  6. K. Saitoh and M. Koshiba, “Numerical modelling of photonic crystal fiber,” J. Lightwave Technol. 23, 3580–3590 (2005).
    [CrossRef]
  7. B. M. A. Rahman, A. K. M. S. Kabir, M. Rajarajan, K. T. V. Grattan, and V. Rakocevic, “Birefringence study of photonic crystal fibers by using the full-vectorial finite element method,” Appl. Phys. B 84, 75–82 (2006).
    [CrossRef]
  8. B. M. A. Rahman, N. Kejalakshmy, M. Uthman, A. Agrawal, T. Wongcharoen, and K. T. V. Grattan, “Mode degeneration in bent photonic crystal fiber study by using the finite element method,” Appl. Opt. 48, G131–G138 (2009).
    [CrossRef] [PubMed]
  9. M. Heiblum and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. 11, 75–83 (1975).
    [CrossRef]

2009

2008

N. Kejalakshmy, B. M. A. Rahman, A. Agrawal, T. Wongcharoen, and K. T. V. Grattan, “Characterization of single-polarization single-mode photonic crystal fiber using full-vectorial finite element method,” Appl. Phys. B 93, 223–230 (2008).
[CrossRef]

2006

P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4747 (2006).
[CrossRef]

B. M. A. Rahman, A. K. M. S. Kabir, M. Rajarajan, K. T. V. Grattan, and V. Rakocevic, “Birefringence study of photonic crystal fibers by using the full-vectorial finite element method,” Appl. Phys. B 84, 75–82 (2006).
[CrossRef]

2005

2002

1984

B. M. A. Rahman and J. B. Davies, “Finite-element solution of integrated optical waveguide,” J. Lightwave Technol. LT-2, 682–688 (1984).
[CrossRef]

1975

M. Heiblum and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. 11, 75–83 (1975).
[CrossRef]

Agrawal, A.

B. M. A. Rahman, N. Kejalakshmy, M. Uthman, A. Agrawal, T. Wongcharoen, and K. T. V. Grattan, “Mode degeneration in bent photonic crystal fiber study by using the finite element method,” Appl. Opt. 48, G131–G138 (2009).
[CrossRef] [PubMed]

N. Kejalakshmy, B. M. A. Rahman, A. Agrawal, T. Wongcharoen, and K. T. V. Grattan, “Characterization of single-polarization single-mode photonic crystal fiber using full-vectorial finite element method,” Appl. Phys. B 93, 223–230 (2008).
[CrossRef]

Davies, J. B.

B. M. A. Rahman and J. B. Davies, “Finite-element solution of integrated optical waveguide,” J. Lightwave Technol. LT-2, 682–688 (1984).
[CrossRef]

de Sterke, C. M.

Grattan, K. T. V.

B. M. A. Rahman, N. Kejalakshmy, M. Uthman, A. Agrawal, T. Wongcharoen, and K. T. V. Grattan, “Mode degeneration in bent photonic crystal fiber study by using the finite element method,” Appl. Opt. 48, G131–G138 (2009).
[CrossRef] [PubMed]

N. Kejalakshmy, B. M. A. Rahman, A. Agrawal, T. Wongcharoen, and K. T. V. Grattan, “Characterization of single-polarization single-mode photonic crystal fiber using full-vectorial finite element method,” Appl. Phys. B 93, 223–230 (2008).
[CrossRef]

B. M. A. Rahman, A. K. M. S. Kabir, M. Rajarajan, K. T. V. Grattan, and V. Rakocevic, “Birefringence study of photonic crystal fibers by using the full-vectorial finite element method,” Appl. Phys. B 84, 75–82 (2006).
[CrossRef]

Harris, J. H.

M. Heiblum and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. 11, 75–83 (1975).
[CrossRef]

Heiblum, M.

M. Heiblum and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. 11, 75–83 (1975).
[CrossRef]

Kabir, A. K. M. S.

B. M. A. Rahman, A. K. M. S. Kabir, M. Rajarajan, K. T. V. Grattan, and V. Rakocevic, “Birefringence study of photonic crystal fibers by using the full-vectorial finite element method,” Appl. Phys. B 84, 75–82 (2006).
[CrossRef]

Kejalakshmy, N.

B. M. A. Rahman, N. Kejalakshmy, M. Uthman, A. Agrawal, T. Wongcharoen, and K. T. V. Grattan, “Mode degeneration in bent photonic crystal fiber study by using the finite element method,” Appl. Opt. 48, G131–G138 (2009).
[CrossRef] [PubMed]

N. Kejalakshmy, B. M. A. Rahman, A. Agrawal, T. Wongcharoen, and K. T. V. Grattan, “Characterization of single-polarization single-mode photonic crystal fiber using full-vectorial finite element method,” Appl. Phys. B 93, 223–230 (2008).
[CrossRef]

Koshiba, M.

Kuhlmey, B. T.

McPhedran, R. C.

Mortensen, N. A.

Rahman, B. M. A.

B. M. A. Rahman, N. Kejalakshmy, M. Uthman, A. Agrawal, T. Wongcharoen, and K. T. V. Grattan, “Mode degeneration in bent photonic crystal fiber study by using the finite element method,” Appl. Opt. 48, G131–G138 (2009).
[CrossRef] [PubMed]

N. Kejalakshmy, B. M. A. Rahman, A. Agrawal, T. Wongcharoen, and K. T. V. Grattan, “Characterization of single-polarization single-mode photonic crystal fiber using full-vectorial finite element method,” Appl. Phys. B 93, 223–230 (2008).
[CrossRef]

B. M. A. Rahman, A. K. M. S. Kabir, M. Rajarajan, K. T. V. Grattan, and V. Rakocevic, “Birefringence study of photonic crystal fibers by using the full-vectorial finite element method,” Appl. Phys. B 84, 75–82 (2006).
[CrossRef]

B. M. A. Rahman and J. B. Davies, “Finite-element solution of integrated optical waveguide,” J. Lightwave Technol. LT-2, 682–688 (1984).
[CrossRef]

Rajarajan, M.

B. M. A. Rahman, A. K. M. S. Kabir, M. Rajarajan, K. T. V. Grattan, and V. Rakocevic, “Birefringence study of photonic crystal fibers by using the full-vectorial finite element method,” Appl. Phys. B 84, 75–82 (2006).
[CrossRef]

Rakocevic, V.

B. M. A. Rahman, A. K. M. S. Kabir, M. Rajarajan, K. T. V. Grattan, and V. Rakocevic, “Birefringence study of photonic crystal fibers by using the full-vectorial finite element method,” Appl. Phys. B 84, 75–82 (2006).
[CrossRef]

Russell, P. St. J.

Saitoh, K.

Uthman, M.

Wongcharoen, T.

B. M. A. Rahman, N. Kejalakshmy, M. Uthman, A. Agrawal, T. Wongcharoen, and K. T. V. Grattan, “Mode degeneration in bent photonic crystal fiber study by using the finite element method,” Appl. Opt. 48, G131–G138 (2009).
[CrossRef] [PubMed]

N. Kejalakshmy, B. M. A. Rahman, A. Agrawal, T. Wongcharoen, and K. T. V. Grattan, “Characterization of single-polarization single-mode photonic crystal fiber using full-vectorial finite element method,” Appl. Phys. B 93, 223–230 (2008).
[CrossRef]

Appl. Opt.

Appl. Phys. B

B. M. A. Rahman, A. K. M. S. Kabir, M. Rajarajan, K. T. V. Grattan, and V. Rakocevic, “Birefringence study of photonic crystal fibers by using the full-vectorial finite element method,” Appl. Phys. B 84, 75–82 (2006).
[CrossRef]

N. Kejalakshmy, B. M. A. Rahman, A. Agrawal, T. Wongcharoen, and K. T. V. Grattan, “Characterization of single-polarization single-mode photonic crystal fiber using full-vectorial finite element method,” Appl. Phys. B 93, 223–230 (2008).
[CrossRef]

IEEE J. Quantum Electron.

M. Heiblum and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. 11, 75–83 (1975).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Variation of effective index and birefringence with the d 2 / Λ .

Fig. 2
Fig. 2

Variations of the TE and TM modal losses with the d 2 / Λ .

Fig. 3
Fig. 3

Variation of the differential LR with d 2 / Λ for pitches 1.6 and 1.8 μm .

Fig. 4
Fig. 4

TE and TM modal losses with the bending radius, R, for Λ = 1.8 μm .

Fig. 5
Fig. 5

Variation of the bending losses with the bending radius, R, of the TM modes for different d 2 / Λ ratios.

Fig. 6
Fig. 6

Variation of LR with the bending radius for different d 2 / Λ values.

Fig. 7
Fig. 7

Variation of LR with the bending radius for different number of rings, N.

Fig. 8
Fig. 8

Variation of the LRs with the bending radius for different N values.

Fig. 9
Fig. 9

Variation of L 20 dB length with the bending radius for different N values.

Fig. 10
Fig. 10

Variation of L 20 dB length with respect to the TE loss for different N values.

Fig. 11
Fig. 11

Variation of the loss with the bending radius for two different asymmetry orientations.

Fig. 12
Fig. 12

Variation of loss with the operating wavelength for two different asymmetry orientations.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ω 2 = ( ( × H ) * · ε ^ 1 ( × H ) d Ω ) + ( ( α / ε o ) ( · H ) * ( · H ) d Ω ) H * · μ ^ H d Ω ,
LR = α TM α TE .
n eq ( x , y ) = n ( x , y ) ( 1 + x R ) ,
L 20 dB = 20 dB α TM α TE ,

Metrics