Abstract

We deal with design and production of optimal two-component antireflection (AR) coatings for an ultra broadband spectral range from 450nm to 1800nm. We demonstrate the whole design-production chain including design selection, choosing monitoring technique, coating production, and reverse engineering of the deposited coatings. At each step of this chain we provide thorough analysis on the basis of theoretical results and adequate computational manufacturing experiments. In order to produce the designed AR coatings we use magnetron sputtering deposition technique and accurate time monitoring.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Stenzel, S. Wilbrandt, and N. Kaiser, “All-oxide broadband antireflection coatings by plasma ion assisted deposition: design, simulation, manufacturing and re-optimization,” Opt. Express 18, 8704–8708 (2010).
  2. H. A. Macleod, Thin Film Optical Filters, 3rd ed. (Institute of Physics, 2001).
    [CrossRef]
  3. J. Dobrowolski, “Optical properties of films and coatings,” in Optical Society of America’s Handbook of Optics, 3rd ed. (McGraw-Hill, 2010).
  4. J. Dobrowolski, A. V. Tikhonravov, M. K. Trubetskov, B. T. Sullivan, and P. G. Verly, “Optimal single-band normal-incidence antireflection coatings,” Appl. Opt. 35, 644–658(1996).
    [CrossRef] [PubMed]
  5. J. Dobrowolski, D. Paitras, P. Ma, H. Vakil, and M. Acree, “Toward perfect antireflection coatings: numerical investigation,” Appl. Opt. 41, 3075–3083 (2002).
    [CrossRef] [PubMed]
  6. U. Schulz, U. Schallenberg, and N. Kaiser, “Symmetrical periods in antireflective coatings for plastic optics,” Appl. Opt. 42, 1346–1351 (2003).
    [CrossRef] [PubMed]
  7. D. Poitras and J. Dobrowolski, “Toward perfect antireflection coatings. 2. Theory,” Appl. Opt. 43, 1286–1295 (2004).
    [CrossRef] [PubMed]
  8. J. Dobrowolski, Y. Guo, T. Tiwald, P. Ma, and D. Poitras, “Toward perfect antireflection coatings. experimental results obtained with the use of reststrahlen materials,” Appl. Opt. 45, 1555–1562 (2006).
    [CrossRef] [PubMed]
  9. U. B. Shallenberg, “Antireflection design concepts with equivalent layers,” Appl. Opt. 45, 1507–1514 (2006).
    [CrossRef]
  10. A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and J. A. Dobrowolski, “Estimation of the average residual reflectance of broadband antireflection coatings,” Appl. Opt. 47, C124–C130 (2007).
    [CrossRef]
  11. R. R. Willey, “Further guidance for broadband antireflection coating design,” Appl. Opt. 50, C274–C278 (2011).
    [CrossRef] [PubMed]
  12. T. V. Amotchkina, A. V. Tikhonravov, M. K. Trubetskov, and S. A. Yanshin, “Structural properties of antireflection coatings,” in Optical Interference Coatings, OSA Technical Digest Series (Optical Society of America, 2007), paper WB5.
  13. T. V. Amotchkina, A. V. Tikhonravov, and M. K. Trubetskov, “Estimation for the number of layers of broad band anti-reflection coatings,” Proc. SPIE 7101, 710104 (2008).
    [CrossRef]
  14. T. V. Amotchkina, “Empirical expression for the minimum residual reflectance of normal- and oblique-incidence antireflection coatings,” Appl. Opt. 47, 3109–3113 (2008).
    [CrossRef] [PubMed]
  15. U. Schulz, “Wideband antireflection coatings by combining interference multilayers with structured top layers,” Opt. Express 17, 8704–8708 (2009).
    [CrossRef] [PubMed]
  16. A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and V. Pervak, “Estimations of production yields for selection of a practical optimal optical coating design,” Appl. Opt. 50, C141–C147 (2011).
    [CrossRef] [PubMed]
  17. A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Computational manufacturing experiments for choosing optimal design and monitoring strategy,” Optical Interference Coatings, OSA Technical Digest Series (Optical Society of America, 2010), paper TuA5.
  18. A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “On the reliability of computational estimations used for choosing the most manufacturable design,” Optical Interference Coatings, OSA Technical Digest Series (Optical Society of America, 2010), paper TuA3.
  19. A. V. Tikhonravov and M. K. Trubetskov, “Computational manufacturing as a bridge between design and production,” Appl. Opt. 44, 6877–6884 (2005).
    [CrossRef] [PubMed]
  20. T. V. Amotchkina, M. K. Trubetskov, S. Schlichting, H. Ehlers, D. Ristau, and A. V. Tikhonravov, “Comparison of algorithms used for optical characterization of multilayer optical coatings,” Appl. Opt. 50, 3389–3395 (2011).
    [CrossRef] [PubMed]
  21. Quartz Glass for Optics: Data and Properties, http://heraeus-quarzglas.com.
  22. A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and M. A. Kokarev, “Key role of the coating total optical thickness in solving design problems,” Proc. SPIE 5250, 312–321(2004).
    [CrossRef]
  23. T. V. Amotchkina, “Analytical properties of the spectral characteristics of antireflection coatings,” Moscow University Physics Bulletin 62, 292–295 (2007).
    [CrossRef]
  24. A. V. Tikhonravov and M. K. Trubetskov, “OptiLayer thin film software,” http://www.optilayer.com.
  25. A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Investigation of the error self-compensation effect associated with broadband optical monitoring,” Appl. Opt. 50, C111–C116 (2011).
    [CrossRef] [PubMed]
  26. V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87, 5–12 (2006).
    [CrossRef]
  27. V. Pervak, M. K. Trubetskov, and A. V. Tikhonravov, “Robust synthesis of dispersive mirrors,” Opt. Express 19, 2371–2380 (2011).
    [CrossRef] [PubMed]
  28. V. Pervak, “Recent developments and new ideas in the field of dispersive multilayer optics,” Appl. Opt. 50, C55–C61 (2011).
    [CrossRef] [PubMed]
  29. D. Ristau, H. Ehlers, T. Gross, and M. Lappschies, “Optical broadband monitoring of conventional and ion processes,” Appl. Opt. 45, 1495–1501 (2006).
    [CrossRef] [PubMed]
  30. A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, G. DeBell, V. Pervak, A. K. Sytchkova, M. Grilli, and D. Ristau, “Optical parameters of oxide films typically used in optical coating production,” Appl. Opt. 50, C75–C85 (2011).
    [CrossRef] [PubMed]
  31. A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-Posed Problems (Wiley, 1977).

2011 (7)

2010 (1)

O. Stenzel, S. Wilbrandt, and N. Kaiser, “All-oxide broadband antireflection coatings by plasma ion assisted deposition: design, simulation, manufacturing and re-optimization,” Opt. Express 18, 8704–8708 (2010).

2009 (1)

2008 (2)

T. V. Amotchkina, A. V. Tikhonravov, and M. K. Trubetskov, “Estimation for the number of layers of broad band anti-reflection coatings,” Proc. SPIE 7101, 710104 (2008).
[CrossRef]

T. V. Amotchkina, “Empirical expression for the minimum residual reflectance of normal- and oblique-incidence antireflection coatings,” Appl. Opt. 47, 3109–3113 (2008).
[CrossRef] [PubMed]

2007 (2)

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and J. A. Dobrowolski, “Estimation of the average residual reflectance of broadband antireflection coatings,” Appl. Opt. 47, C124–C130 (2007).
[CrossRef]

T. V. Amotchkina, “Analytical properties of the spectral characteristics of antireflection coatings,” Moscow University Physics Bulletin 62, 292–295 (2007).
[CrossRef]

2006 (4)

2005 (1)

2004 (2)

D. Poitras and J. Dobrowolski, “Toward perfect antireflection coatings. 2. Theory,” Appl. Opt. 43, 1286–1295 (2004).
[CrossRef] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and M. A. Kokarev, “Key role of the coating total optical thickness in solving design problems,” Proc. SPIE 5250, 312–321(2004).
[CrossRef]

2003 (1)

2002 (1)

1996 (1)

Acree, M.

Amotchkina, T. V.

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and V. Pervak, “Estimations of production yields for selection of a practical optimal optical coating design,” Appl. Opt. 50, C141–C147 (2011).
[CrossRef] [PubMed]

T. V. Amotchkina, M. K. Trubetskov, S. Schlichting, H. Ehlers, D. Ristau, and A. V. Tikhonravov, “Comparison of algorithms used for optical characterization of multilayer optical coatings,” Appl. Opt. 50, 3389–3395 (2011).
[CrossRef] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Investigation of the error self-compensation effect associated with broadband optical monitoring,” Appl. Opt. 50, C111–C116 (2011).
[CrossRef] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, G. DeBell, V. Pervak, A. K. Sytchkova, M. Grilli, and D. Ristau, “Optical parameters of oxide films typically used in optical coating production,” Appl. Opt. 50, C75–C85 (2011).
[CrossRef] [PubMed]

T. V. Amotchkina, “Empirical expression for the minimum residual reflectance of normal- and oblique-incidence antireflection coatings,” Appl. Opt. 47, 3109–3113 (2008).
[CrossRef] [PubMed]

T. V. Amotchkina, A. V. Tikhonravov, and M. K. Trubetskov, “Estimation for the number of layers of broad band anti-reflection coatings,” Proc. SPIE 7101, 710104 (2008).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and J. A. Dobrowolski, “Estimation of the average residual reflectance of broadband antireflection coatings,” Appl. Opt. 47, C124–C130 (2007).
[CrossRef]

T. V. Amotchkina, “Analytical properties of the spectral characteristics of antireflection coatings,” Moscow University Physics Bulletin 62, 292–295 (2007).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and M. A. Kokarev, “Key role of the coating total optical thickness in solving design problems,” Proc. SPIE 5250, 312–321(2004).
[CrossRef]

T. V. Amotchkina, A. V. Tikhonravov, M. K. Trubetskov, and S. A. Yanshin, “Structural properties of antireflection coatings,” in Optical Interference Coatings, OSA Technical Digest Series (Optical Society of America, 2007), paper WB5.

A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Computational manufacturing experiments for choosing optimal design and monitoring strategy,” Optical Interference Coatings, OSA Technical Digest Series (Optical Society of America, 2010), paper TuA5.

A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “On the reliability of computational estimations used for choosing the most manufacturable design,” Optical Interference Coatings, OSA Technical Digest Series (Optical Society of America, 2010), paper TuA3.

Apolonski, A.

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87, 5–12 (2006).
[CrossRef]

Arsenin, V. Y.

A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-Posed Problems (Wiley, 1977).

DeBell, G.

Dobrowolski, J.

Dobrowolski, J. A.

Ehlers, H.

Grilli, M.

Gross, T.

Guo, Y.

Kaiser, N.

O. Stenzel, S. Wilbrandt, and N. Kaiser, “All-oxide broadband antireflection coatings by plasma ion assisted deposition: design, simulation, manufacturing and re-optimization,” Opt. Express 18, 8704–8708 (2010).

U. Schulz, U. Schallenberg, and N. Kaiser, “Symmetrical periods in antireflective coatings for plastic optics,” Appl. Opt. 42, 1346–1351 (2003).
[CrossRef] [PubMed]

Kokarev, M. A.

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and M. A. Kokarev, “Key role of the coating total optical thickness in solving design problems,” Proc. SPIE 5250, 312–321(2004).
[CrossRef]

Krausz, F.

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87, 5–12 (2006).
[CrossRef]

Lappschies, M.

Ma, P.

Macleod, H. A.

H. A. Macleod, Thin Film Optical Filters, 3rd ed. (Institute of Physics, 2001).
[CrossRef]

Naumov, S.

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87, 5–12 (2006).
[CrossRef]

Paitras, D.

Pervak, V.

Poitras, D.

Ristau, D.

Schallenberg, U.

Schlichting, S.

Schulz, U.

Shallenberg, U. B.

Stenzel, O.

O. Stenzel, S. Wilbrandt, and N. Kaiser, “All-oxide broadband antireflection coatings by plasma ion assisted deposition: design, simulation, manufacturing and re-optimization,” Opt. Express 18, 8704–8708 (2010).

Sullivan, B. T.

Sytchkova, A. K.

Tikhonov, A. N.

A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-Posed Problems (Wiley, 1977).

Tikhonravov, A. V.

V. Pervak, M. K. Trubetskov, and A. V. Tikhonravov, “Robust synthesis of dispersive mirrors,” Opt. Express 19, 2371–2380 (2011).
[CrossRef] [PubMed]

T. V. Amotchkina, M. K. Trubetskov, S. Schlichting, H. Ehlers, D. Ristau, and A. V. Tikhonravov, “Comparison of algorithms used for optical characterization of multilayer optical coatings,” Appl. Opt. 50, 3389–3395 (2011).
[CrossRef] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and V. Pervak, “Estimations of production yields for selection of a practical optimal optical coating design,” Appl. Opt. 50, C141–C147 (2011).
[CrossRef] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, G. DeBell, V. Pervak, A. K. Sytchkova, M. Grilli, and D. Ristau, “Optical parameters of oxide films typically used in optical coating production,” Appl. Opt. 50, C75–C85 (2011).
[CrossRef] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Investigation of the error self-compensation effect associated with broadband optical monitoring,” Appl. Opt. 50, C111–C116 (2011).
[CrossRef] [PubMed]

T. V. Amotchkina, A. V. Tikhonravov, and M. K. Trubetskov, “Estimation for the number of layers of broad band anti-reflection coatings,” Proc. SPIE 7101, 710104 (2008).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and J. A. Dobrowolski, “Estimation of the average residual reflectance of broadband antireflection coatings,” Appl. Opt. 47, C124–C130 (2007).
[CrossRef]

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87, 5–12 (2006).
[CrossRef]

A. V. Tikhonravov and M. K. Trubetskov, “Computational manufacturing as a bridge between design and production,” Appl. Opt. 44, 6877–6884 (2005).
[CrossRef] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and M. A. Kokarev, “Key role of the coating total optical thickness in solving design problems,” Proc. SPIE 5250, 312–321(2004).
[CrossRef]

J. Dobrowolski, A. V. Tikhonravov, M. K. Trubetskov, B. T. Sullivan, and P. G. Verly, “Optimal single-band normal-incidence antireflection coatings,” Appl. Opt. 35, 644–658(1996).
[CrossRef] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Computational manufacturing experiments for choosing optimal design and monitoring strategy,” Optical Interference Coatings, OSA Technical Digest Series (Optical Society of America, 2010), paper TuA5.

T. V. Amotchkina, A. V. Tikhonravov, M. K. Trubetskov, and S. A. Yanshin, “Structural properties of antireflection coatings,” in Optical Interference Coatings, OSA Technical Digest Series (Optical Society of America, 2007), paper WB5.

A. V. Tikhonravov and M. K. Trubetskov, “OptiLayer thin film software,” http://www.optilayer.com.

A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “On the reliability of computational estimations used for choosing the most manufacturable design,” Optical Interference Coatings, OSA Technical Digest Series (Optical Society of America, 2010), paper TuA3.

Tiwald, T.

Trubetskov, M. K.

A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Investigation of the error self-compensation effect associated with broadband optical monitoring,” Appl. Opt. 50, C111–C116 (2011).
[CrossRef] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, G. DeBell, V. Pervak, A. K. Sytchkova, M. Grilli, and D. Ristau, “Optical parameters of oxide films typically used in optical coating production,” Appl. Opt. 50, C75–C85 (2011).
[CrossRef] [PubMed]

T. V. Amotchkina, M. K. Trubetskov, S. Schlichting, H. Ehlers, D. Ristau, and A. V. Tikhonravov, “Comparison of algorithms used for optical characterization of multilayer optical coatings,” Appl. Opt. 50, 3389–3395 (2011).
[CrossRef] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and V. Pervak, “Estimations of production yields for selection of a practical optimal optical coating design,” Appl. Opt. 50, C141–C147 (2011).
[CrossRef] [PubMed]

V. Pervak, M. K. Trubetskov, and A. V. Tikhonravov, “Robust synthesis of dispersive mirrors,” Opt. Express 19, 2371–2380 (2011).
[CrossRef] [PubMed]

T. V. Amotchkina, A. V. Tikhonravov, and M. K. Trubetskov, “Estimation for the number of layers of broad band anti-reflection coatings,” Proc. SPIE 7101, 710104 (2008).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and J. A. Dobrowolski, “Estimation of the average residual reflectance of broadband antireflection coatings,” Appl. Opt. 47, C124–C130 (2007).
[CrossRef]

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87, 5–12 (2006).
[CrossRef]

A. V. Tikhonravov and M. K. Trubetskov, “Computational manufacturing as a bridge between design and production,” Appl. Opt. 44, 6877–6884 (2005).
[CrossRef] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and M. A. Kokarev, “Key role of the coating total optical thickness in solving design problems,” Proc. SPIE 5250, 312–321(2004).
[CrossRef]

J. Dobrowolski, A. V. Tikhonravov, M. K. Trubetskov, B. T. Sullivan, and P. G. Verly, “Optimal single-band normal-incidence antireflection coatings,” Appl. Opt. 35, 644–658(1996).
[CrossRef] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Computational manufacturing experiments for choosing optimal design and monitoring strategy,” Optical Interference Coatings, OSA Technical Digest Series (Optical Society of America, 2010), paper TuA5.

T. V. Amotchkina, A. V. Tikhonravov, M. K. Trubetskov, and S. A. Yanshin, “Structural properties of antireflection coatings,” in Optical Interference Coatings, OSA Technical Digest Series (Optical Society of America, 2007), paper WB5.

A. V. Tikhonravov and M. K. Trubetskov, “OptiLayer thin film software,” http://www.optilayer.com.

A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “On the reliability of computational estimations used for choosing the most manufacturable design,” Optical Interference Coatings, OSA Technical Digest Series (Optical Society of America, 2010), paper TuA3.

Vakil, H.

Verly, P. G.

Wilbrandt, S.

O. Stenzel, S. Wilbrandt, and N. Kaiser, “All-oxide broadband antireflection coatings by plasma ion assisted deposition: design, simulation, manufacturing and re-optimization,” Opt. Express 18, 8704–8708 (2010).

Willey, R. R.

Yanshin, S. A.

T. V. Amotchkina, A. V. Tikhonravov, M. K. Trubetskov, and S. A. Yanshin, “Structural properties of antireflection coatings,” in Optical Interference Coatings, OSA Technical Digest Series (Optical Society of America, 2007), paper WB5.

Appl. Opt. (16)

J. Dobrowolski, A. V. Tikhonravov, M. K. Trubetskov, B. T. Sullivan, and P. G. Verly, “Optimal single-band normal-incidence antireflection coatings,” Appl. Opt. 35, 644–658(1996).
[CrossRef] [PubMed]

J. Dobrowolski, D. Paitras, P. Ma, H. Vakil, and M. Acree, “Toward perfect antireflection coatings: numerical investigation,” Appl. Opt. 41, 3075–3083 (2002).
[CrossRef] [PubMed]

U. Schulz, U. Schallenberg, and N. Kaiser, “Symmetrical periods in antireflective coatings for plastic optics,” Appl. Opt. 42, 1346–1351 (2003).
[CrossRef] [PubMed]

D. Poitras and J. Dobrowolski, “Toward perfect antireflection coatings. 2. Theory,” Appl. Opt. 43, 1286–1295 (2004).
[CrossRef] [PubMed]

A. V. Tikhonravov and M. K. Trubetskov, “Computational manufacturing as a bridge between design and production,” Appl. Opt. 44, 6877–6884 (2005).
[CrossRef] [PubMed]

D. Ristau, H. Ehlers, T. Gross, and M. Lappschies, “Optical broadband monitoring of conventional and ion processes,” Appl. Opt. 45, 1495–1501 (2006).
[CrossRef] [PubMed]

U. B. Shallenberg, “Antireflection design concepts with equivalent layers,” Appl. Opt. 45, 1507–1514 (2006).
[CrossRef]

J. Dobrowolski, Y. Guo, T. Tiwald, P. Ma, and D. Poitras, “Toward perfect antireflection coatings. experimental results obtained with the use of reststrahlen materials,” Appl. Opt. 45, 1555–1562 (2006).
[CrossRef] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and J. A. Dobrowolski, “Estimation of the average residual reflectance of broadband antireflection coatings,” Appl. Opt. 47, C124–C130 (2007).
[CrossRef]

T. V. Amotchkina, “Empirical expression for the minimum residual reflectance of normal- and oblique-incidence antireflection coatings,” Appl. Opt. 47, 3109–3113 (2008).
[CrossRef] [PubMed]

V. Pervak, “Recent developments and new ideas in the field of dispersive multilayer optics,” Appl. Opt. 50, C55–C61 (2011).
[CrossRef] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, G. DeBell, V. Pervak, A. K. Sytchkova, M. Grilli, and D. Ristau, “Optical parameters of oxide films typically used in optical coating production,” Appl. Opt. 50, C75–C85 (2011).
[CrossRef] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Investigation of the error self-compensation effect associated with broadband optical monitoring,” Appl. Opt. 50, C111–C116 (2011).
[CrossRef] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and V. Pervak, “Estimations of production yields for selection of a practical optimal optical coating design,” Appl. Opt. 50, C141–C147 (2011).
[CrossRef] [PubMed]

R. R. Willey, “Further guidance for broadband antireflection coating design,” Appl. Opt. 50, C274–C278 (2011).
[CrossRef] [PubMed]

T. V. Amotchkina, M. K. Trubetskov, S. Schlichting, H. Ehlers, D. Ristau, and A. V. Tikhonravov, “Comparison of algorithms used for optical characterization of multilayer optical coatings,” Appl. Opt. 50, 3389–3395 (2011).
[CrossRef] [PubMed]

Appl. Phys. B (1)

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87, 5–12 (2006).
[CrossRef]

Moscow University Physics Bulletin (1)

T. V. Amotchkina, “Analytical properties of the spectral characteristics of antireflection coatings,” Moscow University Physics Bulletin 62, 292–295 (2007).
[CrossRef]

Opt. Express (3)

V. Pervak, M. K. Trubetskov, and A. V. Tikhonravov, “Robust synthesis of dispersive mirrors,” Opt. Express 19, 2371–2380 (2011).
[CrossRef] [PubMed]

U. Schulz, “Wideband antireflection coatings by combining interference multilayers with structured top layers,” Opt. Express 17, 8704–8708 (2009).
[CrossRef] [PubMed]

O. Stenzel, S. Wilbrandt, and N. Kaiser, “All-oxide broadband antireflection coatings by plasma ion assisted deposition: design, simulation, manufacturing and re-optimization,” Opt. Express 18, 8704–8708 (2010).

Proc. SPIE (2)

T. V. Amotchkina, A. V. Tikhonravov, and M. K. Trubetskov, “Estimation for the number of layers of broad band anti-reflection coatings,” Proc. SPIE 7101, 710104 (2008).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and M. A. Kokarev, “Key role of the coating total optical thickness in solving design problems,” Proc. SPIE 5250, 312–321(2004).
[CrossRef]

Other (8)

A. V. Tikhonravov and M. K. Trubetskov, “OptiLayer thin film software,” http://www.optilayer.com.

A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-Posed Problems (Wiley, 1977).

A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Computational manufacturing experiments for choosing optimal design and monitoring strategy,” Optical Interference Coatings, OSA Technical Digest Series (Optical Society of America, 2010), paper TuA5.

A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “On the reliability of computational estimations used for choosing the most manufacturable design,” Optical Interference Coatings, OSA Technical Digest Series (Optical Society of America, 2010), paper TuA3.

Quartz Glass for Optics: Data and Properties, http://heraeus-quarzglas.com.

H. A. Macleod, Thin Film Optical Filters, 3rd ed. (Institute of Physics, 2001).
[CrossRef]

J. Dobrowolski, “Optical properties of films and coatings,” in Optical Society of America’s Handbook of Optics, 3rd ed. (McGraw-Hill, 2010).

T. V. Amotchkina, A. V. Tikhonravov, M. K. Trubetskov, and S. A. Yanshin, “Structural properties of antireflection coatings,” in Optical Interference Coatings, OSA Technical Digest Series (Optical Society of America, 2007), paper WB5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Comparison of theoretical reflectance data of the designs AR-Ta-1 (solid black curve), AR-Ta-2 (dashed curve) and AR-Ta-3 (gray thick curve).

Fig. 2
Fig. 2

Comparison of theoretical reflectance data of the designs AR-Nb-1 (solid black curve), AR-Nb-2 (dashed curve) and AR-Nb-3 (gray thick curve).

Fig. 3
Fig. 3

Comparison of measurement transmittance data of AR-Ta-Sup sample (crosses) and theoretical transmittance of the design AR-Ta-1 (solid black curve).

Fig. 4
Fig. 4

Comparison of measurement transmittance data of AR-Ta-glass sample (crosses) and theoretical transmittance of the design AR-Ta-1 (solid black curve).

Fig. 5
Fig. 5

Comparison of measurement transmittance data of AR-Nb-Sup sample (crosses) and theoretical transmittance of the design AR-Nb-1 (solid black curve).

Fig. 6
Fig. 6

Fittings of transmittance data measured after deposition of the second (a), fourth (b), sixth (c), and eighth (d) layers (crosses) by corresponding model data (solid curves).

Fig. 7
Fig. 7

Absolute errors in layer thicknesses determined on the basis of multiscan measurements related to AR-Ta-glass sample.

Tables (5)

Tables Icon

Table 1 Cauchy Parameters of Thin-Film Materials and Substrates

Tables Icon

Table 2 Parameters of the AR Designs for the 450 nm to 1800 nm Spectral Range

Tables Icon

Table 3 Analysis of AR Designs Stability to Errors in Layer Thicknesses

Tables Icon

Table 4 Two AR Designs for the 450 nm to 1800 nm Spectral Range, Physical Thicknesses of Layers Numbered from the Substrate

Tables Icon

Table 5 Comparison of Design Production Yields Calculated for the Case of Broadband Monitoring (Left Side) and Time Monitoring (Right Side)

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

n ( λ ) = A 0 + A 1 ( λ 0 / λ ) 2 + A 2 ( λ 0 / λ ) 4 ,
R av = 1 λ u λ l λ l λ u R ( λ ) d λ ,
N c = 2 ( [ λ c λ l ] + 1 ) , λ c = λ u { 1 + 2 π arcsin ( n H / n L 1 n H / n L + 1 ) } .
T c = λ u 2 [ 1 + 2 π arcsin ( n H / n L 1 n H / n L + 1 ) ] .
R av = 1 L j = 1 L R ( λ j ) ,
λ j = λ l r j 1 , r = exp [ ln ( λ u / λ l ) L 1 ] , j = 1 , L .
E ( Δ R av ) = 1 M i = 1 M ( R ^ av , i R av ) .
DF 2 = 1 L m i = 1 m j = 1 L [ T ( d 1 + δ 1 , , d i + δ i ; λ j ) T ^ ( i ) ( λ j ) ] 2 + α i = 1 m ( δ i d i ) 2 ,

Metrics