Abstract

A field-of-view-folding approach is proposed to extend the field of view (FOV) of a dispersive imaging spectrometer after introducing several linear arrays of imaging fiber bundles to which to replace the slit. The fiber bundles can flexibly connect fore-optics with a spectrometer to yield an imaging fiber-optic spectrometer (IFOS). The technology of FOV segmenting and folding, which can decrease simultaneously the dimension and spectral distortion of the imaging spectrometer, is described in detail. Because of the sampling function of the fiber bundles, the IFOS is a double-sampling imaging system. We analyze the effect of fiber coupling on the modulation transfer function (MTF) and then develop a cascade MTF model to estimate the imaging performance of the IFOS. A spaceborne IFOS example is presented to describe how the method can be used.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. E. Haring, F. Williams, G. Vanstone, and G. Putnam, “WFIS: a wide field-of-view imaging spectrometer,” Proc. SPIE 3759, 305–314 (1999).
    [CrossRef]
  2. P. Mouroulis, R. O. Green, and D. W. Wilson, “Optical design of a coastal ocean imaging spectrometer,” Opt. Express 16, 9087–9096 (2008).
    [CrossRef]
  3. R. Lucke and J. Fisher, “The Schmidt–Dyson: a fast space-borne wide-field hyperspectral imager,” Proc. SPIE 7812, 78120M (2010).
    [CrossRef]
  4. L. G. Cook and J. F. Silny, “Imaging spectrometer trade studies: a detailed comparison of the Offner–Chrisp and reflective triplet optical design forms,” Proc. SPIE 7813, 78130F(2010).
    [CrossRef]
  5. J. S. Pazder, M. Fletcher, and C. Morbey, “The optical design of the wide field optical spectrograph for the thirty meter telescope,” Proc. SPIE 6269, 626932 (2006).
    [CrossRef]
  6. E. E. Sabatke, J. H. Burge, and P. Hinz, “Optical design of interferometric telescopes with wide fields of view,” Appl. Opt. 45, 8026–8035 (2006).
    [CrossRef]
  7. D. Magrin, R. Ragazzoni, G. Gentile, M. Dima, and J. Farinato, “Optical design of a highly segmented wide field spectrograph,” Proc. SPIE 7428, 7428U (2009).
    [CrossRef]
  8. P. Hu, Q. Lu, R. Shu, and J. Wang, “An airborne pushbroom hyperspectral imager with wide field of view,” Chin. Opt. Lett. 3, 689–691 (2005).
  9. C. Vanderriest, “Integral field spectroscopy with optical fibres,” in 3D Optical Spectroscopic Methods in Astronomy, G.Comte and M.Marcelin, eds., Vol.  71 of ASP Conference Series, 209–218, (Astronomical Society of the Pacific, 1995).
  10. I. R. Parry, “Optical fibres for integral field spectroscopy,” New Astron. Rev. 50, 301–304 (2006).
    [CrossRef]
  11. W. Wittenstein, J. C. Fontanella, A. R. Newbery, and J. Baars, “The definition of the OTF and the measurement of aliasing for sampled imaging system,” Opt. Acta 29, 41–50 (1982).
    [CrossRef]
  12. S. K. Park, R. A. Schowengerdt, and M. A. Kaczynski, “Modulation-transfer-function analysis for sampled image system,” Appl. Opt. 23, 2572–2582 (1984).
    [CrossRef]
  13. R. Drougard, “Optical transfer properties of fiber bundles,” J. Opt. Soc. Am. 54, 907–914 (1964).
    [CrossRef]
  14. K. M. Hock, “Effect of oversampling in pixel arrays,” Opt. Eng. 34, 1281–1288 (1995).
    [CrossRef]
  15. M. E. Marhic, S. E. Schacham, and M. Epstein, “Misalignment in imaging multifibers,” Appl. Opt. 17, 3503–3506 (1978).
    [CrossRef]
  16. S. Kaiser, B. Sang, J. Schubert, S. Hofer, and T. Stuffler, “Compact prism spectrometer of pushbroom type for hyperspectral imaging,” Proc. SPIE 7100, 710014 (2008).
    [CrossRef]

2010

R. Lucke and J. Fisher, “The Schmidt–Dyson: a fast space-borne wide-field hyperspectral imager,” Proc. SPIE 7812, 78120M (2010).
[CrossRef]

L. G. Cook and J. F. Silny, “Imaging spectrometer trade studies: a detailed comparison of the Offner–Chrisp and reflective triplet optical design forms,” Proc. SPIE 7813, 78130F(2010).
[CrossRef]

2009

D. Magrin, R. Ragazzoni, G. Gentile, M. Dima, and J. Farinato, “Optical design of a highly segmented wide field spectrograph,” Proc. SPIE 7428, 7428U (2009).
[CrossRef]

2008

P. Mouroulis, R. O. Green, and D. W. Wilson, “Optical design of a coastal ocean imaging spectrometer,” Opt. Express 16, 9087–9096 (2008).
[CrossRef]

S. Kaiser, B. Sang, J. Schubert, S. Hofer, and T. Stuffler, “Compact prism spectrometer of pushbroom type for hyperspectral imaging,” Proc. SPIE 7100, 710014 (2008).
[CrossRef]

2006

I. R. Parry, “Optical fibres for integral field spectroscopy,” New Astron. Rev. 50, 301–304 (2006).
[CrossRef]

J. S. Pazder, M. Fletcher, and C. Morbey, “The optical design of the wide field optical spectrograph for the thirty meter telescope,” Proc. SPIE 6269, 626932 (2006).
[CrossRef]

E. E. Sabatke, J. H. Burge, and P. Hinz, “Optical design of interferometric telescopes with wide fields of view,” Appl. Opt. 45, 8026–8035 (2006).
[CrossRef]

2005

1999

R. E. Haring, F. Williams, G. Vanstone, and G. Putnam, “WFIS: a wide field-of-view imaging spectrometer,” Proc. SPIE 3759, 305–314 (1999).
[CrossRef]

1995

K. M. Hock, “Effect of oversampling in pixel arrays,” Opt. Eng. 34, 1281–1288 (1995).
[CrossRef]

1984

1982

W. Wittenstein, J. C. Fontanella, A. R. Newbery, and J. Baars, “The definition of the OTF and the measurement of aliasing for sampled imaging system,” Opt. Acta 29, 41–50 (1982).
[CrossRef]

1978

1964

Baars, J.

W. Wittenstein, J. C. Fontanella, A. R. Newbery, and J. Baars, “The definition of the OTF and the measurement of aliasing for sampled imaging system,” Opt. Acta 29, 41–50 (1982).
[CrossRef]

Burge, J. H.

Cook, L. G.

L. G. Cook and J. F. Silny, “Imaging spectrometer trade studies: a detailed comparison of the Offner–Chrisp and reflective triplet optical design forms,” Proc. SPIE 7813, 78130F(2010).
[CrossRef]

Dima, M.

D. Magrin, R. Ragazzoni, G. Gentile, M. Dima, and J. Farinato, “Optical design of a highly segmented wide field spectrograph,” Proc. SPIE 7428, 7428U (2009).
[CrossRef]

Drougard, R.

Epstein, M.

Farinato, J.

D. Magrin, R. Ragazzoni, G. Gentile, M. Dima, and J. Farinato, “Optical design of a highly segmented wide field spectrograph,” Proc. SPIE 7428, 7428U (2009).
[CrossRef]

Fisher, J.

R. Lucke and J. Fisher, “The Schmidt–Dyson: a fast space-borne wide-field hyperspectral imager,” Proc. SPIE 7812, 78120M (2010).
[CrossRef]

Fletcher, M.

J. S. Pazder, M. Fletcher, and C. Morbey, “The optical design of the wide field optical spectrograph for the thirty meter telescope,” Proc. SPIE 6269, 626932 (2006).
[CrossRef]

Fontanella, J. C.

W. Wittenstein, J. C. Fontanella, A. R. Newbery, and J. Baars, “The definition of the OTF and the measurement of aliasing for sampled imaging system,” Opt. Acta 29, 41–50 (1982).
[CrossRef]

Gentile, G.

D. Magrin, R. Ragazzoni, G. Gentile, M. Dima, and J. Farinato, “Optical design of a highly segmented wide field spectrograph,” Proc. SPIE 7428, 7428U (2009).
[CrossRef]

Green, R. O.

Haring, R. E.

R. E. Haring, F. Williams, G. Vanstone, and G. Putnam, “WFIS: a wide field-of-view imaging spectrometer,” Proc. SPIE 3759, 305–314 (1999).
[CrossRef]

Hinz, P.

Hock, K. M.

K. M. Hock, “Effect of oversampling in pixel arrays,” Opt. Eng. 34, 1281–1288 (1995).
[CrossRef]

Hofer, S.

S. Kaiser, B. Sang, J. Schubert, S. Hofer, and T. Stuffler, “Compact prism spectrometer of pushbroom type for hyperspectral imaging,” Proc. SPIE 7100, 710014 (2008).
[CrossRef]

Hu, P.

Kaczynski, M. A.

Kaiser, S.

S. Kaiser, B. Sang, J. Schubert, S. Hofer, and T. Stuffler, “Compact prism spectrometer of pushbroom type for hyperspectral imaging,” Proc. SPIE 7100, 710014 (2008).
[CrossRef]

Lu, Q.

Lucke, R.

R. Lucke and J. Fisher, “The Schmidt–Dyson: a fast space-borne wide-field hyperspectral imager,” Proc. SPIE 7812, 78120M (2010).
[CrossRef]

Magrin, D.

D. Magrin, R. Ragazzoni, G. Gentile, M. Dima, and J. Farinato, “Optical design of a highly segmented wide field spectrograph,” Proc. SPIE 7428, 7428U (2009).
[CrossRef]

Marhic, M. E.

Morbey, C.

J. S. Pazder, M. Fletcher, and C. Morbey, “The optical design of the wide field optical spectrograph for the thirty meter telescope,” Proc. SPIE 6269, 626932 (2006).
[CrossRef]

Mouroulis, P.

Newbery, A. R.

W. Wittenstein, J. C. Fontanella, A. R. Newbery, and J. Baars, “The definition of the OTF and the measurement of aliasing for sampled imaging system,” Opt. Acta 29, 41–50 (1982).
[CrossRef]

Park, S. K.

Parry, I. R.

I. R. Parry, “Optical fibres for integral field spectroscopy,” New Astron. Rev. 50, 301–304 (2006).
[CrossRef]

Pazder, J. S.

J. S. Pazder, M. Fletcher, and C. Morbey, “The optical design of the wide field optical spectrograph for the thirty meter telescope,” Proc. SPIE 6269, 626932 (2006).
[CrossRef]

Putnam, G.

R. E. Haring, F. Williams, G. Vanstone, and G. Putnam, “WFIS: a wide field-of-view imaging spectrometer,” Proc. SPIE 3759, 305–314 (1999).
[CrossRef]

Ragazzoni, R.

D. Magrin, R. Ragazzoni, G. Gentile, M. Dima, and J. Farinato, “Optical design of a highly segmented wide field spectrograph,” Proc. SPIE 7428, 7428U (2009).
[CrossRef]

Sabatke, E. E.

Sang, B.

S. Kaiser, B. Sang, J. Schubert, S. Hofer, and T. Stuffler, “Compact prism spectrometer of pushbroom type for hyperspectral imaging,” Proc. SPIE 7100, 710014 (2008).
[CrossRef]

Schacham, S. E.

Schowengerdt, R. A.

Schubert, J.

S. Kaiser, B. Sang, J. Schubert, S. Hofer, and T. Stuffler, “Compact prism spectrometer of pushbroom type for hyperspectral imaging,” Proc. SPIE 7100, 710014 (2008).
[CrossRef]

Shu, R.

Silny, J. F.

L. G. Cook and J. F. Silny, “Imaging spectrometer trade studies: a detailed comparison of the Offner–Chrisp and reflective triplet optical design forms,” Proc. SPIE 7813, 78130F(2010).
[CrossRef]

Stuffler, T.

S. Kaiser, B. Sang, J. Schubert, S. Hofer, and T. Stuffler, “Compact prism spectrometer of pushbroom type for hyperspectral imaging,” Proc. SPIE 7100, 710014 (2008).
[CrossRef]

Vanderriest, C.

C. Vanderriest, “Integral field spectroscopy with optical fibres,” in 3D Optical Spectroscopic Methods in Astronomy, G.Comte and M.Marcelin, eds., Vol.  71 of ASP Conference Series, 209–218, (Astronomical Society of the Pacific, 1995).

Vanstone, G.

R. E. Haring, F. Williams, G. Vanstone, and G. Putnam, “WFIS: a wide field-of-view imaging spectrometer,” Proc. SPIE 3759, 305–314 (1999).
[CrossRef]

Wang, J.

Williams, F.

R. E. Haring, F. Williams, G. Vanstone, and G. Putnam, “WFIS: a wide field-of-view imaging spectrometer,” Proc. SPIE 3759, 305–314 (1999).
[CrossRef]

Wilson, D. W.

Wittenstein, W.

W. Wittenstein, J. C. Fontanella, A. R. Newbery, and J. Baars, “The definition of the OTF and the measurement of aliasing for sampled imaging system,” Opt. Acta 29, 41–50 (1982).
[CrossRef]

Appl. Opt.

Chin. Opt. Lett.

J. Opt. Soc. Am.

New Astron. Rev.

I. R. Parry, “Optical fibres for integral field spectroscopy,” New Astron. Rev. 50, 301–304 (2006).
[CrossRef]

Opt. Acta

W. Wittenstein, J. C. Fontanella, A. R. Newbery, and J. Baars, “The definition of the OTF and the measurement of aliasing for sampled imaging system,” Opt. Acta 29, 41–50 (1982).
[CrossRef]

Opt. Eng.

K. M. Hock, “Effect of oversampling in pixel arrays,” Opt. Eng. 34, 1281–1288 (1995).
[CrossRef]

Opt. Express

Proc. SPIE

R. Lucke and J. Fisher, “The Schmidt–Dyson: a fast space-borne wide-field hyperspectral imager,” Proc. SPIE 7812, 78120M (2010).
[CrossRef]

L. G. Cook and J. F. Silny, “Imaging spectrometer trade studies: a detailed comparison of the Offner–Chrisp and reflective triplet optical design forms,” Proc. SPIE 7813, 78130F(2010).
[CrossRef]

J. S. Pazder, M. Fletcher, and C. Morbey, “The optical design of the wide field optical spectrograph for the thirty meter telescope,” Proc. SPIE 6269, 626932 (2006).
[CrossRef]

D. Magrin, R. Ragazzoni, G. Gentile, M. Dima, and J. Farinato, “Optical design of a highly segmented wide field spectrograph,” Proc. SPIE 7428, 7428U (2009).
[CrossRef]

S. Kaiser, B. Sang, J. Schubert, S. Hofer, and T. Stuffler, “Compact prism spectrometer of pushbroom type for hyperspectral imaging,” Proc. SPIE 7100, 710014 (2008).
[CrossRef]

R. E. Haring, F. Williams, G. Vanstone, and G. Putnam, “WFIS: a wide field-of-view imaging spectrometer,” Proc. SPIE 3759, 305–314 (1999).
[CrossRef]

Other

C. Vanderriest, “Integral field spectroscopy with optical fibres,” in 3D Optical Spectroscopic Methods in Astronomy, G.Comte and M.Marcelin, eds., Vol.  71 of ASP Conference Series, 209–218, (Astronomical Society of the Pacific, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Diagrammatic sketch of distribution of fiber or spectral images (a) on the imaging plane of the telescope (at the input end of fiber bundles), (b) on the objective plane of the spectrometer (at the output end of fiber bundles), (c) on the imaging plane of the spectrometer, and (d) after image stitching.

Fig. 2
Fig. 2

Match state between the image of fiber bundle and FPA for a certain wavelength (only half the fiber bundle is drawn; the other half gives symmetrical results): (a) perfect match and (b) mismatch (for clear illustration, each square includes 2 × 2 sampling pixels).

Fig. 3
Fig. 3

Match state for a single fiber and corresponding pixels when (a)  k M = 0 , (b)  0 < k M R r , and (c)  k M > R r .

Fig. 4
Fig. 4

Sketch of the layout of the spaceborne IFOS.

Fig. 5
Fig. 5

Cross section of the V-shaped grooves.

Fig. 6
Fig. 6

MTF curves of the slit spectrometer and the designed IFOS when the values of R and r are 9 μm and 8 μm , respectively.

Tables (2)

Tables Icon

Table 1 Parameters Comparison between the Designed FOV-Folding Spectrometer and the Classical Offner Grating Spectrometer

Tables Icon

Table 2 Maximum Offset k M for Fiber Bundles at Central and Marginal Wavelengths in μm

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

MTF ( f ) a int = | F ( f ) | | G ( f ) | ,
F ( f ) = J 1 ( 2 π r f ) π r f ,
G ( f ) = sinc ( R f ) ,
MTF ( f ) a int = J 1 ( 2 π r f ) π r f sinc ( R f ) .
MTF ( f ) m int = | F ( f ) | | G * ( f ) | | P ( f ) | ,
p ( k i ) = { 1 / k M , 0 k i k M , 0 , elsewhere .
p ( k i ) = 1 k M rect ( k i k M / 2 k M ) .
| P ( f ) | = sinc ( k M f ) ,
MTF ( f ) m int = J 1 ( 2 π r f ) π r f sinc ( R f ) sinc ( k M f ) .
MTF ( f ) m int = J 1 ( 2 π r f ) π r f sinc ( R f ) sinc [ ( k M R + r ) f ] ,
MTF f sam = sinc ( 2 R f ) ,
MTF d sam = sinc ( R f ) .
MTF ( f ) a sys = J 1 ( 2 π r f ) π r f sinc ( 2 R f ) sinc 2 ( R f ) ,
MTF ( f ) m sys = J 1 ( 2 π r f ) π r f sinc ( 2 R f ) sinc 2 ( R f ) sinc [ ( k M R + r ) f ] .

Metrics