Abstract

The irradiance fluctuations imposed on a laser beam that has propagated over horizontal terrestrial paths in the range of 2 to 24km are compared to lognormal (LN) and gamma-gamma (GG) distributions. For the direct links reported here the irradiance fluctuations follow a LN distribution except in cases of weak turbulence, characterized by a scintillation index of less than 1 and a Fried parameter larger than the receiver aperture, in which case the GG distribution gives an improved fit. In very weak turbulence the difference between the two distributions is insignificant.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. C. Andrews and R. L. Philips, Laser Beam Propagation through Random Media (SPIE Press, 2005).
    [CrossRef]
  2. F. S. Vetelino, C. Young, L. Andrews, and J. Recolons, “Aperture averaging effects on the probability density of irradiance fluctuations in moderate-to-strong turbulence,” Appl. Opt. 46, 2099–2108 (2007).
    [CrossRef] [PubMed]
  3. S. D. Lyke, D. G. Voelz, and M. C. Roggemann, “Probability density of aperture-averaged irradiance fluctuations for long range free space optical communication links,” Appl. Opt. 48, 6511–6527 (2009).
    [CrossRef] [PubMed]
  4. X. Xiao and D. Voelz, “On-axis probability density function and fade behavior of partially coherent beams propagating through turbulence,” Appl. Opt. 48, 167–175 (2009).
    [CrossRef] [PubMed]
  5. R. Mahon, C. I. Moore, H. R. Burris, W. S. Rabinovich, M. Stell, M. R. Suite, and L. M. Thomas, “An analysis of long-term measurements of laser propagation over the Chesapeake Bay,” Appl. Opt. 48, 2388–2400 (2009).
    [CrossRef] [PubMed]
  6. R. Rao, S. Wang, X. Liu, and Z. Gong, “Turbulence spectrum effect on wave temporal-frequency spectra for light propagating through the atmosphere,” J. Opt. Soc. Am. A 16, 2755–2762 (1999).
    [CrossRef]
  7. R. Mahon, C. I. Moore, H. R. Burris, W. S. Rabinovich, M. Stell, M. R. Suite, and L. M. Thomas, “Power spectra of a free space optical link in a maritime environment,” Proc. SPIE 7464, 7464072009).
    [CrossRef]
  8. F. S. Vetelino, B. Clare, K. Corbett, C. Young, K. Grant, and L. Andrews, “Characterizing the propagation path in moderate to strong optical turbulence,” Appl. Opt. 45, 3534–3543 (2006).
    [CrossRef] [PubMed]

2009 (4)

2007 (1)

2006 (1)

1999 (1)

Andrews, L.

Andrews, L. C.

L. C. Andrews and R. L. Philips, Laser Beam Propagation through Random Media (SPIE Press, 2005).
[CrossRef]

Burris, H. R.

R. Mahon, C. I. Moore, H. R. Burris, W. S. Rabinovich, M. Stell, M. R. Suite, and L. M. Thomas, “An analysis of long-term measurements of laser propagation over the Chesapeake Bay,” Appl. Opt. 48, 2388–2400 (2009).
[CrossRef] [PubMed]

R. Mahon, C. I. Moore, H. R. Burris, W. S. Rabinovich, M. Stell, M. R. Suite, and L. M. Thomas, “Power spectra of a free space optical link in a maritime environment,” Proc. SPIE 7464, 7464072009).
[CrossRef]

Clare, B.

Corbett, K.

Gong, Z.

Grant, K.

Liu, X.

Lyke, S. D.

Mahon, R.

R. Mahon, C. I. Moore, H. R. Burris, W. S. Rabinovich, M. Stell, M. R. Suite, and L. M. Thomas, “An analysis of long-term measurements of laser propagation over the Chesapeake Bay,” Appl. Opt. 48, 2388–2400 (2009).
[CrossRef] [PubMed]

R. Mahon, C. I. Moore, H. R. Burris, W. S. Rabinovich, M. Stell, M. R. Suite, and L. M. Thomas, “Power spectra of a free space optical link in a maritime environment,” Proc. SPIE 7464, 7464072009).
[CrossRef]

Moore, C. I.

R. Mahon, C. I. Moore, H. R. Burris, W. S. Rabinovich, M. Stell, M. R. Suite, and L. M. Thomas, “Power spectra of a free space optical link in a maritime environment,” Proc. SPIE 7464, 7464072009).
[CrossRef]

R. Mahon, C. I. Moore, H. R. Burris, W. S. Rabinovich, M. Stell, M. R. Suite, and L. M. Thomas, “An analysis of long-term measurements of laser propagation over the Chesapeake Bay,” Appl. Opt. 48, 2388–2400 (2009).
[CrossRef] [PubMed]

Philips, R. L.

L. C. Andrews and R. L. Philips, Laser Beam Propagation through Random Media (SPIE Press, 2005).
[CrossRef]

Rabinovich, W. S.

R. Mahon, C. I. Moore, H. R. Burris, W. S. Rabinovich, M. Stell, M. R. Suite, and L. M. Thomas, “An analysis of long-term measurements of laser propagation over the Chesapeake Bay,” Appl. Opt. 48, 2388–2400 (2009).
[CrossRef] [PubMed]

R. Mahon, C. I. Moore, H. R. Burris, W. S. Rabinovich, M. Stell, M. R. Suite, and L. M. Thomas, “Power spectra of a free space optical link in a maritime environment,” Proc. SPIE 7464, 7464072009).
[CrossRef]

Rao, R.

Recolons, J.

Roggemann, M. C.

Stell, M.

R. Mahon, C. I. Moore, H. R. Burris, W. S. Rabinovich, M. Stell, M. R. Suite, and L. M. Thomas, “An analysis of long-term measurements of laser propagation over the Chesapeake Bay,” Appl. Opt. 48, 2388–2400 (2009).
[CrossRef] [PubMed]

R. Mahon, C. I. Moore, H. R. Burris, W. S. Rabinovich, M. Stell, M. R. Suite, and L. M. Thomas, “Power spectra of a free space optical link in a maritime environment,” Proc. SPIE 7464, 7464072009).
[CrossRef]

Suite, M. R.

R. Mahon, C. I. Moore, H. R. Burris, W. S. Rabinovich, M. Stell, M. R. Suite, and L. M. Thomas, “Power spectra of a free space optical link in a maritime environment,” Proc. SPIE 7464, 7464072009).
[CrossRef]

R. Mahon, C. I. Moore, H. R. Burris, W. S. Rabinovich, M. Stell, M. R. Suite, and L. M. Thomas, “An analysis of long-term measurements of laser propagation over the Chesapeake Bay,” Appl. Opt. 48, 2388–2400 (2009).
[CrossRef] [PubMed]

Thomas, L. M.

R. Mahon, C. I. Moore, H. R. Burris, W. S. Rabinovich, M. Stell, M. R. Suite, and L. M. Thomas, “An analysis of long-term measurements of laser propagation over the Chesapeake Bay,” Appl. Opt. 48, 2388–2400 (2009).
[CrossRef] [PubMed]

R. Mahon, C. I. Moore, H. R. Burris, W. S. Rabinovich, M. Stell, M. R. Suite, and L. M. Thomas, “Power spectra of a free space optical link in a maritime environment,” Proc. SPIE 7464, 7464072009).
[CrossRef]

Vetelino, F. S.

Voelz, D.

Voelz, D. G.

Wang, S.

Xiao, X.

Young, C.

Appl. Opt. (5)

J. Opt. Soc. Am. A (1)

Proc. SPIE (1)

R. Mahon, C. I. Moore, H. R. Burris, W. S. Rabinovich, M. Stell, M. R. Suite, and L. M. Thomas, “Power spectra of a free space optical link in a maritime environment,” Proc. SPIE 7464, 7464072009).
[CrossRef]

Other (1)

L. C. Andrews and R. L. Philips, Laser Beam Propagation through Random Media (SPIE Press, 2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the Transportable Atmospheric Testing Suite receiver system.

Fig. 2
Fig. 2

Irradiance data, recorded at various ranges between 2 and 11 km , are compared with a lognormal probability density function (dashed curve) and, where applicable, with a gamma-gamma probability density function (continuous curve). All relevant parameters are listed with each plot.

Fig. 3
Fig. 3

Irradiance data, recorded for the long-range links, are compared with a lognormal probability density function. All relevant parameters are listed with each plot.

Fig. 4
Fig. 4

A plot of scintillation index versus Rytov variance for irradiance measurements acquired over ranges from 2 to 24 km is shown. The legend designates those data for which the probability density profiles are better fit to a lognormal distribution or a gamma-gamma distribution.

Fig. 5
Fig. 5

A plot of scintillation index versus Fried parameter r 0 for irradiance measurements acquired over ranges from 2 to 24 km is shown. The diameter of the receiver aperture is also indicated. The legend designates those data for which the probability density profiles are better fit to a lognormal distribution or a GG distribution.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

p ( I ) = 1 I 2 π σ ln I 2 exp ( ( ln ( I ) + 1 2 σ ln I 2 ) 2 σ ln I 2 2 ) ,
p ( I ) = 2 Γ ( α ) Γ ( β ) I ( α β I ) α + β 2 K α β ( 2 α β I ) ,
α = 1 σ x 2 = 1 exp ( σ ln x 2 ) 1 ,
β = 1 σ y 2 = 1 exp ( σ ln y 2 ) 1 .
σ I 2 = exp ( σ ln x 2 + σ ln y 2 ) 1 = ( 1 + 1 α ) ( 1 + 1 β ) 1.

Metrics