Abstract

Recent trends in three-dimensional (3D) display technologies are very interesting in that both old- fashioned and up-to-date technologies are being actively investigated together. The release of the first commercially successful 3D display product raised new research topics in stereoscopic display. Autostereoscopic display renders a ray field of a 3D image, whereas holography replicates a wave field of it. Many investigations have been conducted on the next candidates for commercial products to resolve existing limitations. Up-to-date see-through 3D display is a concept close to the ultimate goal of presenting seamless virtual images. Although it is still far from practical use, many efforts have been made to resolve issues such as occlusion problems.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Wheatstone, “Contributions to the physiology of vision. Part the first. On some remarkable, and hitherto unobserved, phenomena of binocular vision,” Philos. Trans. R. Soc. London 128, 371–394 (1838).
    [CrossRef]
  2. T. Inoue and H. Ohzu, “Accommodation responses to stereoscopic three-dimensional display,” Appl. Opt. 36, 4509–4515(1997).
    [CrossRef]
  3. F. L. Kooi and A. Toet, “Visual comfort of binocular and 3D displays,” Displays 25, 99–108 (2004).
    [CrossRef]
  4. S. S. Kim, B. H. You, H. Choi, B. H. Berkeley, and N. D. Kim, “World's first 240 Hz TFT-LCD technology for full-HD LCD-TV and its application to 3D display,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2009), Vol.  40, pp. 424–427.
  5. D.-S. Kim, S.-M. Park, J.-H. Jung, and D.-C. Hwang, “New 240 Hz driving method for Full HD and high quality 3D LCD TV,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2010), Vol.  41, pp. 762–765.
  6. H. Kang, S.-D. Roh, I.-S. Baik, H.-J. Jung, W.-N. Jeong, J.-K. Shin, and I.-J. Chung, “A novel polarizer glasses-type 3D displays with a patterned retarder,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2010), Vol.  41, pp. 1–4.
  7. S.-M. Jung, Y.-B. Lee, H.-J. Park, S.-C. Lee, W.-N. Jeong, J.-K. Shin, and I.-J. Chung, “Improvement of 3-D crosstalk with over-driving method for the active retarder 3-D displays,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2010), Vol.  41, pp. 1264–1267.
  8. S. T. de Zwart, W. L. Ijzerman, T. Dekker, and W. A. M. Wolter, “A 20 in. switchable auto-stereoscopic 2D/3D display,” in Proceedings of International Display Workshops (Society for Information Display, 2004), pp. 1459–1460.
  9. G. J. Woodgate and J. Harrold, “A new architecture for high resolution autostereoscopic 2D/3D displays using free-standing liquid crystal microlenses,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2005), Vol.  36, pp. 378–381.
  10. H.-K. Hong, S.-M. Jung, B.-J. Lee, H.-J. Im, and H.-H. Shin, “Autostereoscopic 2D/3D switching display using electric-field-driven LC lens (ELC lens),” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2008), Vol.  39, pp. 348–351.
  11. C.-W. Chen, Y.-C. Huang, and Y.-P. Huang, “Fast switching Fresnel liquid crystal lens for autostereoscopic 2D/3D display,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2010), Vol.  41, pp. 428–431.
  12. A. Takagi, T. Saishu, M. Kashiwagi, K. Taira, and Y. Hirayama, “Autostereoscopic partial 2-D/3-D switchable display using liquid-crystal gradient index lens,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2010), Vol.  41, pp. 436–439.
  13. H. J. Lee, H. Nam, J. D. Lee, H. W. Jang, M. S. Song, B. S. Kim, J. S. Gu, C. Y. Park, and K. H. Choi, “A high resolution autostereoscopic display employing a time division parallax barrier,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2006), Vol.  37, pp. 81–84.
  14. G. Hamagishi, “Analysis and improvement of viewing conditions for two-view and multi-view 3D displays,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2009), Vol.  40, pp. 340–343.
  15. G. Lippmann, “La photographie integrale,” C. R. Acad. Sci. 146, 446–451 (1908).
  16. F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36, 1598–1603 (1997).
    [CrossRef]
  17. B. Lee, J.-H. Park, and S.-W. Min, “Three-dimensional display and information processing based on integral imaging,” in Digital Holography and Three-Dimensional DisplayT.-C.Poon, ed. (Springer, 2006), Chap. 12, pp. 333–378.
  18. S.-W. Min, J. Kim, and B. Lee, “New characteristic equation of three-dimensional integral imaging system and its applications,” Jpn. J. Appl. Phys. 44, L71–L74 (2005).
    [CrossRef]
  19. J.-H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48, H77–H94 (2009).
    [CrossRef]
  20. Y. Kim, S.-G. Park, S.-W. Min, and B. Lee, “Integral imaging system using a dual-mode technique,” Appl. Opt. 48, H71–H76 (2009).
    [CrossRef]
  21. J. Hahn, Y. Kim, and B. Lee, “Uniform angular resolution integral imaging display with boundary folding mirrors,” Appl. Opt. 48, 504–511 (2009).
    [CrossRef]
  22. Y. Takaki, K. Tanaka, and J. Nakamura, “Super multi-view display with a lower resolution flat-panel display,” Opt. Express 19, 4129–4139 (2011).
    [CrossRef]
  23. M. Okui, M. Kobayashi, J. Arai, and F. Okano, “Moiré fringe reduction by optical filters in integral three-dimensional imaging on a color flat-panel display,” Appl. Opt. 44, 4475–4483 (2005).
    [CrossRef]
  24. Y. Kim, G. Park, J.-H. Jung, J. Kim, and B. Lee, “Color moiré pattern simulation and analysis in three-dimensional integral imaging for finding the moiré-reduced tilted angle of a lens array,” Appl. Opt. 48, 2178–2187 (2009).
    [CrossRef]
  25. Y. Kim, S.-G. Park, S.-W. Min, and B. Lee, “Projection-type integral imaging system using multiple elemental image layers,” Appl. Opt. 50, B18–B24 (2011).
    [CrossRef]
  26. M. Kawakita, H. Sasaki, J. Arai, F. Okano, K. Suehiro, Y. Haino, M. Yoshimura, and M. Sato, “Geometric analysis of spatial distortion in projection-type integral imaging,” Opt. Lett. 33, 684–686 (2008).
    [CrossRef]
  27. F. Okano, J. Arai, and M. Kawakita, “Wave optical analysis of integral method for three-dimensional images,” Opt. Lett. 32, 364–366 (2007).
    [CrossRef]
  28. X. Wang and H. Hua, “Theoretical analysis for integral imaging performance based on microscanning of a microlens array,” Opt. Lett. 33, 449–451 (2008).
    [CrossRef]
  29. J.-S. Jang and B. Javidi, “Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics,” Opt. Lett. 27, 324–326 (2002).
    [CrossRef]
  30. H. Choi, S.-W. Min, S. Jung, J.-H. Park, and B. Lee, “Multiple-viewing-zone integral imaging using a dynamic barrier array for three-dimensional displays,” Opt. Express 11, 927–932(2003).
    [CrossRef]
  31. B. Lee, S. Jung, and J.-H. Park, “Viewing-angle-enhanced integral imaging by lens switching,” Opt. Lett. 27, 818–820(2002).
    [CrossRef]
  32. J.-S. Jang and B. Javidi, “Improvement of viewing angle in integral imaging by use of moving lenslet arrays with low fill factor,” Appl. Opt. 42, 1996–2002 (2003).
    [CrossRef]
  33. S. Jung, J.-H. Park, H. Choi, and B. Lee, “Wide-viewing integral three-dimensional imaging by use of orthogonal polarization switching,” Appl. Opt. 42, 2513–2520(2003).
    [CrossRef]
  34. G. Park, J.-H. Jung, K. Hong, Y. Kim, Y.-H. Kim, S.-W. Min, and B. Lee, “Multi-viewer tracking integral imaging system and its viewing zone analysis,” Opt. Express 17, 17895–17908 (2009).
    [CrossRef]
  35. Y. Kim, J.-H. Park, S.-W. Min, S. Jung, H. Choi, and B. Lee, “A wide-viewing-angle integral 3D imaging system by curving a screen and a lens array,” Appl. Opt. 44, 546–552(2005).
    [CrossRef]
  36. Y. Kim, J.-H. Park, H. Choi, S. Jung, S.-W. Min, and B. Lee, “Viewing-angle-enhanced integral imaging system using a curved lens array,” Opt. Express 12, 421–429 (2004).
    [CrossRef]
  37. D.-H. Shin, B. Lee, and E.-S. Kim, “Multidirectional curved integral imaging with large depth by additional use of a large-aperture lens,” Appl. Opt. 45, 7375–7381 (2006).
    [CrossRef]
  38. J.-H. Jung, K. Hong, G. Park, I. Chung, and B. Lee, “360-degree viewable cylindrical integral imaging system using three-dimensional/two-dimensional switchable and flexible backlight,” J. Soc. Inf. Disp. 18, 527–534 (2010).
    [CrossRef]
  39. S.-W. Min, J. Kim, and B. Lee, “Wide-viewing projection-type integral imaging system with an embossed screen,” Opt. Lett. 29, 2420–2422 (2004).
    [CrossRef]
  40. R. Martinez-Cuenca, H. Navarro, G. Saavedra, B. Javidi, and M. Martinez-Corral, “Enhanced viewing-angle integral imaging by multiple-axis telecentric relay system,” Opt. Express 15, 16255–16260 (2007).
    [CrossRef]
  41. G. Baasantseren, J.-H. Park, K.-C. Kwon, and N. Kim, “Viewing angle enhanced integral imaging display using two elemental image masks,” Opt. Express 17, 14405–14417(2009).
    [CrossRef]
  42. H. Kim, J. Hahn, and B. Lee, “The use of a negative index planoconcave lens array for wide-viewing angle integral imaging,” Opt. Express 16, 21865–21880 (2008).
    [CrossRef]
  43. J.-Y. Jang, H.-S. Lee, S. Cha, and S.-H. Shin, “Viewing angle enhanced integral imaging display by using a high refractive index medium,” Appl. Opt. 50, B71–B76 (2011).
    [CrossRef]
  44. H. Liao, T. Dohi, and M. Iwahara, “Improved viewing resolution of integral videography by use of rotated prism sheets,” Opt. Express 15, 4814–4822 (2007).
    [CrossRef]
  45. Y. Kim, J. Kim, J.-M. Kang, J.-H. Jung, H. Choi, and B. Lee, “Point light source integral imaging with improved resolution and viewing angle by the use of electrically movable pinhole array,” Opt. Express 15, 18253–18267 (2007).
    [CrossRef]
  46. H. Liao, M. Iwahara, N. Hata, and T. Dohi, “High-quality integral videography using a multiprojector,” Opt. Express 12, 1067–1076 (2004).
    [CrossRef]
  47. H. Liao, M. Iwahara, T. Koike, N. Hata, I. Sakuma, and T. Dohi, “Scalable high-resolution integral videography autostereoscopic display with a seamless multiprojection system,” Appl. Opt. 44, 305–315 (2005).
    [CrossRef]
  48. J.-S. Jang, F. Jin, and B. Javidi, “Three-dimensional integral imaging with large depth of focus by use of real and virtual image fields,” Opt. Lett. 28, 1421–1423 (2003).
    [CrossRef]
  49. J.-H. Park, S. Jung, H. Choi, and B. Lee, “Integral imaging with multiple image planes using a uniaxial crystal plate,” Opt. Express 11, 1862–1875 (2003).
    [CrossRef]
  50. J.-S. Jang and B. Javidi, “Large depth-of-focus time-multiplexed three-dimensional integral imaging by use of lenslet with nonuniform focal lengths and aperture sizes,” Opt. Lett. 28, 1924–1926 (2003).
    [CrossRef]
  51. H. Choi, J.-H. Park, J. Hong, and B. Lee, “Depth enhanced integral imaging with a stepped lens array or a composite lens array for three-dimensional display,” Jpn. J. Appl. Phys. 43, 5330–5336 (2004).
    [CrossRef]
  52. S. Jung, J. Hong, J.-H. Park, Y. Kim, and B. Lee, “Depth-enhanced integral-imaging 3D display using different optical path lengths by polarization devices or mirror barrier array,” J. Soc. Inf. Disp. 12, 461–467 (2004).
    [CrossRef]
  53. J. Hong, J.-H. Park, S. Jung, and B. Lee, “Depth enhanced integral imaging by use of optical path control,” Opt. Lett. 29, 1790–1792 (2004).
    [CrossRef]
  54. H. Choi, Y. Kim, J.-H. Park, J. Kim, S.-W. Cho, and B. Lee, “Layered-panel integral imaging without the translucent problem,” Opt. Express 13, 5769–5776 (2005).
    [CrossRef]
  55. Y. Kim, J.-H. Park, H. Choi, J. Kim, S.-W. Cho, Y. Kim, G. Park, and B. Lee, “Depth-enhanced integral imaging display system with electrically variable image planes using polymer-dispersed liquid-crystal layers,” Appl. Opt. 46, 3766–3773(2007).
    [CrossRef]
  56. S.-W. Min, M. Hahn, J. Kim, and B. Lee, “Three-dimensional electro-floating display system using an integral imaging method,” Opt. Express 13, 4358–4369 (2005).
    [CrossRef]
  57. J. Kim, S.-W. Min, Y. Kim, and B. Lee, “Analysis on viewing characteristics of integral floating system,” Appl. Opt. 47, D80–D86 (2008).
    [CrossRef]
  58. J. Kim, S.-W. Min, and B. Lee, “Viewing window expansion of integral floating display,” Appl. Opt. 48, 862–867(2009).
    [CrossRef]
  59. J. Kim, S.-W. Min, and B. Lee, “Viewing region maximization of an integral floating display through location adjustment of viewing window,” Opt. Express 15, 13023–13034 (2007).
    [CrossRef]
  60. J. Kim, S.-W. Min, and B. Lee, “Floated image mapping for integral floating display,” Opt. Express 16, 8549–8556(2008).
    [CrossRef]
  61. H. Kakeya, “Autostereoscopic display with real-image virtual screen and light filters,” Proc. SPIE 4660, 349–357(2002).
    [CrossRef]
  62. H. Kakeya, “MOEVsion: simple multiview display with clear floating image,” Proc. SPIE 6490, 64900J (2007).
    [CrossRef]
  63. H. Choi, Y. Kim, J. Kim, S.-W. Cho, and B. Lee, “Depth- and viewing-angle-enhanced 3-D/2-D switchable display system with high contrast ratio using multiple display devices and a lens array,” J. Soc. Inf. Disp. 15, 315–320 (2007).
    [CrossRef]
  64. Y. Kim, H. Choi, J. Kim, S.-W. Cho, Y. Kim, G. Park, and B. Lee, “Depth-enhanced integral imaging display system with electrically variable image planes using polymer-dispersed liquid crystal layers,” Appl. Opt. 46, 3766–3773 (2007).
    [CrossRef]
  65. H. Choi, S.-W. Cho, J. Kim, and B. Lee, “A thin 3D-2D convertible integral imaging system using a pinhole array on a polarizer,” Opt. Express 14, 5183–5190 (2006).
    [CrossRef]
  66. S.-W. Cho, J.-H. Park, Y. Kim, H. Choi, J. Kim, and B. Lee, “Convertible two-dimensional–three-dimensional display using an LED array based on modified integral imaging,” Opt. Lett. 31, 2852–2854 (2006).
    [CrossRef]
  67. Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Kim, G. Park, and B. Lee, “Three-dimensional integral display using plastic optical fibers,” Appl. Opt. 46, 7149–7154 (2007).
    [CrossRef]
  68. Y. Kim, J. Kim, Y. Kim, H. Choi, J.-H. Jung, and B. Lee, “Thin-type integral imaging method with an organic light emitting diode panel,” Appl. Opt. 47, 4927–4934 (2008).
    [CrossRef]
  69. J.-H. Jung, Y. Kim, Y. Kim, J. Kim, K. Hong, and B. Lee, “Integral imaging system using an electroluminescent film backlight for three-dimensional–two-dimensional convertibility and a curved structure,” Appl. Opt. 48, 998–1007 (2009).
    [CrossRef]
  70. H. Choi, J. Kim, S.-W. Cho, Y. Kim, J. B. Park, and B. Lee, “Three-dimensional–two-dimensional mixed display system using integral imaging with an active pinhole array on a liquid crystal panel,” Appl. Opt. 47, 2207–2214 (2008).
    [CrossRef]
  71. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
    [CrossRef]
  72. E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52, 1123–1130 (1962).
    [CrossRef]
  73. Y. N. Denisyuk, “Photographic reconstruction of the optical properties of an object in its own scattered field,” Sov. Phys. Dokl. 7, 543 (1962).
  74. G. Lippmann, “La photographie des couleurs,” C.R. Hebd. Seances Acad. Sci. 112, 274–275 (1891).
  75. A. W. Lohmann and D. Paris, “Binary Fraunhofer holograms generated by computer,” Appl. Opt. 6, 1739–1748 (1967).
    [CrossRef]
  76. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
    [CrossRef]
  77. J. Schmit and K. Creath, “Extended averaging technique for derivation of error-compensating algorithms in phase-shifting interferometry,” Appl. Opt. 34, 3610–3619 (1995).
    [CrossRef]
  78. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997).
    [CrossRef]
  79. J. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. C. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
    [CrossRef]
  80. J. W. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts, 2004).
  81. A. V. Oppenheim and J. S. Lim, “The importance of phase in signals,” Proc. IEEE 69, 529–541 (1981).
    [CrossRef]
  82. J. Hahn, H. Kim, Y. Lim, G. Park, and B. Lee, “Wide viewing angle dynamic holographic stereogram with a curved array of spatial light modulators,” Opt. Express 16, 12372–12386(2008).
    [CrossRef]
  83. D. J. Brady, Optical Imaging and Spectroscopy (Wiley, 2009).
  84. L. Onural, F. Yaraş, and H. Kang, “Digital holographic three-dimensional video displays,” Proc. IEEE 99, 576–589 (2011).
    [CrossRef]
  85. K. Maeno, N. Fukaya, O. Nishikawa, K. Sato, and T. Honda, “Electro-holographic display using 15 mega pixels LCD,” Proc. SPIE 2652, 15–23 (1996).
    [CrossRef]
  86. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts, 2007).
  87. P. J. van Heerden, “A new optical method of storing and retrieving information,” Appl. Opt. 2, 387–392 (1963).
    [CrossRef]
  88. N. Abramson, “Light-in-flight recording: high-speed holographic motion pictures of ultrafast phenomena,” Appl. Opt. 22, 215–232 (1983).
    [CrossRef]
  89. J. R. Fienup and J. J. Miller, “Aberration correction by maximizing generalized sharpness metrics,” J. Opt. Soc. Am. A 20, 609–620 (2003).
    [CrossRef]
  90. M. Stanley, R. W. Bannister, C. D. Cameron, S. D. Coomber, I. G. Cresswell, J. R. Hughes, V. Hui, P. O. Jackson, K. A. Milham, R. J. Miller, D. A. Payne, J. Quarrel, D. C. Scattergood, A. P. Smith, M. A. Smith, D. L. Tipton, P. J. Watson, P. J. Webber, and C. W. Slinger, “100 mega-pixel computer generated holographic images from active tiling--a dynamic and scalable electro-optic modulator system,” Proc. SPIE 5005, 247–258 (2003).
    [CrossRef]
  91. R. Haussler, S. Reichelt, N. Leister, E. Zschau, R. Missbach, and A. Schwerdtner, “Large real-time holographic displays: from prototypes to a consumer product,” Proc. SPIE 7237, 72370S (2009).
    [CrossRef]
  92. Y. Takaki and M. Yokouchi, “Speckle-free and grayscale hologram reconstruction using time-multiplexing technique,” Opt. Express 19, 7567–7579 (2011).
    [CrossRef]
  93. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997).
    [CrossRef]
  94. N. T. Shaked, B. Katz, and J. Rosen, “Review of three-dimensional holographic imaging by multiple-viewpoint-projection based methods,” Appl. Opt. 48, H120–H136(2009).
    [CrossRef]
  95. J.-H. Park, M.-S. Kim, G. Baasantseren, and N. Kim, “Fresnel and Fourier hologram generation using orthographic projection images,” Opt. Express 17, 6320–6334 (2009).
    [CrossRef]
  96. N. Chen, J.-H. Park, and N. Kim, “Parameter analysis of integral Fourier hologram and its resolution enhancement,” Opt. Express 18, 2152–2167 (2010).
    [CrossRef]
  97. H. Kim, J. Hahn, and B. Lee, “Mathematical modeling of triangle-mesh-modeled three-dimensional surface objects for digital holography,” Appl. Opt. 47, D117–D127 (2008).
    [CrossRef]
  98. F. Zhou, H. B.-L. Duh, and M. Billinghurst, “Trends in augmented reality tracking, interaction and display: a review of ten years of ISMAR,” in Proceedings of 7th IEEE/ACM International Symposium (IEEE, 2008), pp. 193–202.
  99. D. W. F. van Krevelen and R. Poelman, “A survey of augmented reality technologies, applications and limitations,” Int. J. Virtual Reality 9, 1–20 (2010).
  100. O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2, 199–216 (2006).
    [CrossRef]
  101. H. Morishima, T. Akiyama, N. Nanba, and T. Tanaka, “The design of off-axial optical system consisting of aspherical mirrors without rotational symmetry,” in 20th Optical Symposium, Extended Abstracts (Optical Society of Japan, 1995), Vol.  21, pp. 53–56.
  102. K. Inoguchi, H. Morishima, N. Nanaba, S. Takeshita, and Y. Yamazaki, “Fabrication and evaluation of HMD optical system consisting of aspherical mirrors without rotation symmetry,” in Japan Optics’95, Extended Abstracts (Optical Society of Japan, 1995), pp. 19–20.
  103. D. Cheng, Y. Wang, H. Hua, and M. M. Talha, “Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism,” Appl. Opt. 48, 2655–2668 (2009).
    [CrossRef]
  104. D. Cheng, Y. Wang, H. Hua, and J. Sasian, “Design of a wide-angle, lightweight head-mounted display using free-form optics tiling,” Opt. Lett. 36, 2098–2100 (2011).
    [CrossRef]
  105. Z. Zheng, X. Liu, H. Li, and L. Xu, “Design and fabrication of an off-axis see-through head-mounted display with an x–y polynomial surface,” Appl. Opt. 49, 3661–3668 (2010).
    [CrossRef]
  106. E. W. Tatham, “Technical opinion: getting the best of both real and virtual worlds,” Commun. ACM 42, 96–98(1999).
    [CrossRef]
  107. O. Cakmakci, Y. Ha, and J. P. Rolland, “A compact optical see-through head-worn display with occlusion support,” in Proceedings of the 3rd IEEE/ACM International Symposium on Mixed and Augmented Reality (IEEE/ACM, 2004), pp. 16–25.
  108. K. Kiyokawa, Y. Kurata, and H. Ohno, “An optical see-through display for mutual occlusion with a real-time stereo vision system,” Comput. Graph. Forum 25, 765–779(2001).
  109. K. Kiyokawa, Y. Kurata, and H. Ohno, “Occlusive optical see-through displays in a collaborative setup,” in Proceedings of the ACM SIGGRAPH (ACM2002), p. 74.
  110. K. Kiyokawa, M. Billinghurst, S. E. Hayes, A. Gupta, Y. Sannohe, and H. Kato, “Communications behaviors of co-located users in collaborative AR interfaces,” in Proceedings of the IEEE/ACM International Symposium on Mixed and Augmented Reality (IEEE/ACM2002), pp. 139–148.
  111. K. Kiyokawa, M. Billinghurst, B. Campbell, and E. Woods, “An occlusion-capable optical see-through head mount display for supporting co-located collaboration,” in Proceedings of the 2nd IEEE/ACM International Symposium on Mixed and Augmented Reality (IEEE/ACM2003), pp. 133–141.
  112. S. Shiwa, K. Omura, and F. Kishino, “Proposal for a 3-D display with accommodative compensation: 3-DDAC,” J. Soc. Inf. Disp. 4, 255–261 (1996).
    [CrossRef]
  113. T. Shibata, T. Kawai, K. Ohta, M. Otsuki, N. Miyake, Y. Yoshihara, and T. Iwasaki, “Stereoscopic 3-D display with optical correction for the reduction of the discrepancy between accommodation and convergence,” J. Soc. Inf. Disp. 13, 665–671 (2005).
    [CrossRef]
  114. S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24, 65–72 (2003).
    [CrossRef]
  115. S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16, 381–393(2010).
    [CrossRef]
  116. A. Olwal and T. Höllerer, “POLAR: portable, optical see-through, low-cost augmented reality,” in Proceedings of the ACM Symposium on Virtual Reality Software and Technology (ACM, 2005), pp. 227–230.
  117. W. Wu, F. Blaicher, J. Yang, T. Seder, and D. Cui, “A prototype of landmark-based car navigation using a full-windshield head-up display system,” in Proceedings of the 2009 Workshop on Ambient Media Computing (ACM2009), pp. 21–28.
  118. A. Sato, I. Kitahara, K. Yoshinari, and O. Yuichi, “Visual navigation system on windshield head-up display,” in Proceedings of 13th World Congress & Exhibition on Intelligent Transport Systems and Services (Brintex, 2006).
  119. K. Palovuori and I. Rakkolainen, “Method and apparatus for forming a projection screen or a projection volume,” U.S. patent 6,819,487 (16 November 2004).
  120. S. Eitoku, K. Nishimura, T. Tanikawa, and M. Hirose, “Study on design of controllable particle display using water drops suitable for light environment,” in Proceeding of the ACM Symposium on Virtual Reality Software and Technology (ACM, 2009), pp. 23–26.
  121. A. Olwal, S. DiVerdi, N. Candussi, I. Rakkolainen, and T. Höllerer, “An immaterial, dual-sided display system with 3D interaction,” in Proceedings of the IEEE Conference on Virtual Reality (IEEE, 2006), pp. 279–280.
  122. S. DiVerdi, I. Rakkolainen, T. Höllerer, and A. Olwal, “A novel walk-through 3D display,” Proc. SPIE 6055, 605519 (2006).
    [CrossRef]
  123. Y. Takaki, Y. Urano, S. Kashiwada, H. Ando, and K. Nakamura, “Super multi-view windshield display for long-distance image information presentation,” Opt. Express 19, 704–716 (2011).
    [CrossRef]
  124. Y. Takaki and N. Nago, “Multi-projection of lenticular displays to construct a 256-view super multi-view display,” Opt. Express 18, 8824–8835 (2010).
    [CrossRef]
  125. C. Lee, S. DiVerdi, and T. Höllerer, “Depth-fused 3-D imagery on an immaterial display,” IEEE Trans. Vis. Comput. Graph. 15, 20–32 (2009).
    [CrossRef]
  126. S. Suyama, Y. Ishigure, H. Takada, K. Nakazawa, J. Hosohata, Y. Takao, and T. Fujikao, “Apparent 3-D image perceived from luminance-modulated two 2-D images displayed at different depths,” Vision Res. 44, 785–793 (2004).
    [CrossRef]
  127. Y. Ishigure, S. Suyama, H. Takada, K. Nakazawa, J. Hosohata, Y. Takao, and T. Fujikado, “Evaluation of visual fatigue relative in the viewing of a depth-fused 3D display and 2D display,” in Proceedings of International Display Workshops (Society for Information Display. 2004), pp. 1627–1630.
  128. P. C. Barnum, S. G. Narasimhan, and T. Kanade, “A multi-layered display with water drops,” ACM Trans. Graph. 29, 76 (2010).
    [CrossRef]
  129. I. Kasai, Y. Tanijiri, T. Endo, and H. Ueda, “A practical see-through head mounted display using a holographic optical element,” Opt. Rev. 8, 241–244 (2001).
    [CrossRef]
  130. A. Olwal, J. Gustafsson, and C. Lindfors, “Spatial augmented reality on industrial CNC-machines,” Proc. SPIE 6804, 680409 (2008).
    [CrossRef]
  131. K. Sakamoto, M. Okamoto, H. Ueda, H. Takahashi, and E. Shimizu, “Real-time 3D color display using a holographic optical element,” Proc. SPIE 2652, 124–131 (1996).
    [CrossRef]
  132. K. Sakamoto, H. Takahashi, E. Shimizu, H. Ueda, K. Tanaka, and M. Okamoto, “New approach to the real-time 3D display using a holographic optical element,” Proc. SPIE 3011, 36–44 (1997).
    [CrossRef]
  133. R. Kishigami, H. Takahashi, and E. Shimizu, “Real-time color three-dimensional display system using holographic optical elements,” Proc. SPIE 4296, 102–107 (2001).
    [CrossRef]
  134. H. Takahashi, H. Fujinami, and K. Yamada, “Wide-viewing-angle three-dimensional display system using HOE lens array,” Proc. SPIE 6055, 60551C (2006).
    [CrossRef]
  135. J. Hong, Y. Kim, S. Park, J.-H. Hong, S.-W. Min, S.-D. Lee, and B. Lee, “3D/2D convertible projection-type integral imaging using concave half mirror array,” Opt. Express 18, 20628–20637 (2010).
    [CrossRef]

2011 (7)

2010 (8)

N. Chen, J.-H. Park, and N. Kim, “Parameter analysis of integral Fourier hologram and its resolution enhancement,” Opt. Express 18, 2152–2167 (2010).
[CrossRef]

Y. Takaki and N. Nago, “Multi-projection of lenticular displays to construct a 256-view super multi-view display,” Opt. Express 18, 8824–8835 (2010).
[CrossRef]

Z. Zheng, X. Liu, H. Li, and L. Xu, “Design and fabrication of an off-axis see-through head-mounted display with an x–y polynomial surface,” Appl. Opt. 49, 3661–3668 (2010).
[CrossRef]

J. Hong, Y. Kim, S. Park, J.-H. Hong, S.-W. Min, S.-D. Lee, and B. Lee, “3D/2D convertible projection-type integral imaging using concave half mirror array,” Opt. Express 18, 20628–20637 (2010).
[CrossRef]

J.-H. Jung, K. Hong, G. Park, I. Chung, and B. Lee, “360-degree viewable cylindrical integral imaging system using three-dimensional/two-dimensional switchable and flexible backlight,” J. Soc. Inf. Disp. 18, 527–534 (2010).
[CrossRef]

S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16, 381–393(2010).
[CrossRef]

P. C. Barnum, S. G. Narasimhan, and T. Kanade, “A multi-layered display with water drops,” ACM Trans. Graph. 29, 76 (2010).
[CrossRef]

D. W. F. van Krevelen and R. Poelman, “A survey of augmented reality technologies, applications and limitations,” Int. J. Virtual Reality 9, 1–20 (2010).

2009 (13)

C. Lee, S. DiVerdi, and T. Höllerer, “Depth-fused 3-D imagery on an immaterial display,” IEEE Trans. Vis. Comput. Graph. 15, 20–32 (2009).
[CrossRef]

R. Haussler, S. Reichelt, N. Leister, E. Zschau, R. Missbach, and A. Schwerdtner, “Large real-time holographic displays: from prototypes to a consumer product,” Proc. SPIE 7237, 72370S (2009).
[CrossRef]

J. Hahn, Y. Kim, and B. Lee, “Uniform angular resolution integral imaging display with boundary folding mirrors,” Appl. Opt. 48, 504–511 (2009).
[CrossRef]

J. Kim, S.-W. Min, and B. Lee, “Viewing window expansion of integral floating display,” Appl. Opt. 48, 862–867(2009).
[CrossRef]

J.-H. Jung, Y. Kim, Y. Kim, J. Kim, K. Hong, and B. Lee, “Integral imaging system using an electroluminescent film backlight for three-dimensional–two-dimensional convertibility and a curved structure,” Appl. Opt. 48, 998–1007 (2009).
[CrossRef]

J.-H. Park, M.-S. Kim, G. Baasantseren, and N. Kim, “Fresnel and Fourier hologram generation using orthographic projection images,” Opt. Express 17, 6320–6334 (2009).
[CrossRef]

Y. Kim, G. Park, J.-H. Jung, J. Kim, and B. Lee, “Color moiré pattern simulation and analysis in three-dimensional integral imaging for finding the moiré-reduced tilted angle of a lens array,” Appl. Opt. 48, 2178–2187 (2009).
[CrossRef]

D. Cheng, Y. Wang, H. Hua, and M. M. Talha, “Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism,” Appl. Opt. 48, 2655–2668 (2009).
[CrossRef]

G. Baasantseren, J.-H. Park, K.-C. Kwon, and N. Kim, “Viewing angle enhanced integral imaging display using two elemental image masks,” Opt. Express 17, 14405–14417(2009).
[CrossRef]

G. Park, J.-H. Jung, K. Hong, Y. Kim, Y.-H. Kim, S.-W. Min, and B. Lee, “Multi-viewer tracking integral imaging system and its viewing zone analysis,” Opt. Express 17, 17895–17908 (2009).
[CrossRef]

Y. Kim, S.-G. Park, S.-W. Min, and B. Lee, “Integral imaging system using a dual-mode technique,” Appl. Opt. 48, H71–H76 (2009).
[CrossRef]

J.-H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48, H77–H94 (2009).
[CrossRef]

N. T. Shaked, B. Katz, and J. Rosen, “Review of three-dimensional holographic imaging by multiple-viewpoint-projection based methods,” Appl. Opt. 48, H120–H136(2009).
[CrossRef]

2008 (10)

X. Wang and H. Hua, “Theoretical analysis for integral imaging performance based on microscanning of a microlens array,” Opt. Lett. 33, 449–451 (2008).
[CrossRef]

J. Kim, S.-W. Min, Y. Kim, and B. Lee, “Analysis on viewing characteristics of integral floating system,” Appl. Opt. 47, D80–D86 (2008).
[CrossRef]

M. Kawakita, H. Sasaki, J. Arai, F. Okano, K. Suehiro, Y. Haino, M. Yoshimura, and M. Sato, “Geometric analysis of spatial distortion in projection-type integral imaging,” Opt. Lett. 33, 684–686 (2008).
[CrossRef]

H. Kim, J. Hahn, and B. Lee, “Mathematical modeling of triangle-mesh-modeled three-dimensional surface objects for digital holography,” Appl. Opt. 47, D117–D127 (2008).
[CrossRef]

H. Choi, J. Kim, S.-W. Cho, Y. Kim, J. B. Park, and B. Lee, “Three-dimensional–two-dimensional mixed display system using integral imaging with an active pinhole array on a liquid crystal panel,” Appl. Opt. 47, 2207–2214 (2008).
[CrossRef]

J. Kim, S.-W. Min, and B. Lee, “Floated image mapping for integral floating display,” Opt. Express 16, 8549–8556(2008).
[CrossRef]

J. Hahn, H. Kim, Y. Lim, G. Park, and B. Lee, “Wide viewing angle dynamic holographic stereogram with a curved array of spatial light modulators,” Opt. Express 16, 12372–12386(2008).
[CrossRef]

Y. Kim, J. Kim, Y. Kim, H. Choi, J.-H. Jung, and B. Lee, “Thin-type integral imaging method with an organic light emitting diode panel,” Appl. Opt. 47, 4927–4934 (2008).
[CrossRef]

H. Kim, J. Hahn, and B. Lee, “The use of a negative index planoconcave lens array for wide-viewing angle integral imaging,” Opt. Express 16, 21865–21880 (2008).
[CrossRef]

A. Olwal, J. Gustafsson, and C. Lindfors, “Spatial augmented reality on industrial CNC-machines,” Proc. SPIE 6804, 680409 (2008).
[CrossRef]

2007 (10)

H. Kakeya, “MOEVsion: simple multiview display with clear floating image,” Proc. SPIE 6490, 64900J (2007).
[CrossRef]

H. Choi, Y. Kim, J. Kim, S.-W. Cho, and B. Lee, “Depth- and viewing-angle-enhanced 3-D/2-D switchable display system with high contrast ratio using multiple display devices and a lens array,” J. Soc. Inf. Disp. 15, 315–320 (2007).
[CrossRef]

F. Okano, J. Arai, and M. Kawakita, “Wave optical analysis of integral method for three-dimensional images,” Opt. Lett. 32, 364–366 (2007).
[CrossRef]

H. Liao, T. Dohi, and M. Iwahara, “Improved viewing resolution of integral videography by use of rotated prism sheets,” Opt. Express 15, 4814–4822 (2007).
[CrossRef]

Y. Kim, H. Choi, J. Kim, S.-W. Cho, Y. Kim, G. Park, and B. Lee, “Depth-enhanced integral imaging display system with electrically variable image planes using polymer-dispersed liquid crystal layers,” Appl. Opt. 46, 3766–3773 (2007).
[CrossRef]

Y. Kim, J.-H. Park, H. Choi, J. Kim, S.-W. Cho, Y. Kim, G. Park, and B. Lee, “Depth-enhanced integral imaging display system with electrically variable image planes using polymer-dispersed liquid-crystal layers,” Appl. Opt. 46, 3766–3773(2007).
[CrossRef]

J. Kim, S.-W. Min, and B. Lee, “Viewing region maximization of an integral floating display through location adjustment of viewing window,” Opt. Express 15, 13023–13034 (2007).
[CrossRef]

Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Kim, G. Park, and B. Lee, “Three-dimensional integral display using plastic optical fibers,” Appl. Opt. 46, 7149–7154 (2007).
[CrossRef]

R. Martinez-Cuenca, H. Navarro, G. Saavedra, B. Javidi, and M. Martinez-Corral, “Enhanced viewing-angle integral imaging by multiple-axis telecentric relay system,” Opt. Express 15, 16255–16260 (2007).
[CrossRef]

Y. Kim, J. Kim, J.-M. Kang, J.-H. Jung, H. Choi, and B. Lee, “Point light source integral imaging with improved resolution and viewing angle by the use of electrically movable pinhole array,” Opt. Express 15, 18253–18267 (2007).
[CrossRef]

2006 (6)

2005 (7)

2004 (9)

F. L. Kooi and A. Toet, “Visual comfort of binocular and 3D displays,” Displays 25, 99–108 (2004).
[CrossRef]

H. Choi, J.-H. Park, J. Hong, and B. Lee, “Depth enhanced integral imaging with a stepped lens array or a composite lens array for three-dimensional display,” Jpn. J. Appl. Phys. 43, 5330–5336 (2004).
[CrossRef]

S. Jung, J. Hong, J.-H. Park, Y. Kim, and B. Lee, “Depth-enhanced integral-imaging 3D display using different optical path lengths by polarization devices or mirror barrier array,” J. Soc. Inf. Disp. 12, 461–467 (2004).
[CrossRef]

J. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. C. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
[CrossRef]

S. Suyama, Y. Ishigure, H. Takada, K. Nakazawa, J. Hosohata, Y. Takao, and T. Fujikao, “Apparent 3-D image perceived from luminance-modulated two 2-D images displayed at different depths,” Vision Res. 44, 785–793 (2004).
[CrossRef]

Y. Kim, J.-H. Park, H. Choi, S. Jung, S.-W. Min, and B. Lee, “Viewing-angle-enhanced integral imaging system using a curved lens array,” Opt. Express 12, 421–429 (2004).
[CrossRef]

H. Liao, M. Iwahara, N. Hata, and T. Dohi, “High-quality integral videography using a multiprojector,” Opt. Express 12, 1067–1076 (2004).
[CrossRef]

J. Hong, J.-H. Park, S. Jung, and B. Lee, “Depth enhanced integral imaging by use of optical path control,” Opt. Lett. 29, 1790–1792 (2004).
[CrossRef]

S.-W. Min, J. Kim, and B. Lee, “Wide-viewing projection-type integral imaging system with an embossed screen,” Opt. Lett. 29, 2420–2422 (2004).
[CrossRef]

2003 (9)

J. R. Fienup and J. J. Miller, “Aberration correction by maximizing generalized sharpness metrics,” J. Opt. Soc. Am. A 20, 609–620 (2003).
[CrossRef]

J.-S. Jang and B. Javidi, “Improvement of viewing angle in integral imaging by use of moving lenslet arrays with low fill factor,” Appl. Opt. 42, 1996–2002 (2003).
[CrossRef]

H. Choi, S.-W. Min, S. Jung, J.-H. Park, and B. Lee, “Multiple-viewing-zone integral imaging using a dynamic barrier array for three-dimensional displays,” Opt. Express 11, 927–932(2003).
[CrossRef]

S. Jung, J.-H. Park, H. Choi, and B. Lee, “Wide-viewing integral three-dimensional imaging by use of orthogonal polarization switching,” Appl. Opt. 42, 2513–2520(2003).
[CrossRef]

J.-S. Jang, F. Jin, and B. Javidi, “Three-dimensional integral imaging with large depth of focus by use of real and virtual image fields,” Opt. Lett. 28, 1421–1423 (2003).
[CrossRef]

J.-H. Park, S. Jung, H. Choi, and B. Lee, “Integral imaging with multiple image planes using a uniaxial crystal plate,” Opt. Express 11, 1862–1875 (2003).
[CrossRef]

J.-S. Jang and B. Javidi, “Large depth-of-focus time-multiplexed three-dimensional integral imaging by use of lenslet with nonuniform focal lengths and aperture sizes,” Opt. Lett. 28, 1924–1926 (2003).
[CrossRef]

S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24, 65–72 (2003).
[CrossRef]

M. Stanley, R. W. Bannister, C. D. Cameron, S. D. Coomber, I. G. Cresswell, J. R. Hughes, V. Hui, P. O. Jackson, K. A. Milham, R. J. Miller, D. A. Payne, J. Quarrel, D. C. Scattergood, A. P. Smith, M. A. Smith, D. L. Tipton, P. J. Watson, P. J. Webber, and C. W. Slinger, “100 mega-pixel computer generated holographic images from active tiling--a dynamic and scalable electro-optic modulator system,” Proc. SPIE 5005, 247–258 (2003).
[CrossRef]

2002 (3)

2001 (3)

R. Kishigami, H. Takahashi, and E. Shimizu, “Real-time color three-dimensional display system using holographic optical elements,” Proc. SPIE 4296, 102–107 (2001).
[CrossRef]

K. Kiyokawa, Y. Kurata, and H. Ohno, “An optical see-through display for mutual occlusion with a real-time stereo vision system,” Comput. Graph. Forum 25, 765–779(2001).

I. Kasai, Y. Tanijiri, T. Endo, and H. Ueda, “A practical see-through head mounted display using a holographic optical element,” Opt. Rev. 8, 241–244 (2001).
[CrossRef]

1999 (1)

E. W. Tatham, “Technical opinion: getting the best of both real and virtual worlds,” Commun. ACM 42, 96–98(1999).
[CrossRef]

1997 (5)

1996 (3)

S. Shiwa, K. Omura, and F. Kishino, “Proposal for a 3-D display with accommodative compensation: 3-DDAC,” J. Soc. Inf. Disp. 4, 255–261 (1996).
[CrossRef]

K. Sakamoto, M. Okamoto, H. Ueda, H. Takahashi, and E. Shimizu, “Real-time 3D color display using a holographic optical element,” Proc. SPIE 2652, 124–131 (1996).
[CrossRef]

K. Maeno, N. Fukaya, O. Nishikawa, K. Sato, and T. Honda, “Electro-holographic display using 15 mega pixels LCD,” Proc. SPIE 2652, 15–23 (1996).
[CrossRef]

1995 (1)

1983 (1)

1981 (1)

A. V. Oppenheim and J. S. Lim, “The importance of phase in signals,” Proc. IEEE 69, 529–541 (1981).
[CrossRef]

1967 (2)

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[CrossRef]

A. W. Lohmann and D. Paris, “Binary Fraunhofer holograms generated by computer,” Appl. Opt. 6, 1739–1748 (1967).
[CrossRef]

1963 (1)

1962 (2)

E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52, 1123–1130 (1962).
[CrossRef]

Y. N. Denisyuk, “Photographic reconstruction of the optical properties of an object in its own scattered field,” Sov. Phys. Dokl. 7, 543 (1962).

1948 (1)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[CrossRef]

1908 (1)

G. Lippmann, “La photographie integrale,” C. R. Acad. Sci. 146, 446–451 (1908).

1891 (1)

G. Lippmann, “La photographie des couleurs,” C.R. Hebd. Seances Acad. Sci. 112, 274–275 (1891).

1838 (1)

C. Wheatstone, “Contributions to the physiology of vision. Part the first. On some remarkable, and hitherto unobserved, phenomena of binocular vision,” Philos. Trans. R. Soc. London 128, 371–394 (1838).
[CrossRef]

Abramson, N.

Akiyama, T.

H. Morishima, T. Akiyama, N. Nanba, and T. Tanaka, “The design of off-axial optical system consisting of aspherical mirrors without rotational symmetry,” in 20th Optical Symposium, Extended Abstracts (Optical Society of Japan, 1995), Vol.  21, pp. 53–56.

Ando, H.

Arai, J.

Baasantseren, G.

Baik, I.-S.

H. Kang, S.-D. Roh, I.-S. Baik, H.-J. Jung, W.-N. Jeong, J.-K. Shin, and I.-J. Chung, “A novel polarizer glasses-type 3D displays with a patterned retarder,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2010), Vol.  41, pp. 1–4.

Bannister, R. W.

M. Stanley, R. W. Bannister, C. D. Cameron, S. D. Coomber, I. G. Cresswell, J. R. Hughes, V. Hui, P. O. Jackson, K. A. Milham, R. J. Miller, D. A. Payne, J. Quarrel, D. C. Scattergood, A. P. Smith, M. A. Smith, D. L. Tipton, P. J. Watson, P. J. Webber, and C. W. Slinger, “100 mega-pixel computer generated holographic images from active tiling--a dynamic and scalable electro-optic modulator system,” Proc. SPIE 5005, 247–258 (2003).
[CrossRef]

Barnum, P. C.

P. C. Barnum, S. G. Narasimhan, and T. Kanade, “A multi-layered display with water drops,” ACM Trans. Graph. 29, 76 (2010).
[CrossRef]

Berkeley, B. H.

S. S. Kim, B. H. You, H. Choi, B. H. Berkeley, and N. D. Kim, “World's first 240 Hz TFT-LCD technology for full-HD LCD-TV and its application to 3D display,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2009), Vol.  40, pp. 424–427.

Billinghurst, M.

K. Kiyokawa, M. Billinghurst, B. Campbell, and E. Woods, “An occlusion-capable optical see-through head mount display for supporting co-located collaboration,” in Proceedings of the 2nd IEEE/ACM International Symposium on Mixed and Augmented Reality (IEEE/ACM2003), pp. 133–141.

F. Zhou, H. B.-L. Duh, and M. Billinghurst, “Trends in augmented reality tracking, interaction and display: a review of ten years of ISMAR,” in Proceedings of 7th IEEE/ACM International Symposium (IEEE, 2008), pp. 193–202.

K. Kiyokawa, M. Billinghurst, S. E. Hayes, A. Gupta, Y. Sannohe, and H. Kato, “Communications behaviors of co-located users in collaborative AR interfaces,” in Proceedings of the IEEE/ACM International Symposium on Mixed and Augmented Reality (IEEE/ACM2002), pp. 139–148.

Blaicher, F.

W. Wu, F. Blaicher, J. Yang, T. Seder, and D. Cui, “A prototype of landmark-based car navigation using a full-windshield head-up display system,” in Proceedings of the 2009 Workshop on Ambient Media Computing (ACM2009), pp. 21–28.

Brady, D. J.

D. J. Brady, Optical Imaging and Spectroscopy (Wiley, 2009).

Brock, N.

J. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. C. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
[CrossRef]

Cakmakci, O.

O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2, 199–216 (2006).
[CrossRef]

O. Cakmakci, Y. Ha, and J. P. Rolland, “A compact optical see-through head-worn display with occlusion support,” in Proceedings of the 3rd IEEE/ACM International Symposium on Mixed and Augmented Reality (IEEE/ACM, 2004), pp. 16–25.

Cameron, C. D.

M. Stanley, R. W. Bannister, C. D. Cameron, S. D. Coomber, I. G. Cresswell, J. R. Hughes, V. Hui, P. O. Jackson, K. A. Milham, R. J. Miller, D. A. Payne, J. Quarrel, D. C. Scattergood, A. P. Smith, M. A. Smith, D. L. Tipton, P. J. Watson, P. J. Webber, and C. W. Slinger, “100 mega-pixel computer generated holographic images from active tiling--a dynamic and scalable electro-optic modulator system,” Proc. SPIE 5005, 247–258 (2003).
[CrossRef]

Campbell, B.

K. Kiyokawa, M. Billinghurst, B. Campbell, and E. Woods, “An occlusion-capable optical see-through head mount display for supporting co-located collaboration,” in Proceedings of the 2nd IEEE/ACM International Symposium on Mixed and Augmented Reality (IEEE/ACM2003), pp. 133–141.

Candussi, N.

A. Olwal, S. DiVerdi, N. Candussi, I. Rakkolainen, and T. Höllerer, “An immaterial, dual-sided display system with 3D interaction,” in Proceedings of the IEEE Conference on Virtual Reality (IEEE, 2006), pp. 279–280.

Cha, S.

Chen, C.-W.

C.-W. Chen, Y.-C. Huang, and Y.-P. Huang, “Fast switching Fresnel liquid crystal lens for autostereoscopic 2D/3D display,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2010), Vol.  41, pp. 428–431.

Chen, N.

Cheng, D.

Cho, S.-W.

H. Choi, J. Kim, S.-W. Cho, Y. Kim, J. B. Park, and B. Lee, “Three-dimensional–two-dimensional mixed display system using integral imaging with an active pinhole array on a liquid crystal panel,” Appl. Opt. 47, 2207–2214 (2008).
[CrossRef]

Y. Kim, H. Choi, J. Kim, S.-W. Cho, Y. Kim, G. Park, and B. Lee, “Depth-enhanced integral imaging display system with electrically variable image planes using polymer-dispersed liquid crystal layers,” Appl. Opt. 46, 3766–3773 (2007).
[CrossRef]

Y. Kim, J.-H. Park, H. Choi, J. Kim, S.-W. Cho, Y. Kim, G. Park, and B. Lee, “Depth-enhanced integral imaging display system with electrically variable image planes using polymer-dispersed liquid-crystal layers,” Appl. Opt. 46, 3766–3773(2007).
[CrossRef]

H. Choi, Y. Kim, J. Kim, S.-W. Cho, and B. Lee, “Depth- and viewing-angle-enhanced 3-D/2-D switchable display system with high contrast ratio using multiple display devices and a lens array,” J. Soc. Inf. Disp. 15, 315–320 (2007).
[CrossRef]

Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Kim, G. Park, and B. Lee, “Three-dimensional integral display using plastic optical fibers,” Appl. Opt. 46, 7149–7154 (2007).
[CrossRef]

H. Choi, S.-W. Cho, J. Kim, and B. Lee, “A thin 3D-2D convertible integral imaging system using a pinhole array on a polarizer,” Opt. Express 14, 5183–5190 (2006).
[CrossRef]

S.-W. Cho, J.-H. Park, Y. Kim, H. Choi, J. Kim, and B. Lee, “Convertible two-dimensional–three-dimensional display using an LED array based on modified integral imaging,” Opt. Lett. 31, 2852–2854 (2006).
[CrossRef]

H. Choi, Y. Kim, J.-H. Park, J. Kim, S.-W. Cho, and B. Lee, “Layered-panel integral imaging without the translucent problem,” Opt. Express 13, 5769–5776 (2005).
[CrossRef]

Choi, H.

H. Choi, J. Kim, S.-W. Cho, Y. Kim, J. B. Park, and B. Lee, “Three-dimensional–two-dimensional mixed display system using integral imaging with an active pinhole array on a liquid crystal panel,” Appl. Opt. 47, 2207–2214 (2008).
[CrossRef]

Y. Kim, J. Kim, Y. Kim, H. Choi, J.-H. Jung, and B. Lee, “Thin-type integral imaging method with an organic light emitting diode panel,” Appl. Opt. 47, 4927–4934 (2008).
[CrossRef]

Y. Kim, J. Kim, J.-M. Kang, J.-H. Jung, H. Choi, and B. Lee, “Point light source integral imaging with improved resolution and viewing angle by the use of electrically movable pinhole array,” Opt. Express 15, 18253–18267 (2007).
[CrossRef]

Y. Kim, H. Choi, J. Kim, S.-W. Cho, Y. Kim, G. Park, and B. Lee, “Depth-enhanced integral imaging display system with electrically variable image planes using polymer-dispersed liquid crystal layers,” Appl. Opt. 46, 3766–3773 (2007).
[CrossRef]

Y. Kim, J.-H. Park, H. Choi, J. Kim, S.-W. Cho, Y. Kim, G. Park, and B. Lee, “Depth-enhanced integral imaging display system with electrically variable image planes using polymer-dispersed liquid-crystal layers,” Appl. Opt. 46, 3766–3773(2007).
[CrossRef]

H. Choi, Y. Kim, J. Kim, S.-W. Cho, and B. Lee, “Depth- and viewing-angle-enhanced 3-D/2-D switchable display system with high contrast ratio using multiple display devices and a lens array,” J. Soc. Inf. Disp. 15, 315–320 (2007).
[CrossRef]

Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Kim, G. Park, and B. Lee, “Three-dimensional integral display using plastic optical fibers,” Appl. Opt. 46, 7149–7154 (2007).
[CrossRef]

H. Choi, S.-W. Cho, J. Kim, and B. Lee, “A thin 3D-2D convertible integral imaging system using a pinhole array on a polarizer,” Opt. Express 14, 5183–5190 (2006).
[CrossRef]

S.-W. Cho, J.-H. Park, Y. Kim, H. Choi, J. Kim, and B. Lee, “Convertible two-dimensional–three-dimensional display using an LED array based on modified integral imaging,” Opt. Lett. 31, 2852–2854 (2006).
[CrossRef]

H. Choi, Y. Kim, J.-H. Park, J. Kim, S.-W. Cho, and B. Lee, “Layered-panel integral imaging without the translucent problem,” Opt. Express 13, 5769–5776 (2005).
[CrossRef]

Y. Kim, J.-H. Park, S.-W. Min, S. Jung, H. Choi, and B. Lee, “A wide-viewing-angle integral 3D imaging system by curving a screen and a lens array,” Appl. Opt. 44, 546–552(2005).
[CrossRef]

Y. Kim, J.-H. Park, H. Choi, S. Jung, S.-W. Min, and B. Lee, “Viewing-angle-enhanced integral imaging system using a curved lens array,” Opt. Express 12, 421–429 (2004).
[CrossRef]

H. Choi, J.-H. Park, J. Hong, and B. Lee, “Depth enhanced integral imaging with a stepped lens array or a composite lens array for three-dimensional display,” Jpn. J. Appl. Phys. 43, 5330–5336 (2004).
[CrossRef]

H. Choi, S.-W. Min, S. Jung, J.-H. Park, and B. Lee, “Multiple-viewing-zone integral imaging using a dynamic barrier array for three-dimensional displays,” Opt. Express 11, 927–932(2003).
[CrossRef]

J.-H. Park, S. Jung, H. Choi, and B. Lee, “Integral imaging with multiple image planes using a uniaxial crystal plate,” Opt. Express 11, 1862–1875 (2003).
[CrossRef]

S. Jung, J.-H. Park, H. Choi, and B. Lee, “Wide-viewing integral three-dimensional imaging by use of orthogonal polarization switching,” Appl. Opt. 42, 2513–2520(2003).
[CrossRef]

S. S. Kim, B. H. You, H. Choi, B. H. Berkeley, and N. D. Kim, “World's first 240 Hz TFT-LCD technology for full-HD LCD-TV and its application to 3D display,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2009), Vol.  40, pp. 424–427.

Choi, K. H.

H. J. Lee, H. Nam, J. D. Lee, H. W. Jang, M. S. Song, B. S. Kim, J. S. Gu, C. Y. Park, and K. H. Choi, “A high resolution autostereoscopic display employing a time division parallax barrier,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2006), Vol.  37, pp. 81–84.

Chung, I.

J.-H. Jung, K. Hong, G. Park, I. Chung, and B. Lee, “360-degree viewable cylindrical integral imaging system using three-dimensional/two-dimensional switchable and flexible backlight,” J. Soc. Inf. Disp. 18, 527–534 (2010).
[CrossRef]

Chung, I.-J.

S.-M. Jung, Y.-B. Lee, H.-J. Park, S.-C. Lee, W.-N. Jeong, J.-K. Shin, and I.-J. Chung, “Improvement of 3-D crosstalk with over-driving method for the active retarder 3-D displays,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2010), Vol.  41, pp. 1264–1267.

H. Kang, S.-D. Roh, I.-S. Baik, H.-J. Jung, W.-N. Jeong, J.-K. Shin, and I.-J. Chung, “A novel polarizer glasses-type 3D displays with a patterned retarder,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2010), Vol.  41, pp. 1–4.

Coomber, S. D.

M. Stanley, R. W. Bannister, C. D. Cameron, S. D. Coomber, I. G. Cresswell, J. R. Hughes, V. Hui, P. O. Jackson, K. A. Milham, R. J. Miller, D. A. Payne, J. Quarrel, D. C. Scattergood, A. P. Smith, M. A. Smith, D. L. Tipton, P. J. Watson, P. J. Webber, and C. W. Slinger, “100 mega-pixel computer generated holographic images from active tiling--a dynamic and scalable electro-optic modulator system,” Proc. SPIE 5005, 247–258 (2003).
[CrossRef]

Creath, K.

Cresswell, I. G.

M. Stanley, R. W. Bannister, C. D. Cameron, S. D. Coomber, I. G. Cresswell, J. R. Hughes, V. Hui, P. O. Jackson, K. A. Milham, R. J. Miller, D. A. Payne, J. Quarrel, D. C. Scattergood, A. P. Smith, M. A. Smith, D. L. Tipton, P. J. Watson, P. J. Webber, and C. W. Slinger, “100 mega-pixel computer generated holographic images from active tiling--a dynamic and scalable electro-optic modulator system,” Proc. SPIE 5005, 247–258 (2003).
[CrossRef]

Cui, D.

W. Wu, F. Blaicher, J. Yang, T. Seder, and D. Cui, “A prototype of landmark-based car navigation using a full-windshield head-up display system,” in Proceedings of the 2009 Workshop on Ambient Media Computing (ACM2009), pp. 21–28.

de Zwart, S. T.

S. T. de Zwart, W. L. Ijzerman, T. Dekker, and W. A. M. Wolter, “A 20 in. switchable auto-stereoscopic 2D/3D display,” in Proceedings of International Display Workshops (Society for Information Display, 2004), pp. 1459–1460.

Dekker, T.

S. T. de Zwart, W. L. Ijzerman, T. Dekker, and W. A. M. Wolter, “A 20 in. switchable auto-stereoscopic 2D/3D display,” in Proceedings of International Display Workshops (Society for Information Display, 2004), pp. 1459–1460.

Denisyuk, Y. N.

Y. N. Denisyuk, “Photographic reconstruction of the optical properties of an object in its own scattered field,” Sov. Phys. Dokl. 7, 543 (1962).

DiVerdi, S.

C. Lee, S. DiVerdi, and T. Höllerer, “Depth-fused 3-D imagery on an immaterial display,” IEEE Trans. Vis. Comput. Graph. 15, 20–32 (2009).
[CrossRef]

S. DiVerdi, I. Rakkolainen, T. Höllerer, and A. Olwal, “A novel walk-through 3D display,” Proc. SPIE 6055, 605519 (2006).
[CrossRef]

A. Olwal, S. DiVerdi, N. Candussi, I. Rakkolainen, and T. Höllerer, “An immaterial, dual-sided display system with 3D interaction,” in Proceedings of the IEEE Conference on Virtual Reality (IEEE, 2006), pp. 279–280.

Dohi, T.

Duh, H. B.-L.

F. Zhou, H. B.-L. Duh, and M. Billinghurst, “Trends in augmented reality tracking, interaction and display: a review of ten years of ISMAR,” in Proceedings of 7th IEEE/ACM International Symposium (IEEE, 2008), pp. 193–202.

Eitoku, S.

S. Eitoku, K. Nishimura, T. Tanikawa, and M. Hirose, “Study on design of controllable particle display using water drops suitable for light environment,” in Proceeding of the ACM Symposium on Virtual Reality Software and Technology (ACM, 2009), pp. 23–26.

Endo, T.

I. Kasai, Y. Tanijiri, T. Endo, and H. Ueda, “A practical see-through head mounted display using a holographic optical element,” Opt. Rev. 8, 241–244 (2001).
[CrossRef]

Fienup, J. R.

Fujikado, T.

Y. Ishigure, S. Suyama, H. Takada, K. Nakazawa, J. Hosohata, Y. Takao, and T. Fujikado, “Evaluation of visual fatigue relative in the viewing of a depth-fused 3D display and 2D display,” in Proceedings of International Display Workshops (Society for Information Display. 2004), pp. 1627–1630.

Fujikao, T.

S. Suyama, Y. Ishigure, H. Takada, K. Nakazawa, J. Hosohata, Y. Takao, and T. Fujikao, “Apparent 3-D image perceived from luminance-modulated two 2-D images displayed at different depths,” Vision Res. 44, 785–793 (2004).
[CrossRef]

Fujinami, H.

H. Takahashi, H. Fujinami, and K. Yamada, “Wide-viewing-angle three-dimensional display system using HOE lens array,” Proc. SPIE 6055, 60551C (2006).
[CrossRef]

Fukaya, N.

K. Maeno, N. Fukaya, O. Nishikawa, K. Sato, and T. Honda, “Electro-holographic display using 15 mega pixels LCD,” Proc. SPIE 2652, 15–23 (1996).
[CrossRef]

Furness, T. A. A.

S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24, 65–72 (2003).
[CrossRef]

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[CrossRef]

Goodman, J. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[CrossRef]

J. W. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts, 2004).

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts, 2007).

Gu, J. S.

H. J. Lee, H. Nam, J. D. Lee, H. W. Jang, M. S. Song, B. S. Kim, J. S. Gu, C. Y. Park, and K. H. Choi, “A high resolution autostereoscopic display employing a time division parallax barrier,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2006), Vol.  37, pp. 81–84.

Gupta, A.

K. Kiyokawa, M. Billinghurst, S. E. Hayes, A. Gupta, Y. Sannohe, and H. Kato, “Communications behaviors of co-located users in collaborative AR interfaces,” in Proceedings of the IEEE/ACM International Symposium on Mixed and Augmented Reality (IEEE/ACM2002), pp. 139–148.

Gustafsson, J.

A. Olwal, J. Gustafsson, and C. Lindfors, “Spatial augmented reality on industrial CNC-machines,” Proc. SPIE 6804, 680409 (2008).
[CrossRef]

Ha, Y.

O. Cakmakci, Y. Ha, and J. P. Rolland, “A compact optical see-through head-worn display with occlusion support,” in Proceedings of the 3rd IEEE/ACM International Symposium on Mixed and Augmented Reality (IEEE/ACM, 2004), pp. 16–25.

Hahn, J.

Hahn, M.

Haino, Y.

Hamagishi, G.

G. Hamagishi, “Analysis and improvement of viewing conditions for two-view and multi-view 3D displays,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2009), Vol.  40, pp. 340–343.

Harrold, J.

G. J. Woodgate and J. Harrold, “A new architecture for high resolution autostereoscopic 2D/3D displays using free-standing liquid crystal microlenses,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2005), Vol.  36, pp. 378–381.

Hata, N.

Haussler, R.

R. Haussler, S. Reichelt, N. Leister, E. Zschau, R. Missbach, and A. Schwerdtner, “Large real-time holographic displays: from prototypes to a consumer product,” Proc. SPIE 7237, 72370S (2009).
[CrossRef]

Hayes, J.

J. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. C. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
[CrossRef]

Hayes, S. E.

K. Kiyokawa, M. Billinghurst, S. E. Hayes, A. Gupta, Y. Sannohe, and H. Kato, “Communications behaviors of co-located users in collaborative AR interfaces,” in Proceedings of the IEEE/ACM International Symposium on Mixed and Augmented Reality (IEEE/ACM2002), pp. 139–148.

Hirayama, Y.

A. Takagi, T. Saishu, M. Kashiwagi, K. Taira, and Y. Hirayama, “Autostereoscopic partial 2-D/3-D switchable display using liquid-crystal gradient index lens,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2010), Vol.  41, pp. 436–439.

Hirose, M.

S. Eitoku, K. Nishimura, T. Tanikawa, and M. Hirose, “Study on design of controllable particle display using water drops suitable for light environment,” in Proceeding of the ACM Symposium on Virtual Reality Software and Technology (ACM, 2009), pp. 23–26.

Höllerer, T.

C. Lee, S. DiVerdi, and T. Höllerer, “Depth-fused 3-D imagery on an immaterial display,” IEEE Trans. Vis. Comput. Graph. 15, 20–32 (2009).
[CrossRef]

S. DiVerdi, I. Rakkolainen, T. Höllerer, and A. Olwal, “A novel walk-through 3D display,” Proc. SPIE 6055, 605519 (2006).
[CrossRef]

A. Olwal, S. DiVerdi, N. Candussi, I. Rakkolainen, and T. Höllerer, “An immaterial, dual-sided display system with 3D interaction,” in Proceedings of the IEEE Conference on Virtual Reality (IEEE, 2006), pp. 279–280.

A. Olwal and T. Höllerer, “POLAR: portable, optical see-through, low-cost augmented reality,” in Proceedings of the ACM Symposium on Virtual Reality Software and Technology (ACM, 2005), pp. 227–230.

Honda, T.

K. Maeno, N. Fukaya, O. Nishikawa, K. Sato, and T. Honda, “Electro-holographic display using 15 mega pixels LCD,” Proc. SPIE 2652, 15–23 (1996).
[CrossRef]

Hong, H.-K.

H.-K. Hong, S.-M. Jung, B.-J. Lee, H.-J. Im, and H.-H. Shin, “Autostereoscopic 2D/3D switching display using electric-field-driven LC lens (ELC lens),” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2008), Vol.  39, pp. 348–351.

Hong, J.

J. Hong, Y. Kim, S. Park, J.-H. Hong, S.-W. Min, S.-D. Lee, and B. Lee, “3D/2D convertible projection-type integral imaging using concave half mirror array,” Opt. Express 18, 20628–20637 (2010).
[CrossRef]

J. Hong, J.-H. Park, S. Jung, and B. Lee, “Depth enhanced integral imaging by use of optical path control,” Opt. Lett. 29, 1790–1792 (2004).
[CrossRef]

S. Jung, J. Hong, J.-H. Park, Y. Kim, and B. Lee, “Depth-enhanced integral-imaging 3D display using different optical path lengths by polarization devices or mirror barrier array,” J. Soc. Inf. Disp. 12, 461–467 (2004).
[CrossRef]

H. Choi, J.-H. Park, J. Hong, and B. Lee, “Depth enhanced integral imaging with a stepped lens array or a composite lens array for three-dimensional display,” Jpn. J. Appl. Phys. 43, 5330–5336 (2004).
[CrossRef]

Hong, J.-H.

Hong, K.

Hoshino, H.

Hosohata, J.

S. Suyama, Y. Ishigure, H. Takada, K. Nakazawa, J. Hosohata, Y. Takao, and T. Fujikao, “Apparent 3-D image perceived from luminance-modulated two 2-D images displayed at different depths,” Vision Res. 44, 785–793 (2004).
[CrossRef]

Y. Ishigure, S. Suyama, H. Takada, K. Nakazawa, J. Hosohata, Y. Takao, and T. Fujikado, “Evaluation of visual fatigue relative in the viewing of a depth-fused 3D display and 2D display,” in Proceedings of International Display Workshops (Society for Information Display. 2004), pp. 1627–1630.

Hua, H.

Huang, Y.-C.

C.-W. Chen, Y.-C. Huang, and Y.-P. Huang, “Fast switching Fresnel liquid crystal lens for autostereoscopic 2D/3D display,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2010), Vol.  41, pp. 428–431.

Huang, Y.-P.

C.-W. Chen, Y.-C. Huang, and Y.-P. Huang, “Fast switching Fresnel liquid crystal lens for autostereoscopic 2D/3D display,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2010), Vol.  41, pp. 428–431.

Hughes, J. R.

M. Stanley, R. W. Bannister, C. D. Cameron, S. D. Coomber, I. G. Cresswell, J. R. Hughes, V. Hui, P. O. Jackson, K. A. Milham, R. J. Miller, D. A. Payne, J. Quarrel, D. C. Scattergood, A. P. Smith, M. A. Smith, D. L. Tipton, P. J. Watson, P. J. Webber, and C. W. Slinger, “100 mega-pixel computer generated holographic images from active tiling--a dynamic and scalable electro-optic modulator system,” Proc. SPIE 5005, 247–258 (2003).
[CrossRef]

Hui, V.

M. Stanley, R. W. Bannister, C. D. Cameron, S. D. Coomber, I. G. Cresswell, J. R. Hughes, V. Hui, P. O. Jackson, K. A. Milham, R. J. Miller, D. A. Payne, J. Quarrel, D. C. Scattergood, A. P. Smith, M. A. Smith, D. L. Tipton, P. J. Watson, P. J. Webber, and C. W. Slinger, “100 mega-pixel computer generated holographic images from active tiling--a dynamic and scalable electro-optic modulator system,” Proc. SPIE 5005, 247–258 (2003).
[CrossRef]

Hwang, D.-C.

D.-S. Kim, S.-M. Park, J.-H. Jung, and D.-C. Hwang, “New 240 Hz driving method for Full HD and high quality 3D LCD TV,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2010), Vol.  41, pp. 762–765.

Ijzerman, W. L.

S. T. de Zwart, W. L. Ijzerman, T. Dekker, and W. A. M. Wolter, “A 20 in. switchable auto-stereoscopic 2D/3D display,” in Proceedings of International Display Workshops (Society for Information Display, 2004), pp. 1459–1460.

Im, H.-J.

H.-K. Hong, S.-M. Jung, B.-J. Lee, H.-J. Im, and H.-H. Shin, “Autostereoscopic 2D/3D switching display using electric-field-driven LC lens (ELC lens),” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2008), Vol.  39, pp. 348–351.

Inoguchi, K.

K. Inoguchi, H. Morishima, N. Nanaba, S. Takeshita, and Y. Yamazaki, “Fabrication and evaluation of HMD optical system consisting of aspherical mirrors without rotation symmetry,” in Japan Optics’95, Extended Abstracts (Optical Society of Japan, 1995), pp. 19–20.

Inoue, T.

Ishigure, Y.

S. Suyama, Y. Ishigure, H. Takada, K. Nakazawa, J. Hosohata, Y. Takao, and T. Fujikao, “Apparent 3-D image perceived from luminance-modulated two 2-D images displayed at different depths,” Vision Res. 44, 785–793 (2004).
[CrossRef]

Y. Ishigure, S. Suyama, H. Takada, K. Nakazawa, J. Hosohata, Y. Takao, and T. Fujikado, “Evaluation of visual fatigue relative in the viewing of a depth-fused 3D display and 2D display,” in Proceedings of International Display Workshops (Society for Information Display. 2004), pp. 1627–1630.

Iwahara, M.

Iwasaki, T.

T. Shibata, T. Kawai, K. Ohta, M. Otsuki, N. Miyake, Y. Yoshihara, and T. Iwasaki, “Stereoscopic 3-D display with optical correction for the reduction of the discrepancy between accommodation and convergence,” J. Soc. Inf. Disp. 13, 665–671 (2005).
[CrossRef]

Jackson, P. O.

M. Stanley, R. W. Bannister, C. D. Cameron, S. D. Coomber, I. G. Cresswell, J. R. Hughes, V. Hui, P. O. Jackson, K. A. Milham, R. J. Miller, D. A. Payne, J. Quarrel, D. C. Scattergood, A. P. Smith, M. A. Smith, D. L. Tipton, P. J. Watson, P. J. Webber, and C. W. Slinger, “100 mega-pixel computer generated holographic images from active tiling--a dynamic and scalable electro-optic modulator system,” Proc. SPIE 5005, 247–258 (2003).
[CrossRef]

Jang, H. W.

H. J. Lee, H. Nam, J. D. Lee, H. W. Jang, M. S. Song, B. S. Kim, J. S. Gu, C. Y. Park, and K. H. Choi, “A high resolution autostereoscopic display employing a time division parallax barrier,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2006), Vol.  37, pp. 81–84.

Jang, J.-S.

Jang, J.-Y.

Javidi, B.

Jeong, W.-N.

H. Kang, S.-D. Roh, I.-S. Baik, H.-J. Jung, W.-N. Jeong, J.-K. Shin, and I.-J. Chung, “A novel polarizer glasses-type 3D displays with a patterned retarder,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2010), Vol.  41, pp. 1–4.

S.-M. Jung, Y.-B. Lee, H.-J. Park, S.-C. Lee, W.-N. Jeong, J.-K. Shin, and I.-J. Chung, “Improvement of 3-D crosstalk with over-driving method for the active retarder 3-D displays,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2010), Vol.  41, pp. 1264–1267.

Jin, F.

Jung, H.-J.

H. Kang, S.-D. Roh, I.-S. Baik, H.-J. Jung, W.-N. Jeong, J.-K. Shin, and I.-J. Chung, “A novel polarizer glasses-type 3D displays with a patterned retarder,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2010), Vol.  41, pp. 1–4.

Jung, J.-H.

J.-H. Jung, K. Hong, G. Park, I. Chung, and B. Lee, “360-degree viewable cylindrical integral imaging system using three-dimensional/two-dimensional switchable and flexible backlight,” J. Soc. Inf. Disp. 18, 527–534 (2010).
[CrossRef]

G. Park, J.-H. Jung, K. Hong, Y. Kim, Y.-H. Kim, S.-W. Min, and B. Lee, “Multi-viewer tracking integral imaging system and its viewing zone analysis,” Opt. Express 17, 17895–17908 (2009).
[CrossRef]

J.-H. Jung, Y. Kim, Y. Kim, J. Kim, K. Hong, and B. Lee, “Integral imaging system using an electroluminescent film backlight for three-dimensional–two-dimensional convertibility and a curved structure,” Appl. Opt. 48, 998–1007 (2009).
[CrossRef]

Y. Kim, G. Park, J.-H. Jung, J. Kim, and B. Lee, “Color moiré pattern simulation and analysis in three-dimensional integral imaging for finding the moiré-reduced tilted angle of a lens array,” Appl. Opt. 48, 2178–2187 (2009).
[CrossRef]

Y. Kim, J. Kim, Y. Kim, H. Choi, J.-H. Jung, and B. Lee, “Thin-type integral imaging method with an organic light emitting diode panel,” Appl. Opt. 47, 4927–4934 (2008).
[CrossRef]

Y. Kim, J. Kim, J.-M. Kang, J.-H. Jung, H. Choi, and B. Lee, “Point light source integral imaging with improved resolution and viewing angle by the use of electrically movable pinhole array,” Opt. Express 15, 18253–18267 (2007).
[CrossRef]

D.-S. Kim, S.-M. Park, J.-H. Jung, and D.-C. Hwang, “New 240 Hz driving method for Full HD and high quality 3D LCD TV,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2010), Vol.  41, pp. 762–765.

Jung, S.

Jung, S.-M.

H.-K. Hong, S.-M. Jung, B.-J. Lee, H.-J. Im, and H.-H. Shin, “Autostereoscopic 2D/3D switching display using electric-field-driven LC lens (ELC lens),” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2008), Vol.  39, pp. 348–351.

S.-M. Jung, Y.-B. Lee, H.-J. Park, S.-C. Lee, W.-N. Jeong, J.-K. Shin, and I.-J. Chung, “Improvement of 3-D crosstalk with over-driving method for the active retarder 3-D displays,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2010), Vol.  41, pp. 1264–1267.

Kakeya, H.

H. Kakeya, “MOEVsion: simple multiview display with clear floating image,” Proc. SPIE 6490, 64900J (2007).
[CrossRef]

H. Kakeya, “Autostereoscopic display with real-image virtual screen and light filters,” Proc. SPIE 4660, 349–357(2002).
[CrossRef]

Kanade, T.

P. C. Barnum, S. G. Narasimhan, and T. Kanade, “A multi-layered display with water drops,” ACM Trans. Graph. 29, 76 (2010).
[CrossRef]

Kang, H.

L. Onural, F. Yaraş, and H. Kang, “Digital holographic three-dimensional video displays,” Proc. IEEE 99, 576–589 (2011).
[CrossRef]

H. Kang, S.-D. Roh, I.-S. Baik, H.-J. Jung, W.-N. Jeong, J.-K. Shin, and I.-J. Chung, “A novel polarizer glasses-type 3D displays with a patterned retarder,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2010), Vol.  41, pp. 1–4.

Kang, J.-M.

Kasai, I.

I. Kasai, Y. Tanijiri, T. Endo, and H. Ueda, “A practical see-through head mounted display using a holographic optical element,” Opt. Rev. 8, 241–244 (2001).
[CrossRef]

Kashiwada, S.

Kashiwagi, M.

A. Takagi, T. Saishu, M. Kashiwagi, K. Taira, and Y. Hirayama, “Autostereoscopic partial 2-D/3-D switchable display using liquid-crystal gradient index lens,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2010), Vol.  41, pp. 436–439.

Kato, H.

K. Kiyokawa, M. Billinghurst, S. E. Hayes, A. Gupta, Y. Sannohe, and H. Kato, “Communications behaviors of co-located users in collaborative AR interfaces,” in Proceedings of the IEEE/ACM International Symposium on Mixed and Augmented Reality (IEEE/ACM2002), pp. 139–148.

Katz, B.

Kawai, T.

T. Shibata, T. Kawai, K. Ohta, M. Otsuki, N. Miyake, Y. Yoshihara, and T. Iwasaki, “Stereoscopic 3-D display with optical correction for the reduction of the discrepancy between accommodation and convergence,” J. Soc. Inf. Disp. 13, 665–671 (2005).
[CrossRef]

Kawakita, M.

Kelly, J. P.

S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24, 65–72 (2003).
[CrossRef]

Kim, B. S.

H. J. Lee, H. Nam, J. D. Lee, H. W. Jang, M. S. Song, B. S. Kim, J. S. Gu, C. Y. Park, and K. H. Choi, “A high resolution autostereoscopic display employing a time division parallax barrier,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2006), Vol.  37, pp. 81–84.

Kim, D.-S.

D.-S. Kim, S.-M. Park, J.-H. Jung, and D.-C. Hwang, “New 240 Hz driving method for Full HD and high quality 3D LCD TV,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2010), Vol.  41, pp. 762–765.

Kim, E.-S.

Kim, H.

Kim, J.

Y. Kim, G. Park, J.-H. Jung, J. Kim, and B. Lee, “Color moiré pattern simulation and analysis in three-dimensional integral imaging for finding the moiré-reduced tilted angle of a lens array,” Appl. Opt. 48, 2178–2187 (2009).
[CrossRef]

J.-H. Jung, Y. Kim, Y. Kim, J. Kim, K. Hong, and B. Lee, “Integral imaging system using an electroluminescent film backlight for three-dimensional–two-dimensional convertibility and a curved structure,” Appl. Opt. 48, 998–1007 (2009).
[CrossRef]

J. Kim, S.-W. Min, and B. Lee, “Viewing window expansion of integral floating display,” Appl. Opt. 48, 862–867(2009).
[CrossRef]

H. Choi, J. Kim, S.-W. Cho, Y. Kim, J. B. Park, and B. Lee, “Three-dimensional–two-dimensional mixed display system using integral imaging with an active pinhole array on a liquid crystal panel,” Appl. Opt. 47, 2207–2214 (2008).
[CrossRef]

Y. Kim, J. Kim, Y. Kim, H. Choi, J.-H. Jung, and B. Lee, “Thin-type integral imaging method with an organic light emitting diode panel,” Appl. Opt. 47, 4927–4934 (2008).
[CrossRef]

J. Kim, S.-W. Min, Y. Kim, and B. Lee, “Analysis on viewing characteristics of integral floating system,” Appl. Opt. 47, D80–D86 (2008).
[CrossRef]

J. Kim, S.-W. Min, and B. Lee, “Floated image mapping for integral floating display,” Opt. Express 16, 8549–8556(2008).
[CrossRef]

Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Kim, G. Park, and B. Lee, “Three-dimensional integral display using plastic optical fibers,” Appl. Opt. 46, 7149–7154 (2007).
[CrossRef]

H. Choi, Y. Kim, J. Kim, S.-W. Cho, and B. Lee, “Depth- and viewing-angle-enhanced 3-D/2-D switchable display system with high contrast ratio using multiple display devices and a lens array,” J. Soc. Inf. Disp. 15, 315–320 (2007).
[CrossRef]

J. Kim, S.-W. Min, and B. Lee, “Viewing region maximization of an integral floating display through location adjustment of viewing window,” Opt. Express 15, 13023–13034 (2007).
[CrossRef]

Y. Kim, J. Kim, J.-M. Kang, J.-H. Jung, H. Choi, and B. Lee, “Point light source integral imaging with improved resolution and viewing angle by the use of electrically movable pinhole array,” Opt. Express 15, 18253–18267 (2007).
[CrossRef]

Y. Kim, H. Choi, J. Kim, S.-W. Cho, Y. Kim, G. Park, and B. Lee, “Depth-enhanced integral imaging display system with electrically variable image planes using polymer-dispersed liquid crystal layers,” Appl. Opt. 46, 3766–3773 (2007).
[CrossRef]

Y. Kim, J.-H. Park, H. Choi, J. Kim, S.-W. Cho, Y. Kim, G. Park, and B. Lee, “Depth-enhanced integral imaging display system with electrically variable image planes using polymer-dispersed liquid-crystal layers,” Appl. Opt. 46, 3766–3773(2007).
[CrossRef]

S.-W. Cho, J.-H. Park, Y. Kim, H. Choi, J. Kim, and B. Lee, “Convertible two-dimensional–three-dimensional display using an LED array based on modified integral imaging,” Opt. Lett. 31, 2852–2854 (2006).
[CrossRef]

H. Choi, S.-W. Cho, J. Kim, and B. Lee, “A thin 3D-2D convertible integral imaging system using a pinhole array on a polarizer,” Opt. Express 14, 5183–5190 (2006).
[CrossRef]

H. Choi, Y. Kim, J.-H. Park, J. Kim, S.-W. Cho, and B. Lee, “Layered-panel integral imaging without the translucent problem,” Opt. Express 13, 5769–5776 (2005).
[CrossRef]

S.-W. Min, J. Kim, and B. Lee, “New characteristic equation of three-dimensional integral imaging system and its applications,” Jpn. J. Appl. Phys. 44, L71–L74 (2005).
[CrossRef]

S.-W. Min, M. Hahn, J. Kim, and B. Lee, “Three-dimensional electro-floating display system using an integral imaging method,” Opt. Express 13, 4358–4369 (2005).
[CrossRef]

S.-W. Min, J. Kim, and B. Lee, “Wide-viewing projection-type integral imaging system with an embossed screen,” Opt. Lett. 29, 2420–2422 (2004).
[CrossRef]

Kim, M.-S.

Kim, N.

Kim, N. D.

S. S. Kim, B. H. You, H. Choi, B. H. Berkeley, and N. D. Kim, “World's first 240 Hz TFT-LCD technology for full-HD LCD-TV and its application to 3D display,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2009), Vol.  40, pp. 424–427.

Kim, S. S.

S. S. Kim, B. H. You, H. Choi, B. H. Berkeley, and N. D. Kim, “World's first 240 Hz TFT-LCD technology for full-HD LCD-TV and its application to 3D display,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2009), Vol.  40, pp. 424–427.

Kim, Y.

Y. Kim, S.-G. Park, S.-W. Min, and B. Lee, “Projection-type integral imaging system using multiple elemental image layers,” Appl. Opt. 50, B18–B24 (2011).
[CrossRef]

J. Hong, Y. Kim, S. Park, J.-H. Hong, S.-W. Min, S.-D. Lee, and B. Lee, “3D/2D convertible projection-type integral imaging using concave half mirror array,” Opt. Express 18, 20628–20637 (2010).
[CrossRef]

J. Hahn, Y. Kim, and B. Lee, “Uniform angular resolution integral imaging display with boundary folding mirrors,” Appl. Opt. 48, 504–511 (2009).
[CrossRef]

Y. Kim, G. Park, J.-H. Jung, J. Kim, and B. Lee, “Color moiré pattern simulation and analysis in three-dimensional integral imaging for finding the moiré-reduced tilted angle of a lens array,” Appl. Opt. 48, 2178–2187 (2009).
[CrossRef]

Y. Kim, S.-G. Park, S.-W. Min, and B. Lee, “Integral imaging system using a dual-mode technique,” Appl. Opt. 48, H71–H76 (2009).
[CrossRef]

G. Park, J.-H. Jung, K. Hong, Y. Kim, Y.-H. Kim, S.-W. Min, and B. Lee, “Multi-viewer tracking integral imaging system and its viewing zone analysis,” Opt. Express 17, 17895–17908 (2009).
[CrossRef]

J.-H. Jung, Y. Kim, Y. Kim, J. Kim, K. Hong, and B. Lee, “Integral imaging system using an electroluminescent film backlight for three-dimensional–two-dimensional convertibility and a curved structure,” Appl. Opt. 48, 998–1007 (2009).
[CrossRef]

J.-H. Jung, Y. Kim, Y. Kim, J. Kim, K. Hong, and B. Lee, “Integral imaging system using an electroluminescent film backlight for three-dimensional–two-dimensional convertibility and a curved structure,” Appl. Opt. 48, 998–1007 (2009).
[CrossRef]

Y. Kim, J. Kim, Y. Kim, H. Choi, J.-H. Jung, and B. Lee, “Thin-type integral imaging method with an organic light emitting diode panel,” Appl. Opt. 47, 4927–4934 (2008).
[CrossRef]

H. Choi, J. Kim, S.-W. Cho, Y. Kim, J. B. Park, and B. Lee, “Three-dimensional–two-dimensional mixed display system using integral imaging with an active pinhole array on a liquid crystal panel,” Appl. Opt. 47, 2207–2214 (2008).
[CrossRef]

Y. Kim, J. Kim, Y. Kim, H. Choi, J.-H. Jung, and B. Lee, “Thin-type integral imaging method with an organic light emitting diode panel,” Appl. Opt. 47, 4927–4934 (2008).
[CrossRef]

J. Kim, S.-W. Min, Y. Kim, and B. Lee, “Analysis on viewing characteristics of integral floating system,” Appl. Opt. 47, D80–D86 (2008).
[CrossRef]

H. Choi, Y. Kim, J. Kim, S.-W. Cho, and B. Lee, “Depth- and viewing-angle-enhanced 3-D/2-D switchable display system with high contrast ratio using multiple display devices and a lens array,” J. Soc. Inf. Disp. 15, 315–320 (2007).
[CrossRef]

Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Kim, G. Park, and B. Lee, “Three-dimensional integral display using plastic optical fibers,” Appl. Opt. 46, 7149–7154 (2007).
[CrossRef]

Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Kim, G. Park, and B. Lee, “Three-dimensional integral display using plastic optical fibers,” Appl. Opt. 46, 7149–7154 (2007).
[CrossRef]

Y. Kim, J. Kim, J.-M. Kang, J.-H. Jung, H. Choi, and B. Lee, “Point light source integral imaging with improved resolution and viewing angle by the use of electrically movable pinhole array,” Opt. Express 15, 18253–18267 (2007).
[CrossRef]

Y. Kim, H. Choi, J. Kim, S.-W. Cho, Y. Kim, G. Park, and B. Lee, “Depth-enhanced integral imaging display system with electrically variable image planes using polymer-dispersed liquid crystal layers,” Appl. Opt. 46, 3766–3773 (2007).
[CrossRef]

Y. Kim, H. Choi, J. Kim, S.-W. Cho, Y. Kim, G. Park, and B. Lee, “Depth-enhanced integral imaging display system with electrically variable image planes using polymer-dispersed liquid crystal layers,” Appl. Opt. 46, 3766–3773 (2007).
[CrossRef]

Y. Kim, J.-H. Park, H. Choi, J. Kim, S.-W. Cho, Y. Kim, G. Park, and B. Lee, “Depth-enhanced integral imaging display system with electrically variable image planes using polymer-dispersed liquid-crystal layers,” Appl. Opt. 46, 3766–3773(2007).
[CrossRef]

Y. Kim, J.-H. Park, H. Choi, J. Kim, S.-W. Cho, Y. Kim, G. Park, and B. Lee, “Depth-enhanced integral imaging display system with electrically variable image planes using polymer-dispersed liquid-crystal layers,” Appl. Opt. 46, 3766–3773(2007).
[CrossRef]

S.-W. Cho, J.-H. Park, Y. Kim, H. Choi, J. Kim, and B. Lee, “Convertible two-dimensional–three-dimensional display using an LED array based on modified integral imaging,” Opt. Lett. 31, 2852–2854 (2006).
[CrossRef]

H. Choi, Y. Kim, J.-H. Park, J. Kim, S.-W. Cho, and B. Lee, “Layered-panel integral imaging without the translucent problem,” Opt. Express 13, 5769–5776 (2005).
[CrossRef]

Y. Kim, J.-H. Park, S.-W. Min, S. Jung, H. Choi, and B. Lee, “A wide-viewing-angle integral 3D imaging system by curving a screen and a lens array,” Appl. Opt. 44, 546–552(2005).
[CrossRef]

S. Jung, J. Hong, J.-H. Park, Y. Kim, and B. Lee, “Depth-enhanced integral-imaging 3D display using different optical path lengths by polarization devices or mirror barrier array,” J. Soc. Inf. Disp. 12, 461–467 (2004).
[CrossRef]

Y. Kim, J.-H. Park, H. Choi, S. Jung, S.-W. Min, and B. Lee, “Viewing-angle-enhanced integral imaging system using a curved lens array,” Opt. Express 12, 421–429 (2004).
[CrossRef]

Kim, Y.-H.

Kishigami, R.

R. Kishigami, H. Takahashi, and E. Shimizu, “Real-time color three-dimensional display system using holographic optical elements,” Proc. SPIE 4296, 102–107 (2001).
[CrossRef]

Kishino, F.

S. Shiwa, K. Omura, and F. Kishino, “Proposal for a 3-D display with accommodative compensation: 3-DDAC,” J. Soc. Inf. Disp. 4, 255–261 (1996).
[CrossRef]

Kitahara, I.

A. Sato, I. Kitahara, K. Yoshinari, and O. Yuichi, “Visual navigation system on windshield head-up display,” in Proceedings of 13th World Congress & Exhibition on Intelligent Transport Systems and Services (Brintex, 2006).

Kiyokawa, K.

K. Kiyokawa, Y. Kurata, and H. Ohno, “An optical see-through display for mutual occlusion with a real-time stereo vision system,” Comput. Graph. Forum 25, 765–779(2001).

K. Kiyokawa, Y. Kurata, and H. Ohno, “Occlusive optical see-through displays in a collaborative setup,” in Proceedings of the ACM SIGGRAPH (ACM2002), p. 74.

K. Kiyokawa, M. Billinghurst, B. Campbell, and E. Woods, “An occlusion-capable optical see-through head mount display for supporting co-located collaboration,” in Proceedings of the 2nd IEEE/ACM International Symposium on Mixed and Augmented Reality (IEEE/ACM2003), pp. 133–141.

K. Kiyokawa, M. Billinghurst, S. E. Hayes, A. Gupta, Y. Sannohe, and H. Kato, “Communications behaviors of co-located users in collaborative AR interfaces,” in Proceedings of the IEEE/ACM International Symposium on Mixed and Augmented Reality (IEEE/ACM2002), pp. 139–148.

Kobayashi, M.

Koike, T.

Kooi, F. L.

F. L. Kooi and A. Toet, “Visual comfort of binocular and 3D displays,” Displays 25, 99–108 (2004).
[CrossRef]

Kurata, Y.

K. Kiyokawa, Y. Kurata, and H. Ohno, “An optical see-through display for mutual occlusion with a real-time stereo vision system,” Comput. Graph. Forum 25, 765–779(2001).

K. Kiyokawa, Y. Kurata, and H. Ohno, “Occlusive optical see-through displays in a collaborative setup,” in Proceedings of the ACM SIGGRAPH (ACM2002), p. 74.

Kwon, K.-C.

Lawrence, R. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[CrossRef]

Lee, B.

Y. Kim, S.-G. Park, S.-W. Min, and B. Lee, “Projection-type integral imaging system using multiple elemental image layers,” Appl. Opt. 50, B18–B24 (2011).
[CrossRef]

J. Hong, Y. Kim, S. Park, J.-H. Hong, S.-W. Min, S.-D. Lee, and B. Lee, “3D/2D convertible projection-type integral imaging using concave half mirror array,” Opt. Express 18, 20628–20637 (2010).
[CrossRef]

J.-H. Jung, K. Hong, G. Park, I. Chung, and B. Lee, “360-degree viewable cylindrical integral imaging system using three-dimensional/two-dimensional switchable and flexible backlight,” J. Soc. Inf. Disp. 18, 527–534 (2010).
[CrossRef]

G. Park, J.-H. Jung, K. Hong, Y. Kim, Y.-H. Kim, S.-W. Min, and B. Lee, “Multi-viewer tracking integral imaging system and its viewing zone analysis,” Opt. Express 17, 17895–17908 (2009).
[CrossRef]

J.-H. Jung, Y. Kim, Y. Kim, J. Kim, K. Hong, and B. Lee, “Integral imaging system using an electroluminescent film backlight for three-dimensional–two-dimensional convertibility and a curved structure,” Appl. Opt. 48, 998–1007 (2009).
[CrossRef]

J.-H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48, H77–H94 (2009).
[CrossRef]

J. Kim, S.-W. Min, and B. Lee, “Viewing window expansion of integral floating display,” Appl. Opt. 48, 862–867(2009).
[CrossRef]

J. Hahn, Y. Kim, and B. Lee, “Uniform angular resolution integral imaging display with boundary folding mirrors,” Appl. Opt. 48, 504–511 (2009).
[CrossRef]

Y. Kim, G. Park, J.-H. Jung, J. Kim, and B. Lee, “Color moiré pattern simulation and analysis in three-dimensional integral imaging for finding the moiré-reduced tilted angle of a lens array,” Appl. Opt. 48, 2178–2187 (2009).
[CrossRef]

Y. Kim, S.-G. Park, S.-W. Min, and B. Lee, “Integral imaging system using a dual-mode technique,” Appl. Opt. 48, H71–H76 (2009).
[CrossRef]

H. Kim, J. Hahn, and B. Lee, “Mathematical modeling of triangle-mesh-modeled three-dimensional surface objects for digital holography,” Appl. Opt. 47, D117–D127 (2008).
[CrossRef]

J. Hahn, H. Kim, Y. Lim, G. Park, and B. Lee, “Wide viewing angle dynamic holographic stereogram with a curved array of spatial light modulators,” Opt. Express 16, 12372–12386(2008).
[CrossRef]

H. Kim, J. Hahn, and B. Lee, “The use of a negative index planoconcave lens array for wide-viewing angle integral imaging,” Opt. Express 16, 21865–21880 (2008).
[CrossRef]

J. Kim, S.-W. Min, Y. Kim, and B. Lee, “Analysis on viewing characteristics of integral floating system,” Appl. Opt. 47, D80–D86 (2008).
[CrossRef]

J. Kim, S.-W. Min, and B. Lee, “Floated image mapping for integral floating display,” Opt. Express 16, 8549–8556(2008).
[CrossRef]

Y. Kim, J. Kim, Y. Kim, H. Choi, J.-H. Jung, and B. Lee, “Thin-type integral imaging method with an organic light emitting diode panel,” Appl. Opt. 47, 4927–4934 (2008).
[CrossRef]

H. Choi, J. Kim, S.-W. Cho, Y. Kim, J. B. Park, and B. Lee, “Three-dimensional–two-dimensional mixed display system using integral imaging with an active pinhole array on a liquid crystal panel,” Appl. Opt. 47, 2207–2214 (2008).
[CrossRef]

Y. Kim, J. Kim, J.-M. Kang, J.-H. Jung, H. Choi, and B. Lee, “Point light source integral imaging with improved resolution and viewing angle by the use of electrically movable pinhole array,” Opt. Express 15, 18253–18267 (2007).
[CrossRef]

Y. Kim, H. Choi, J. Kim, S.-W. Cho, Y. Kim, G. Park, and B. Lee, “Depth-enhanced integral imaging display system with electrically variable image planes using polymer-dispersed liquid crystal layers,” Appl. Opt. 46, 3766–3773 (2007).
[CrossRef]

Y. Kim, J.-H. Park, H. Choi, J. Kim, S.-W. Cho, Y. Kim, G. Park, and B. Lee, “Depth-enhanced integral imaging display system with electrically variable image planes using polymer-dispersed liquid-crystal layers,” Appl. Opt. 46, 3766–3773(2007).
[CrossRef]

Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Kim, G. Park, and B. Lee, “Three-dimensional integral display using plastic optical fibers,” Appl. Opt. 46, 7149–7154 (2007).
[CrossRef]

J. Kim, S.-W. Min, and B. Lee, “Viewing region maximization of an integral floating display through location adjustment of viewing window,” Opt. Express 15, 13023–13034 (2007).
[CrossRef]

H. Choi, Y. Kim, J. Kim, S.-W. Cho, and B. Lee, “Depth- and viewing-angle-enhanced 3-D/2-D switchable display system with high contrast ratio using multiple display devices and a lens array,” J. Soc. Inf. Disp. 15, 315–320 (2007).
[CrossRef]

H. Choi, S.-W. Cho, J. Kim, and B. Lee, “A thin 3D-2D convertible integral imaging system using a pinhole array on a polarizer,” Opt. Express 14, 5183–5190 (2006).
[CrossRef]

D.-H. Shin, B. Lee, and E.-S. Kim, “Multidirectional curved integral imaging with large depth by additional use of a large-aperture lens,” Appl. Opt. 45, 7375–7381 (2006).
[CrossRef]

S.-W. Cho, J.-H. Park, Y. Kim, H. Choi, J. Kim, and B. Lee, “Convertible two-dimensional–three-dimensional display using an LED array based on modified integral imaging,” Opt. Lett. 31, 2852–2854 (2006).
[CrossRef]

H. Choi, Y. Kim, J.-H. Park, J. Kim, S.-W. Cho, and B. Lee, “Layered-panel integral imaging without the translucent problem,” Opt. Express 13, 5769–5776 (2005).
[CrossRef]

S.-W. Min, J. Kim, and B. Lee, “New characteristic equation of three-dimensional integral imaging system and its applications,” Jpn. J. Appl. Phys. 44, L71–L74 (2005).
[CrossRef]

Y. Kim, J.-H. Park, S.-W. Min, S. Jung, H. Choi, and B. Lee, “A wide-viewing-angle integral 3D imaging system by curving a screen and a lens array,” Appl. Opt. 44, 546–552(2005).
[CrossRef]

S.-W. Min, M. Hahn, J. Kim, and B. Lee, “Three-dimensional electro-floating display system using an integral imaging method,” Opt. Express 13, 4358–4369 (2005).
[CrossRef]

S.-W. Min, J. Kim, and B. Lee, “Wide-viewing projection-type integral imaging system with an embossed screen,” Opt. Lett. 29, 2420–2422 (2004).
[CrossRef]

J. Hong, J.-H. Park, S. Jung, and B. Lee, “Depth enhanced integral imaging by use of optical path control,” Opt. Lett. 29, 1790–1792 (2004).
[CrossRef]

S. Jung, J. Hong, J.-H. Park, Y. Kim, and B. Lee, “Depth-enhanced integral-imaging 3D display using different optical path lengths by polarization devices or mirror barrier array,” J. Soc. Inf. Disp. 12, 461–467 (2004).
[CrossRef]

Y. Kim, J.-H. Park, H. Choi, S. Jung, S.-W. Min, and B. Lee, “Viewing-angle-enhanced integral imaging system using a curved lens array,” Opt. Express 12, 421–429 (2004).
[CrossRef]

H. Choi, J.-H. Park, J. Hong, and B. Lee, “Depth enhanced integral imaging with a stepped lens array or a composite lens array for three-dimensional display,” Jpn. J. Appl. Phys. 43, 5330–5336 (2004).
[CrossRef]

H. Choi, S.-W. Min, S. Jung, J.-H. Park, and B. Lee, “Multiple-viewing-zone integral imaging using a dynamic barrier array for three-dimensional displays,” Opt. Express 11, 927–932(2003).
[CrossRef]

J.-H. Park, S. Jung, H. Choi, and B. Lee, “Integral imaging with multiple image planes using a uniaxial crystal plate,” Opt. Express 11, 1862–1875 (2003).
[CrossRef]

S. Jung, J.-H. Park, H. Choi, and B. Lee, “Wide-viewing integral three-dimensional imaging by use of orthogonal polarization switching,” Appl. Opt. 42, 2513–2520(2003).
[CrossRef]

B. Lee, S. Jung, and J.-H. Park, “Viewing-angle-enhanced integral imaging by lens switching,” Opt. Lett. 27, 818–820(2002).
[CrossRef]

B. Lee, J.-H. Park, and S.-W. Min, “Three-dimensional display and information processing based on integral imaging,” in Digital Holography and Three-Dimensional DisplayT.-C.Poon, ed. (Springer, 2006), Chap. 12, pp. 333–378.

Lee, B.-J.

H.-K. Hong, S.-M. Jung, B.-J. Lee, H.-J. Im, and H.-H. Shin, “Autostereoscopic 2D/3D switching display using electric-field-driven LC lens (ELC lens),” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2008), Vol.  39, pp. 348–351.

Lee, C.

C. Lee, S. DiVerdi, and T. Höllerer, “Depth-fused 3-D imagery on an immaterial display,” IEEE Trans. Vis. Comput. Graph. 15, 20–32 (2009).
[CrossRef]

Lee, H. J.

H. J. Lee, H. Nam, J. D. Lee, H. W. Jang, M. S. Song, B. S. Kim, J. S. Gu, C. Y. Park, and K. H. Choi, “A high resolution autostereoscopic display employing a time division parallax barrier,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2006), Vol.  37, pp. 81–84.

Lee, H.-S.

Lee, J. D.

H. J. Lee, H. Nam, J. D. Lee, H. W. Jang, M. S. Song, B. S. Kim, J. S. Gu, C. Y. Park, and K. H. Choi, “A high resolution autostereoscopic display employing a time division parallax barrier,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2006), Vol.  37, pp. 81–84.

Lee, S.-C.

S.-M. Jung, Y.-B. Lee, H.-J. Park, S.-C. Lee, W.-N. Jeong, J.-K. Shin, and I.-J. Chung, “Improvement of 3-D crosstalk with over-driving method for the active retarder 3-D displays,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2010), Vol.  41, pp. 1264–1267.

Lee, S.-D.

Lee, Y.-B.

S.-M. Jung, Y.-B. Lee, H.-J. Park, S.-C. Lee, W.-N. Jeong, J.-K. Shin, and I.-J. Chung, “Improvement of 3-D crosstalk with over-driving method for the active retarder 3-D displays,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2010), Vol.  41, pp. 1264–1267.

Leister, N.

R. Haussler, S. Reichelt, N. Leister, E. Zschau, R. Missbach, and A. Schwerdtner, “Large real-time holographic displays: from prototypes to a consumer product,” Proc. SPIE 7237, 72370S (2009).
[CrossRef]

Leith, E. N.

Li, H.

Liao, H.

Lim, J. S.

A. V. Oppenheim and J. S. Lim, “The importance of phase in signals,” Proc. IEEE 69, 529–541 (1981).
[CrossRef]

Lim, Y.

Lindfors, C.

A. Olwal, J. Gustafsson, and C. Lindfors, “Spatial augmented reality on industrial CNC-machines,” Proc. SPIE 6804, 680409 (2008).
[CrossRef]

Lippmann, G.

G. Lippmann, “La photographie integrale,” C. R. Acad. Sci. 146, 446–451 (1908).

G. Lippmann, “La photographie des couleurs,” C.R. Hebd. Seances Acad. Sci. 112, 274–275 (1891).

Liu, S.

S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16, 381–393(2010).
[CrossRef]

Liu, X.

Lohmann, A. W.

Maeno, K.

K. Maeno, N. Fukaya, O. Nishikawa, K. Sato, and T. Honda, “Electro-holographic display using 15 mega pixels LCD,” Proc. SPIE 2652, 15–23 (1996).
[CrossRef]

Martinez-Corral, M.

Martinez-Cuenca, R.

McQuaide, S. C.

S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24, 65–72 (2003).
[CrossRef]

Milham, K. A.

M. Stanley, R. W. Bannister, C. D. Cameron, S. D. Coomber, I. G. Cresswell, J. R. Hughes, V. Hui, P. O. Jackson, K. A. Milham, R. J. Miller, D. A. Payne, J. Quarrel, D. C. Scattergood, A. P. Smith, M. A. Smith, D. L. Tipton, P. J. Watson, P. J. Webber, and C. W. Slinger, “100 mega-pixel computer generated holographic images from active tiling--a dynamic and scalable electro-optic modulator system,” Proc. SPIE 5005, 247–258 (2003).
[CrossRef]

Miller, J. J.

Miller, R. J.

M. Stanley, R. W. Bannister, C. D. Cameron, S. D. Coomber, I. G. Cresswell, J. R. Hughes, V. Hui, P. O. Jackson, K. A. Milham, R. J. Miller, D. A. Payne, J. Quarrel, D. C. Scattergood, A. P. Smith, M. A. Smith, D. L. Tipton, P. J. Watson, P. J. Webber, and C. W. Slinger, “100 mega-pixel computer generated holographic images from active tiling--a dynamic and scalable electro-optic modulator system,” Proc. SPIE 5005, 247–258 (2003).
[CrossRef]

Millerd, J.

J. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. C. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
[CrossRef]

Min, S.-W.

Y. Kim, S.-G. Park, S.-W. Min, and B. Lee, “Projection-type integral imaging system using multiple elemental image layers,” Appl. Opt. 50, B18–B24 (2011).
[CrossRef]

J. Hong, Y. Kim, S. Park, J.-H. Hong, S.-W. Min, S.-D. Lee, and B. Lee, “3D/2D convertible projection-type integral imaging using concave half mirror array,” Opt. Express 18, 20628–20637 (2010).
[CrossRef]

Y. Kim, S.-G. Park, S.-W. Min, and B. Lee, “Integral imaging system using a dual-mode technique,” Appl. Opt. 48, H71–H76 (2009).
[CrossRef]

G. Park, J.-H. Jung, K. Hong, Y. Kim, Y.-H. Kim, S.-W. Min, and B. Lee, “Multi-viewer tracking integral imaging system and its viewing zone analysis,” Opt. Express 17, 17895–17908 (2009).
[CrossRef]

J. Kim, S.-W. Min, and B. Lee, “Viewing window expansion of integral floating display,” Appl. Opt. 48, 862–867(2009).
[CrossRef]

J. Kim, S.-W. Min, and B. Lee, “Floated image mapping for integral floating display,” Opt. Express 16, 8549–8556(2008).
[CrossRef]

J. Kim, S.-W. Min, Y. Kim, and B. Lee, “Analysis on viewing characteristics of integral floating system,” Appl. Opt. 47, D80–D86 (2008).
[CrossRef]

J. Kim, S.-W. Min, and B. Lee, “Viewing region maximization of an integral floating display through location adjustment of viewing window,” Opt. Express 15, 13023–13034 (2007).
[CrossRef]

S.-W. Min, J. Kim, and B. Lee, “New characteristic equation of three-dimensional integral imaging system and its applications,” Jpn. J. Appl. Phys. 44, L71–L74 (2005).
[CrossRef]

S.-W. Min, M. Hahn, J. Kim, and B. Lee, “Three-dimensional electro-floating display system using an integral imaging method,” Opt. Express 13, 4358–4369 (2005).
[CrossRef]

Y. Kim, J.-H. Park, S.-W. Min, S. Jung, H. Choi, and B. Lee, “A wide-viewing-angle integral 3D imaging system by curving a screen and a lens array,” Appl. Opt. 44, 546–552(2005).
[CrossRef]

S.-W. Min, J. Kim, and B. Lee, “Wide-viewing projection-type integral imaging system with an embossed screen,” Opt. Lett. 29, 2420–2422 (2004).
[CrossRef]

Y. Kim, J.-H. Park, H. Choi, S. Jung, S.-W. Min, and B. Lee, “Viewing-angle-enhanced integral imaging system using a curved lens array,” Opt. Express 12, 421–429 (2004).
[CrossRef]

H. Choi, S.-W. Min, S. Jung, J.-H. Park, and B. Lee, “Multiple-viewing-zone integral imaging using a dynamic barrier array for three-dimensional displays,” Opt. Express 11, 927–932(2003).
[CrossRef]

B. Lee, J.-H. Park, and S.-W. Min, “Three-dimensional display and information processing based on integral imaging,” in Digital Holography and Three-Dimensional DisplayT.-C.Poon, ed. (Springer, 2006), Chap. 12, pp. 333–378.

Missbach, R.

R. Haussler, S. Reichelt, N. Leister, E. Zschau, R. Missbach, and A. Schwerdtner, “Large real-time holographic displays: from prototypes to a consumer product,” Proc. SPIE 7237, 72370S (2009).
[CrossRef]

Miyake, N.

T. Shibata, T. Kawai, K. Ohta, M. Otsuki, N. Miyake, Y. Yoshihara, and T. Iwasaki, “Stereoscopic 3-D display with optical correction for the reduction of the discrepancy between accommodation and convergence,” J. Soc. Inf. Disp. 13, 665–671 (2005).
[CrossRef]

Morishima, H.

K. Inoguchi, H. Morishima, N. Nanaba, S. Takeshita, and Y. Yamazaki, “Fabrication and evaluation of HMD optical system consisting of aspherical mirrors without rotation symmetry,” in Japan Optics’95, Extended Abstracts (Optical Society of Japan, 1995), pp. 19–20.

H. Morishima, T. Akiyama, N. Nanba, and T. Tanaka, “The design of off-axial optical system consisting of aspherical mirrors without rotational symmetry,” in 20th Optical Symposium, Extended Abstracts (Optical Society of Japan, 1995), Vol.  21, pp. 53–56.

Nago, N.

Nakamura, J.

Nakamura, K.

Nakazawa, K.

S. Suyama, Y. Ishigure, H. Takada, K. Nakazawa, J. Hosohata, Y. Takao, and T. Fujikao, “Apparent 3-D image perceived from luminance-modulated two 2-D images displayed at different depths,” Vision Res. 44, 785–793 (2004).
[CrossRef]

Y. Ishigure, S. Suyama, H. Takada, K. Nakazawa, J. Hosohata, Y. Takao, and T. Fujikado, “Evaluation of visual fatigue relative in the viewing of a depth-fused 3D display and 2D display,” in Proceedings of International Display Workshops (Society for Information Display. 2004), pp. 1627–1630.

Nam, H.

H. J. Lee, H. Nam, J. D. Lee, H. W. Jang, M. S. Song, B. S. Kim, J. S. Gu, C. Y. Park, and K. H. Choi, “A high resolution autostereoscopic display employing a time division parallax barrier,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2006), Vol.  37, pp. 81–84.

Nanaba, N.

K. Inoguchi, H. Morishima, N. Nanaba, S. Takeshita, and Y. Yamazaki, “Fabrication and evaluation of HMD optical system consisting of aspherical mirrors without rotation symmetry,” in Japan Optics’95, Extended Abstracts (Optical Society of Japan, 1995), pp. 19–20.

Nanba, N.

H. Morishima, T. Akiyama, N. Nanba, and T. Tanaka, “The design of off-axial optical system consisting of aspherical mirrors without rotational symmetry,” in 20th Optical Symposium, Extended Abstracts (Optical Society of Japan, 1995), Vol.  21, pp. 53–56.

Narasimhan, S. G.

P. C. Barnum, S. G. Narasimhan, and T. Kanade, “A multi-layered display with water drops,” ACM Trans. Graph. 29, 76 (2010).
[CrossRef]

Navarro, H.

Nishikawa, O.

K. Maeno, N. Fukaya, O. Nishikawa, K. Sato, and T. Honda, “Electro-holographic display using 15 mega pixels LCD,” Proc. SPIE 2652, 15–23 (1996).
[CrossRef]

Nishimura, K.

S. Eitoku, K. Nishimura, T. Tanikawa, and M. Hirose, “Study on design of controllable particle display using water drops suitable for light environment,” in Proceeding of the ACM Symposium on Virtual Reality Software and Technology (ACM, 2009), pp. 23–26.

North-Morris, M.

J. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. C. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
[CrossRef]

Novak, M.

J. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. C. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
[CrossRef]

Ohno, H.

K. Kiyokawa, Y. Kurata, and H. Ohno, “An optical see-through display for mutual occlusion with a real-time stereo vision system,” Comput. Graph. Forum 25, 765–779(2001).

K. Kiyokawa, Y. Kurata, and H. Ohno, “Occlusive optical see-through displays in a collaborative setup,” in Proceedings of the ACM SIGGRAPH (ACM2002), p. 74.

Ohta, K.

T. Shibata, T. Kawai, K. Ohta, M. Otsuki, N. Miyake, Y. Yoshihara, and T. Iwasaki, “Stereoscopic 3-D display with optical correction for the reduction of the discrepancy between accommodation and convergence,” J. Soc. Inf. Disp. 13, 665–671 (2005).
[CrossRef]

Ohzu, H.

Okamoto, M.

K. Sakamoto, H. Takahashi, E. Shimizu, H. Ueda, K. Tanaka, and M. Okamoto, “New approach to the real-time 3D display using a holographic optical element,” Proc. SPIE 3011, 36–44 (1997).
[CrossRef]

K. Sakamoto, M. Okamoto, H. Ueda, H. Takahashi, and E. Shimizu, “Real-time 3D color display using a holographic optical element,” Proc. SPIE 2652, 124–131 (1996).
[CrossRef]

Okano, F.

Okui, M.

Olwal, A.

A. Olwal, J. Gustafsson, and C. Lindfors, “Spatial augmented reality on industrial CNC-machines,” Proc. SPIE 6804, 680409 (2008).
[CrossRef]

S. DiVerdi, I. Rakkolainen, T. Höllerer, and A. Olwal, “A novel walk-through 3D display,” Proc. SPIE 6055, 605519 (2006).
[CrossRef]

A. Olwal and T. Höllerer, “POLAR: portable, optical see-through, low-cost augmented reality,” in Proceedings of the ACM Symposium on Virtual Reality Software and Technology (ACM, 2005), pp. 227–230.

A. Olwal, S. DiVerdi, N. Candussi, I. Rakkolainen, and T. Höllerer, “An immaterial, dual-sided display system with 3D interaction,” in Proceedings of the IEEE Conference on Virtual Reality (IEEE, 2006), pp. 279–280.

Omura, K.

S. Shiwa, K. Omura, and F. Kishino, “Proposal for a 3-D display with accommodative compensation: 3-DDAC,” J. Soc. Inf. Disp. 4, 255–261 (1996).
[CrossRef]

Onural, L.

L. Onural, F. Yaraş, and H. Kang, “Digital holographic three-dimensional video displays,” Proc. IEEE 99, 576–589 (2011).
[CrossRef]

Oppenheim, A. V.

A. V. Oppenheim and J. S. Lim, “The importance of phase in signals,” Proc. IEEE 69, 529–541 (1981).
[CrossRef]

Otsuki, M.

T. Shibata, T. Kawai, K. Ohta, M. Otsuki, N. Miyake, Y. Yoshihara, and T. Iwasaki, “Stereoscopic 3-D display with optical correction for the reduction of the discrepancy between accommodation and convergence,” J. Soc. Inf. Disp. 13, 665–671 (2005).
[CrossRef]

Palovuori, K.

K. Palovuori and I. Rakkolainen, “Method and apparatus for forming a projection screen or a projection volume,” U.S. patent 6,819,487 (16 November 2004).

Paris, D.

Park, C. Y.

H. J. Lee, H. Nam, J. D. Lee, H. W. Jang, M. S. Song, B. S. Kim, J. S. Gu, C. Y. Park, and K. H. Choi, “A high resolution autostereoscopic display employing a time division parallax barrier,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2006), Vol.  37, pp. 81–84.

Park, G.

J.-H. Jung, K. Hong, G. Park, I. Chung, and B. Lee, “360-degree viewable cylindrical integral imaging system using three-dimensional/two-dimensional switchable and flexible backlight,” J. Soc. Inf. Disp. 18, 527–534 (2010).
[CrossRef]

G. Park, J.-H. Jung, K. Hong, Y. Kim, Y.-H. Kim, S.-W. Min, and B. Lee, “Multi-viewer tracking integral imaging system and its viewing zone analysis,” Opt. Express 17, 17895–17908 (2009).
[CrossRef]

Y. Kim, G. Park, J.-H. Jung, J. Kim, and B. Lee, “Color moiré pattern simulation and analysis in three-dimensional integral imaging for finding the moiré-reduced tilted angle of a lens array,” Appl. Opt. 48, 2178–2187 (2009).
[CrossRef]

J. Hahn, H. Kim, Y. Lim, G. Park, and B. Lee, “Wide viewing angle dynamic holographic stereogram with a curved array of spatial light modulators,” Opt. Express 16, 12372–12386(2008).
[CrossRef]

Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Kim, G. Park, and B. Lee, “Three-dimensional integral display using plastic optical fibers,” Appl. Opt. 46, 7149–7154 (2007).
[CrossRef]

Y. Kim, H. Choi, J. Kim, S.-W. Cho, Y. Kim, G. Park, and B. Lee, “Depth-enhanced integral imaging display system with electrically variable image planes using polymer-dispersed liquid crystal layers,” Appl. Opt. 46, 3766–3773 (2007).
[CrossRef]

Y. Kim, J.-H. Park, H. Choi, J. Kim, S.-W. Cho, Y. Kim, G. Park, and B. Lee, “Depth-enhanced integral imaging display system with electrically variable image planes using polymer-dispersed liquid-crystal layers,” Appl. Opt. 46, 3766–3773(2007).
[CrossRef]

Park, H.-J.

S.-M. Jung, Y.-B. Lee, H.-J. Park, S.-C. Lee, W.-N. Jeong, J.-K. Shin, and I.-J. Chung, “Improvement of 3-D crosstalk with over-driving method for the active retarder 3-D displays,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2010), Vol.  41, pp. 1264–1267.

Park, J. B.

Park, J.-H.

N. Chen, J.-H. Park, and N. Kim, “Parameter analysis of integral Fourier hologram and its resolution enhancement,” Opt. Express 18, 2152–2167 (2010).
[CrossRef]

J.-H. Park, M.-S. Kim, G. Baasantseren, and N. Kim, “Fresnel and Fourier hologram generation using orthographic projection images,” Opt. Express 17, 6320–6334 (2009).
[CrossRef]

G. Baasantseren, J.-H. Park, K.-C. Kwon, and N. Kim, “Viewing angle enhanced integral imaging display using two elemental image masks,” Opt. Express 17, 14405–14417(2009).
[CrossRef]

J.-H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48, H77–H94 (2009).
[CrossRef]

Y. Kim, J.-H. Park, H. Choi, J. Kim, S.-W. Cho, Y. Kim, G. Park, and B. Lee, “Depth-enhanced integral imaging display system with electrically variable image planes using polymer-dispersed liquid-crystal layers,” Appl. Opt. 46, 3766–3773(2007).
[CrossRef]

S.-W. Cho, J.-H. Park, Y. Kim, H. Choi, J. Kim, and B. Lee, “Convertible two-dimensional–three-dimensional display using an LED array based on modified integral imaging,” Opt. Lett. 31, 2852–2854 (2006).
[CrossRef]

H. Choi, Y. Kim, J.-H. Park, J. Kim, S.-W. Cho, and B. Lee, “Layered-panel integral imaging without the translucent problem,” Opt. Express 13, 5769–5776 (2005).
[CrossRef]

Y. Kim, J.-H. Park, S.-W. Min, S. Jung, H. Choi, and B. Lee, “A wide-viewing-angle integral 3D imaging system by curving a screen and a lens array,” Appl. Opt. 44, 546–552(2005).
[CrossRef]

J. Hong, J.-H. Park, S. Jung, and B. Lee, “Depth enhanced integral imaging by use of optical path control,” Opt. Lett. 29, 1790–1792 (2004).
[CrossRef]

S. Jung, J. Hong, J.-H. Park, Y. Kim, and B. Lee, “Depth-enhanced integral-imaging 3D display using different optical path lengths by polarization devices or mirror barrier array,” J. Soc. Inf. Disp. 12, 461–467 (2004).
[CrossRef]

Y. Kim, J.-H. Park, H. Choi, S. Jung, S.-W. Min, and B. Lee, “Viewing-angle-enhanced integral imaging system using a curved lens array,” Opt. Express 12, 421–429 (2004).
[CrossRef]

H. Choi, J.-H. Park, J. Hong, and B. Lee, “Depth enhanced integral imaging with a stepped lens array or a composite lens array for three-dimensional display,” Jpn. J. Appl. Phys. 43, 5330–5336 (2004).
[CrossRef]

H. Choi, S.-W. Min, S. Jung, J.-H. Park, and B. Lee, “Multiple-viewing-zone integral imaging using a dynamic barrier array for three-dimensional displays,” Opt. Express 11, 927–932(2003).
[CrossRef]

J.-H. Park, S. Jung, H. Choi, and B. Lee, “Integral imaging with multiple image planes using a uniaxial crystal plate,” Opt. Express 11, 1862–1875 (2003).
[CrossRef]

S. Jung, J.-H. Park, H. Choi, and B. Lee, “Wide-viewing integral three-dimensional imaging by use of orthogonal polarization switching,” Appl. Opt. 42, 2513–2520(2003).
[CrossRef]

B. Lee, S. Jung, and J.-H. Park, “Viewing-angle-enhanced integral imaging by lens switching,” Opt. Lett. 27, 818–820(2002).
[CrossRef]

B. Lee, J.-H. Park, and S.-W. Min, “Three-dimensional display and information processing based on integral imaging,” in Digital Holography and Three-Dimensional DisplayT.-C.Poon, ed. (Springer, 2006), Chap. 12, pp. 333–378.

Park, S.

Park, S.-G.

Park, S.-M.

D.-S. Kim, S.-M. Park, J.-H. Jung, and D.-C. Hwang, “New 240 Hz driving method for Full HD and high quality 3D LCD TV,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2010), Vol.  41, pp. 762–765.

Payne, D. A.

M. Stanley, R. W. Bannister, C. D. Cameron, S. D. Coomber, I. G. Cresswell, J. R. Hughes, V. Hui, P. O. Jackson, K. A. Milham, R. J. Miller, D. A. Payne, J. Quarrel, D. C. Scattergood, A. P. Smith, M. A. Smith, D. L. Tipton, P. J. Watson, P. J. Webber, and C. W. Slinger, “100 mega-pixel computer generated holographic images from active tiling--a dynamic and scalable electro-optic modulator system,” Proc. SPIE 5005, 247–258 (2003).
[CrossRef]

Poelman, R.

D. W. F. van Krevelen and R. Poelman, “A survey of augmented reality technologies, applications and limitations,” Int. J. Virtual Reality 9, 1–20 (2010).

Quarrel, J.

M. Stanley, R. W. Bannister, C. D. Cameron, S. D. Coomber, I. G. Cresswell, J. R. Hughes, V. Hui, P. O. Jackson, K. A. Milham, R. J. Miller, D. A. Payne, J. Quarrel, D. C. Scattergood, A. P. Smith, M. A. Smith, D. L. Tipton, P. J. Watson, P. J. Webber, and C. W. Slinger, “100 mega-pixel computer generated holographic images from active tiling--a dynamic and scalable electro-optic modulator system,” Proc. SPIE 5005, 247–258 (2003).
[CrossRef]

Rakkolainen, I.

S. DiVerdi, I. Rakkolainen, T. Höllerer, and A. Olwal, “A novel walk-through 3D display,” Proc. SPIE 6055, 605519 (2006).
[CrossRef]

K. Palovuori and I. Rakkolainen, “Method and apparatus for forming a projection screen or a projection volume,” U.S. patent 6,819,487 (16 November 2004).

A. Olwal, S. DiVerdi, N. Candussi, I. Rakkolainen, and T. Höllerer, “An immaterial, dual-sided display system with 3D interaction,” in Proceedings of the IEEE Conference on Virtual Reality (IEEE, 2006), pp. 279–280.

Reichelt, S.

R. Haussler, S. Reichelt, N. Leister, E. Zschau, R. Missbach, and A. Schwerdtner, “Large real-time holographic displays: from prototypes to a consumer product,” Proc. SPIE 7237, 72370S (2009).
[CrossRef]

Roh, S.-D.

H. Kang, S.-D. Roh, I.-S. Baik, H.-J. Jung, W.-N. Jeong, J.-K. Shin, and I.-J. Chung, “A novel polarizer glasses-type 3D displays with a patterned retarder,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2010), Vol.  41, pp. 1–4.

Rolland, J.

O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2, 199–216 (2006).
[CrossRef]

Rolland, J. P.

O. Cakmakci, Y. Ha, and J. P. Rolland, “A compact optical see-through head-worn display with occlusion support,” in Proceedings of the 3rd IEEE/ACM International Symposium on Mixed and Augmented Reality (IEEE/ACM, 2004), pp. 16–25.

Rosen, J.

Saavedra, G.

Saishu, T.

A. Takagi, T. Saishu, M. Kashiwagi, K. Taira, and Y. Hirayama, “Autostereoscopic partial 2-D/3-D switchable display using liquid-crystal gradient index lens,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2010), Vol.  41, pp. 436–439.

Sakamoto, K.

K. Sakamoto, H. Takahashi, E. Shimizu, H. Ueda, K. Tanaka, and M. Okamoto, “New approach to the real-time 3D display using a holographic optical element,” Proc. SPIE 3011, 36–44 (1997).
[CrossRef]

K. Sakamoto, M. Okamoto, H. Ueda, H. Takahashi, and E. Shimizu, “Real-time 3D color display using a holographic optical element,” Proc. SPIE 2652, 124–131 (1996).
[CrossRef]

Sakuma, I.

Sannohe, Y.

K. Kiyokawa, M. Billinghurst, S. E. Hayes, A. Gupta, Y. Sannohe, and H. Kato, “Communications behaviors of co-located users in collaborative AR interfaces,” in Proceedings of the IEEE/ACM International Symposium on Mixed and Augmented Reality (IEEE/ACM2002), pp. 139–148.

Sasaki, H.

Sasian, J.

Sato, A.

A. Sato, I. Kitahara, K. Yoshinari, and O. Yuichi, “Visual navigation system on windshield head-up display,” in Proceedings of 13th World Congress & Exhibition on Intelligent Transport Systems and Services (Brintex, 2006).

Sato, K.

K. Maeno, N. Fukaya, O. Nishikawa, K. Sato, and T. Honda, “Electro-holographic display using 15 mega pixels LCD,” Proc. SPIE 2652, 15–23 (1996).
[CrossRef]

Sato, M.

Scattergood, D. C.

M. Stanley, R. W. Bannister, C. D. Cameron, S. D. Coomber, I. G. Cresswell, J. R. Hughes, V. Hui, P. O. Jackson, K. A. Milham, R. J. Miller, D. A. Payne, J. Quarrel, D. C. Scattergood, A. P. Smith, M. A. Smith, D. L. Tipton, P. J. Watson, P. J. Webber, and C. W. Slinger, “100 mega-pixel computer generated holographic images from active tiling--a dynamic and scalable electro-optic modulator system,” Proc. SPIE 5005, 247–258 (2003).
[CrossRef]

Schmit, J.

Schowengerdt, B. T.

S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24, 65–72 (2003).
[CrossRef]

Schwerdtner, A.

R. Haussler, S. Reichelt, N. Leister, E. Zschau, R. Missbach, and A. Schwerdtner, “Large real-time holographic displays: from prototypes to a consumer product,” Proc. SPIE 7237, 72370S (2009).
[CrossRef]

Seder, T.

W. Wu, F. Blaicher, J. Yang, T. Seder, and D. Cui, “A prototype of landmark-based car navigation using a full-windshield head-up display system,” in Proceedings of the 2009 Workshop on Ambient Media Computing (ACM2009), pp. 21–28.

Seibel, E. J.

S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24, 65–72 (2003).
[CrossRef]

Shaked, N. T.

Shibata, T.

T. Shibata, T. Kawai, K. Ohta, M. Otsuki, N. Miyake, Y. Yoshihara, and T. Iwasaki, “Stereoscopic 3-D display with optical correction for the reduction of the discrepancy between accommodation and convergence,” J. Soc. Inf. Disp. 13, 665–671 (2005).
[CrossRef]

Shimizu, E.

R. Kishigami, H. Takahashi, and E. Shimizu, “Real-time color three-dimensional display system using holographic optical elements,” Proc. SPIE 4296, 102–107 (2001).
[CrossRef]

K. Sakamoto, H. Takahashi, E. Shimizu, H. Ueda, K. Tanaka, and M. Okamoto, “New approach to the real-time 3D display using a holographic optical element,” Proc. SPIE 3011, 36–44 (1997).
[CrossRef]

K. Sakamoto, M. Okamoto, H. Ueda, H. Takahashi, and E. Shimizu, “Real-time 3D color display using a holographic optical element,” Proc. SPIE 2652, 124–131 (1996).
[CrossRef]

Shin, D.-H.

Shin, H.-H.

H.-K. Hong, S.-M. Jung, B.-J. Lee, H.-J. Im, and H.-H. Shin, “Autostereoscopic 2D/3D switching display using electric-field-driven LC lens (ELC lens),” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2008), Vol.  39, pp. 348–351.

Shin, J.-K.

S.-M. Jung, Y.-B. Lee, H.-J. Park, S.-C. Lee, W.-N. Jeong, J.-K. Shin, and I.-J. Chung, “Improvement of 3-D crosstalk with over-driving method for the active retarder 3-D displays,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2010), Vol.  41, pp. 1264–1267.

H. Kang, S.-D. Roh, I.-S. Baik, H.-J. Jung, W.-N. Jeong, J.-K. Shin, and I.-J. Chung, “A novel polarizer glasses-type 3D displays with a patterned retarder,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2010), Vol.  41, pp. 1–4.

Shin, S.-H.

Shiwa, S.

S. Shiwa, K. Omura, and F. Kishino, “Proposal for a 3-D display with accommodative compensation: 3-DDAC,” J. Soc. Inf. Disp. 4, 255–261 (1996).
[CrossRef]

Slinger, C. W.

M. Stanley, R. W. Bannister, C. D. Cameron, S. D. Coomber, I. G. Cresswell, J. R. Hughes, V. Hui, P. O. Jackson, K. A. Milham, R. J. Miller, D. A. Payne, J. Quarrel, D. C. Scattergood, A. P. Smith, M. A. Smith, D. L. Tipton, P. J. Watson, P. J. Webber, and C. W. Slinger, “100 mega-pixel computer generated holographic images from active tiling--a dynamic and scalable electro-optic modulator system,” Proc. SPIE 5005, 247–258 (2003).
[CrossRef]

Smith, A. P.

M. Stanley, R. W. Bannister, C. D. Cameron, S. D. Coomber, I. G. Cresswell, J. R. Hughes, V. Hui, P. O. Jackson, K. A. Milham, R. J. Miller, D. A. Payne, J. Quarrel, D. C. Scattergood, A. P. Smith, M. A. Smith, D. L. Tipton, P. J. Watson, P. J. Webber, and C. W. Slinger, “100 mega-pixel computer generated holographic images from active tiling--a dynamic and scalable electro-optic modulator system,” Proc. SPIE 5005, 247–258 (2003).
[CrossRef]

Smith, M. A.

M. Stanley, R. W. Bannister, C. D. Cameron, S. D. Coomber, I. G. Cresswell, J. R. Hughes, V. Hui, P. O. Jackson, K. A. Milham, R. J. Miller, D. A. Payne, J. Quarrel, D. C. Scattergood, A. P. Smith, M. A. Smith, D. L. Tipton, P. J. Watson, P. J. Webber, and C. W. Slinger, “100 mega-pixel computer generated holographic images from active tiling--a dynamic and scalable electro-optic modulator system,” Proc. SPIE 5005, 247–258 (2003).
[CrossRef]

Song, M. S.

H. J. Lee, H. Nam, J. D. Lee, H. W. Jang, M. S. Song, B. S. Kim, J. S. Gu, C. Y. Park, and K. H. Choi, “A high resolution autostereoscopic display employing a time division parallax barrier,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2006), Vol.  37, pp. 81–84.

Stanley, M.

M. Stanley, R. W. Bannister, C. D. Cameron, S. D. Coomber, I. G. Cresswell, J. R. Hughes, V. Hui, P. O. Jackson, K. A. Milham, R. J. Miller, D. A. Payne, J. Quarrel, D. C. Scattergood, A. P. Smith, M. A. Smith, D. L. Tipton, P. J. Watson, P. J. Webber, and C. W. Slinger, “100 mega-pixel computer generated holographic images from active tiling--a dynamic and scalable electro-optic modulator system,” Proc. SPIE 5005, 247–258 (2003).
[CrossRef]

Suehiro, K.

Suyama, S.

S. Suyama, Y. Ishigure, H. Takada, K. Nakazawa, J. Hosohata, Y. Takao, and T. Fujikao, “Apparent 3-D image perceived from luminance-modulated two 2-D images displayed at different depths,” Vision Res. 44, 785–793 (2004).
[CrossRef]

Y. Ishigure, S. Suyama, H. Takada, K. Nakazawa, J. Hosohata, Y. Takao, and T. Fujikado, “Evaluation of visual fatigue relative in the viewing of a depth-fused 3D display and 2D display,” in Proceedings of International Display Workshops (Society for Information Display. 2004), pp. 1627–1630.

Taira, K.

A. Takagi, T. Saishu, M. Kashiwagi, K. Taira, and Y. Hirayama, “Autostereoscopic partial 2-D/3-D switchable display using liquid-crystal gradient index lens,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2010), Vol.  41, pp. 436–439.

Takada, H.

S. Suyama, Y. Ishigure, H. Takada, K. Nakazawa, J. Hosohata, Y. Takao, and T. Fujikao, “Apparent 3-D image perceived from luminance-modulated two 2-D images displayed at different depths,” Vision Res. 44, 785–793 (2004).
[CrossRef]

Y. Ishigure, S. Suyama, H. Takada, K. Nakazawa, J. Hosohata, Y. Takao, and T. Fujikado, “Evaluation of visual fatigue relative in the viewing of a depth-fused 3D display and 2D display,” in Proceedings of International Display Workshops (Society for Information Display. 2004), pp. 1627–1630.

Takagi, A.

A. Takagi, T. Saishu, M. Kashiwagi, K. Taira, and Y. Hirayama, “Autostereoscopic partial 2-D/3-D switchable display using liquid-crystal gradient index lens,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2010), Vol.  41, pp. 436–439.

Takahashi, H.

H. Takahashi, H. Fujinami, and K. Yamada, “Wide-viewing-angle three-dimensional display system using HOE lens array,” Proc. SPIE 6055, 60551C (2006).
[CrossRef]

R. Kishigami, H. Takahashi, and E. Shimizu, “Real-time color three-dimensional display system using holographic optical elements,” Proc. SPIE 4296, 102–107 (2001).
[CrossRef]

K. Sakamoto, H. Takahashi, E. Shimizu, H. Ueda, K. Tanaka, and M. Okamoto, “New approach to the real-time 3D display using a holographic optical element,” Proc. SPIE 3011, 36–44 (1997).
[CrossRef]

K. Sakamoto, M. Okamoto, H. Ueda, H. Takahashi, and E. Shimizu, “Real-time 3D color display using a holographic optical element,” Proc. SPIE 2652, 124–131 (1996).
[CrossRef]

Takaki, Y.

Takao, Y.

S. Suyama, Y. Ishigure, H. Takada, K. Nakazawa, J. Hosohata, Y. Takao, and T. Fujikao, “Apparent 3-D image perceived from luminance-modulated two 2-D images displayed at different depths,” Vision Res. 44, 785–793 (2004).
[CrossRef]

Y. Ishigure, S. Suyama, H. Takada, K. Nakazawa, J. Hosohata, Y. Takao, and T. Fujikado, “Evaluation of visual fatigue relative in the viewing of a depth-fused 3D display and 2D display,” in Proceedings of International Display Workshops (Society for Information Display. 2004), pp. 1627–1630.

Takeshita, S.

K. Inoguchi, H. Morishima, N. Nanaba, S. Takeshita, and Y. Yamazaki, “Fabrication and evaluation of HMD optical system consisting of aspherical mirrors without rotation symmetry,” in Japan Optics’95, Extended Abstracts (Optical Society of Japan, 1995), pp. 19–20.

Talha, M. M.

Tanaka, K.

Y. Takaki, K. Tanaka, and J. Nakamura, “Super multi-view display with a lower resolution flat-panel display,” Opt. Express 19, 4129–4139 (2011).
[CrossRef]

K. Sakamoto, H. Takahashi, E. Shimizu, H. Ueda, K. Tanaka, and M. Okamoto, “New approach to the real-time 3D display using a holographic optical element,” Proc. SPIE 3011, 36–44 (1997).
[CrossRef]

Tanaka, T.

H. Morishima, T. Akiyama, N. Nanba, and T. Tanaka, “The design of off-axial optical system consisting of aspherical mirrors without rotational symmetry,” in 20th Optical Symposium, Extended Abstracts (Optical Society of Japan, 1995), Vol.  21, pp. 53–56.

Tanijiri, Y.

I. Kasai, Y. Tanijiri, T. Endo, and H. Ueda, “A practical see-through head mounted display using a holographic optical element,” Opt. Rev. 8, 241–244 (2001).
[CrossRef]

Tanikawa, T.

S. Eitoku, K. Nishimura, T. Tanikawa, and M. Hirose, “Study on design of controllable particle display using water drops suitable for light environment,” in Proceeding of the ACM Symposium on Virtual Reality Software and Technology (ACM, 2009), pp. 23–26.

Tatham, E. W.

E. W. Tatham, “Technical opinion: getting the best of both real and virtual worlds,” Commun. ACM 42, 96–98(1999).
[CrossRef]

Tipton, D. L.

M. Stanley, R. W. Bannister, C. D. Cameron, S. D. Coomber, I. G. Cresswell, J. R. Hughes, V. Hui, P. O. Jackson, K. A. Milham, R. J. Miller, D. A. Payne, J. Quarrel, D. C. Scattergood, A. P. Smith, M. A. Smith, D. L. Tipton, P. J. Watson, P. J. Webber, and C. W. Slinger, “100 mega-pixel computer generated holographic images from active tiling--a dynamic and scalable electro-optic modulator system,” Proc. SPIE 5005, 247–258 (2003).
[CrossRef]

Toet, A.

F. L. Kooi and A. Toet, “Visual comfort of binocular and 3D displays,” Displays 25, 99–108 (2004).
[CrossRef]

Ueda, H.

I. Kasai, Y. Tanijiri, T. Endo, and H. Ueda, “A practical see-through head mounted display using a holographic optical element,” Opt. Rev. 8, 241–244 (2001).
[CrossRef]

K. Sakamoto, H. Takahashi, E. Shimizu, H. Ueda, K. Tanaka, and M. Okamoto, “New approach to the real-time 3D display using a holographic optical element,” Proc. SPIE 3011, 36–44 (1997).
[CrossRef]

K. Sakamoto, M. Okamoto, H. Ueda, H. Takahashi, and E. Shimizu, “Real-time 3D color display using a holographic optical element,” Proc. SPIE 2652, 124–131 (1996).
[CrossRef]

Upatnieks, J.

Urano, Y.

van Heerden, P. J.

van Krevelen, D. W. F.

D. W. F. van Krevelen and R. Poelman, “A survey of augmented reality technologies, applications and limitations,” Int. J. Virtual Reality 9, 1–20 (2010).

Wang, X.

Wang, Y.

Watson, P. J.

M. Stanley, R. W. Bannister, C. D. Cameron, S. D. Coomber, I. G. Cresswell, J. R. Hughes, V. Hui, P. O. Jackson, K. A. Milham, R. J. Miller, D. A. Payne, J. Quarrel, D. C. Scattergood, A. P. Smith, M. A. Smith, D. L. Tipton, P. J. Watson, P. J. Webber, and C. W. Slinger, “100 mega-pixel computer generated holographic images from active tiling--a dynamic and scalable electro-optic modulator system,” Proc. SPIE 5005, 247–258 (2003).
[CrossRef]

Webber, P. J.

M. Stanley, R. W. Bannister, C. D. Cameron, S. D. Coomber, I. G. Cresswell, J. R. Hughes, V. Hui, P. O. Jackson, K. A. Milham, R. J. Miller, D. A. Payne, J. Quarrel, D. C. Scattergood, A. P. Smith, M. A. Smith, D. L. Tipton, P. J. Watson, P. J. Webber, and C. W. Slinger, “100 mega-pixel computer generated holographic images from active tiling--a dynamic and scalable electro-optic modulator system,” Proc. SPIE 5005, 247–258 (2003).
[CrossRef]

Wheatstone, C.

C. Wheatstone, “Contributions to the physiology of vision. Part the first. On some remarkable, and hitherto unobserved, phenomena of binocular vision,” Philos. Trans. R. Soc. London 128, 371–394 (1838).
[CrossRef]

Wolter, W. A. M.

S. T. de Zwart, W. L. Ijzerman, T. Dekker, and W. A. M. Wolter, “A 20 in. switchable auto-stereoscopic 2D/3D display,” in Proceedings of International Display Workshops (Society for Information Display, 2004), pp. 1459–1460.

Woodgate, G. J.

G. J. Woodgate and J. Harrold, “A new architecture for high resolution autostereoscopic 2D/3D displays using free-standing liquid crystal microlenses,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2005), Vol.  36, pp. 378–381.

Woods, E.

K. Kiyokawa, M. Billinghurst, B. Campbell, and E. Woods, “An occlusion-capable optical see-through head mount display for supporting co-located collaboration,” in Proceedings of the 2nd IEEE/ACM International Symposium on Mixed and Augmented Reality (IEEE/ACM2003), pp. 133–141.

Wu, W.

W. Wu, F. Blaicher, J. Yang, T. Seder, and D. Cui, “A prototype of landmark-based car navigation using a full-windshield head-up display system,” in Proceedings of the 2009 Workshop on Ambient Media Computing (ACM2009), pp. 21–28.

Wyant, J. C.

J. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. C. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
[CrossRef]

Xu, L.

Yamada, K.

H. Takahashi, H. Fujinami, and K. Yamada, “Wide-viewing-angle three-dimensional display system using HOE lens array,” Proc. SPIE 6055, 60551C (2006).
[CrossRef]

Yamaguchi, I.

Yamazaki, Y.

K. Inoguchi, H. Morishima, N. Nanaba, S. Takeshita, and Y. Yamazaki, “Fabrication and evaluation of HMD optical system consisting of aspherical mirrors without rotation symmetry,” in Japan Optics’95, Extended Abstracts (Optical Society of Japan, 1995), pp. 19–20.

Yang, J.

W. Wu, F. Blaicher, J. Yang, T. Seder, and D. Cui, “A prototype of landmark-based car navigation using a full-windshield head-up display system,” in Proceedings of the 2009 Workshop on Ambient Media Computing (ACM2009), pp. 21–28.

Yaras, F.

L. Onural, F. Yaraş, and H. Kang, “Digital holographic three-dimensional video displays,” Proc. IEEE 99, 576–589 (2011).
[CrossRef]

Yokouchi, M.

Yoshihara, Y.

T. Shibata, T. Kawai, K. Ohta, M. Otsuki, N. Miyake, Y. Yoshihara, and T. Iwasaki, “Stereoscopic 3-D display with optical correction for the reduction of the discrepancy between accommodation and convergence,” J. Soc. Inf. Disp. 13, 665–671 (2005).
[CrossRef]

Yoshimura, M.

Yoshinari, K.

A. Sato, I. Kitahara, K. Yoshinari, and O. Yuichi, “Visual navigation system on windshield head-up display,” in Proceedings of 13th World Congress & Exhibition on Intelligent Transport Systems and Services (Brintex, 2006).

You, B. H.

S. S. Kim, B. H. You, H. Choi, B. H. Berkeley, and N. D. Kim, “World's first 240 Hz TFT-LCD technology for full-HD LCD-TV and its application to 3D display,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2009), Vol.  40, pp. 424–427.

Yuichi, O.

A. Sato, I. Kitahara, K. Yoshinari, and O. Yuichi, “Visual navigation system on windshield head-up display,” in Proceedings of 13th World Congress & Exhibition on Intelligent Transport Systems and Services (Brintex, 2006).

Yuyama, I.

Zhang, T.

Zheng, Z.

Zhou, F.

F. Zhou, H. B.-L. Duh, and M. Billinghurst, “Trends in augmented reality tracking, interaction and display: a review of ten years of ISMAR,” in Proceedings of 7th IEEE/ACM International Symposium (IEEE, 2008), pp. 193–202.

Zschau, E.

R. Haussler, S. Reichelt, N. Leister, E. Zschau, R. Missbach, and A. Schwerdtner, “Large real-time holographic displays: from prototypes to a consumer product,” Proc. SPIE 7237, 72370S (2009).
[CrossRef]

ACM Trans. Graph. (1)

P. C. Barnum, S. G. Narasimhan, and T. Kanade, “A multi-layered display with water drops,” ACM Trans. Graph. 29, 76 (2010).
[CrossRef]

Appl. Opt. (30)

P. J. van Heerden, “A new optical method of storing and retrieving information,” Appl. Opt. 2, 387–392 (1963).
[CrossRef]

A. W. Lohmann and D. Paris, “Binary Fraunhofer holograms generated by computer,” Appl. Opt. 6, 1739–1748 (1967).
[CrossRef]

N. Abramson, “Light-in-flight recording: high-speed holographic motion pictures of ultrafast phenomena,” Appl. Opt. 22, 215–232 (1983).
[CrossRef]

F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36, 1598–1603 (1997).
[CrossRef]

T. Inoue and H. Ohzu, “Accommodation responses to stereoscopic three-dimensional display,” Appl. Opt. 36, 4509–4515(1997).
[CrossRef]

J. Schmit and K. Creath, “Extended averaging technique for derivation of error-compensating algorithms in phase-shifting interferometry,” Appl. Opt. 34, 3610–3619 (1995).
[CrossRef]

J.-S. Jang and B. Javidi, “Improvement of viewing angle in integral imaging by use of moving lenslet arrays with low fill factor,” Appl. Opt. 42, 1996–2002 (2003).
[CrossRef]

S. Jung, J.-H. Park, H. Choi, and B. Lee, “Wide-viewing integral three-dimensional imaging by use of orthogonal polarization switching,” Appl. Opt. 42, 2513–2520(2003).
[CrossRef]

M. Okui, M. Kobayashi, J. Arai, and F. Okano, “Moiré fringe reduction by optical filters in integral three-dimensional imaging on a color flat-panel display,” Appl. Opt. 44, 4475–4483 (2005).
[CrossRef]

H. Liao, M. Iwahara, T. Koike, N. Hata, I. Sakuma, and T. Dohi, “Scalable high-resolution integral videography autostereoscopic display with a seamless multiprojection system,” Appl. Opt. 44, 305–315 (2005).
[CrossRef]

Y. Kim, J.-H. Park, S.-W. Min, S. Jung, H. Choi, and B. Lee, “A wide-viewing-angle integral 3D imaging system by curving a screen and a lens array,” Appl. Opt. 44, 546–552(2005).
[CrossRef]

D.-H. Shin, B. Lee, and E.-S. Kim, “Multidirectional curved integral imaging with large depth by additional use of a large-aperture lens,” Appl. Opt. 45, 7375–7381 (2006).
[CrossRef]

Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Kim, G. Park, and B. Lee, “Three-dimensional integral display using plastic optical fibers,” Appl. Opt. 46, 7149–7154 (2007).
[CrossRef]

Y. Kim, J.-H. Park, H. Choi, J. Kim, S.-W. Cho, Y. Kim, G. Park, and B. Lee, “Depth-enhanced integral imaging display system with electrically variable image planes using polymer-dispersed liquid-crystal layers,” Appl. Opt. 46, 3766–3773(2007).
[CrossRef]

Y. Kim, H. Choi, J. Kim, S.-W. Cho, Y. Kim, G. Park, and B. Lee, “Depth-enhanced integral imaging display system with electrically variable image planes using polymer-dispersed liquid crystal layers,” Appl. Opt. 46, 3766–3773 (2007).
[CrossRef]

J. Kim, S.-W. Min, Y. Kim, and B. Lee, “Analysis on viewing characteristics of integral floating system,” Appl. Opt. 47, D80–D86 (2008).
[CrossRef]

H. Kim, J. Hahn, and B. Lee, “Mathematical modeling of triangle-mesh-modeled three-dimensional surface objects for digital holography,” Appl. Opt. 47, D117–D127 (2008).
[CrossRef]

H. Choi, J. Kim, S.-W. Cho, Y. Kim, J. B. Park, and B. Lee, “Three-dimensional–two-dimensional mixed display system using integral imaging with an active pinhole array on a liquid crystal panel,” Appl. Opt. 47, 2207–2214 (2008).
[CrossRef]

J. Hahn, Y. Kim, and B. Lee, “Uniform angular resolution integral imaging display with boundary folding mirrors,” Appl. Opt. 48, 504–511 (2009).
[CrossRef]

J. Kim, S.-W. Min, and B. Lee, “Viewing window expansion of integral floating display,” Appl. Opt. 48, 862–867(2009).
[CrossRef]

J.-H. Jung, Y. Kim, Y. Kim, J. Kim, K. Hong, and B. Lee, “Integral imaging system using an electroluminescent film backlight for three-dimensional–two-dimensional convertibility and a curved structure,” Appl. Opt. 48, 998–1007 (2009).
[CrossRef]

Y. Kim, G. Park, J.-H. Jung, J. Kim, and B. Lee, “Color moiré pattern simulation and analysis in three-dimensional integral imaging for finding the moiré-reduced tilted angle of a lens array,” Appl. Opt. 48, 2178–2187 (2009).
[CrossRef]

D. Cheng, Y. Wang, H. Hua, and M. M. Talha, “Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism,” Appl. Opt. 48, 2655–2668 (2009).
[CrossRef]

Y. Kim, S.-G. Park, S.-W. Min, and B. Lee, “Integral imaging system using a dual-mode technique,” Appl. Opt. 48, H71–H76 (2009).
[CrossRef]

J.-H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48, H77–H94 (2009).
[CrossRef]

N. T. Shaked, B. Katz, and J. Rosen, “Review of three-dimensional holographic imaging by multiple-viewpoint-projection based methods,” Appl. Opt. 48, H120–H136(2009).
[CrossRef]

Y. Kim, J. Kim, Y. Kim, H. Choi, J.-H. Jung, and B. Lee, “Thin-type integral imaging method with an organic light emitting diode panel,” Appl. Opt. 47, 4927–4934 (2008).
[CrossRef]

Z. Zheng, X. Liu, H. Li, and L. Xu, “Design and fabrication of an off-axis see-through head-mounted display with an x–y polynomial surface,” Appl. Opt. 49, 3661–3668 (2010).
[CrossRef]

J.-Y. Jang, H.-S. Lee, S. Cha, and S.-H. Shin, “Viewing angle enhanced integral imaging display by using a high refractive index medium,” Appl. Opt. 50, B71–B76 (2011).
[CrossRef]

Y. Kim, S.-G. Park, S.-W. Min, and B. Lee, “Projection-type integral imaging system using multiple elemental image layers,” Appl. Opt. 50, B18–B24 (2011).
[CrossRef]

Appl. Phys. Lett. (1)

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[CrossRef]

C. R. Acad. Sci. (1)

G. Lippmann, “La photographie integrale,” C. R. Acad. Sci. 146, 446–451 (1908).

C.R. Hebd. Seances Acad. Sci. (1)

G. Lippmann, “La photographie des couleurs,” C.R. Hebd. Seances Acad. Sci. 112, 274–275 (1891).

Commun. ACM (1)

E. W. Tatham, “Technical opinion: getting the best of both real and virtual worlds,” Commun. ACM 42, 96–98(1999).
[CrossRef]

Comput. Graph. Forum (1)

K. Kiyokawa, Y. Kurata, and H. Ohno, “An optical see-through display for mutual occlusion with a real-time stereo vision system,” Comput. Graph. Forum 25, 765–779(2001).

Displays (2)

F. L. Kooi and A. Toet, “Visual comfort of binocular and 3D displays,” Displays 25, 99–108 (2004).
[CrossRef]

S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24, 65–72 (2003).
[CrossRef]

IEEE Trans. Vis. Comput. Graph. (2)

S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16, 381–393(2010).
[CrossRef]

C. Lee, S. DiVerdi, and T. Höllerer, “Depth-fused 3-D imagery on an immaterial display,” IEEE Trans. Vis. Comput. Graph. 15, 20–32 (2009).
[CrossRef]

Int. J. Virtual Reality (1)

D. W. F. van Krevelen and R. Poelman, “A survey of augmented reality technologies, applications and limitations,” Int. J. Virtual Reality 9, 1–20 (2010).

J. Disp. Technol. (1)

O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2, 199–216 (2006).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Soc. Inf. Disp. (5)

S. Shiwa, K. Omura, and F. Kishino, “Proposal for a 3-D display with accommodative compensation: 3-DDAC,” J. Soc. Inf. Disp. 4, 255–261 (1996).
[CrossRef]

T. Shibata, T. Kawai, K. Ohta, M. Otsuki, N. Miyake, Y. Yoshihara, and T. Iwasaki, “Stereoscopic 3-D display with optical correction for the reduction of the discrepancy between accommodation and convergence,” J. Soc. Inf. Disp. 13, 665–671 (2005).
[CrossRef]

J.-H. Jung, K. Hong, G. Park, I. Chung, and B. Lee, “360-degree viewable cylindrical integral imaging system using three-dimensional/two-dimensional switchable and flexible backlight,” J. Soc. Inf. Disp. 18, 527–534 (2010).
[CrossRef]

S. Jung, J. Hong, J.-H. Park, Y. Kim, and B. Lee, “Depth-enhanced integral-imaging 3D display using different optical path lengths by polarization devices or mirror barrier array,” J. Soc. Inf. Disp. 12, 461–467 (2004).
[CrossRef]

H. Choi, Y. Kim, J. Kim, S.-W. Cho, and B. Lee, “Depth- and viewing-angle-enhanced 3-D/2-D switchable display system with high contrast ratio using multiple display devices and a lens array,” J. Soc. Inf. Disp. 15, 315–320 (2007).
[CrossRef]

Jpn. J. Appl. Phys. (2)

H. Choi, J.-H. Park, J. Hong, and B. Lee, “Depth enhanced integral imaging with a stepped lens array or a composite lens array for three-dimensional display,” Jpn. J. Appl. Phys. 43, 5330–5336 (2004).
[CrossRef]

S.-W. Min, J. Kim, and B. Lee, “New characteristic equation of three-dimensional integral imaging system and its applications,” Jpn. J. Appl. Phys. 44, L71–L74 (2005).
[CrossRef]

Nature (1)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[CrossRef]

Opt. Express (23)

H. Choi, S.-W. Min, S. Jung, J.-H. Park, and B. Lee, “Multiple-viewing-zone integral imaging using a dynamic barrier array for three-dimensional displays,” Opt. Express 11, 927–932(2003).
[CrossRef]

J.-H. Park, S. Jung, H. Choi, and B. Lee, “Integral imaging with multiple image planes using a uniaxial crystal plate,” Opt. Express 11, 1862–1875 (2003).
[CrossRef]

Y. Kim, J.-H. Park, H. Choi, S. Jung, S.-W. Min, and B. Lee, “Viewing-angle-enhanced integral imaging system using a curved lens array,” Opt. Express 12, 421–429 (2004).
[CrossRef]

H. Liao, M. Iwahara, N. Hata, and T. Dohi, “High-quality integral videography using a multiprojector,” Opt. Express 12, 1067–1076 (2004).
[CrossRef]

H. Choi, Y. Kim, J.-H. Park, J. Kim, S.-W. Cho, and B. Lee, “Layered-panel integral imaging without the translucent problem,” Opt. Express 13, 5769–5776 (2005).
[CrossRef]

H. Choi, S.-W. Cho, J. Kim, and B. Lee, “A thin 3D-2D convertible integral imaging system using a pinhole array on a polarizer,” Opt. Express 14, 5183–5190 (2006).
[CrossRef]

J. Kim, S.-W. Min, and B. Lee, “Floated image mapping for integral floating display,” Opt. Express 16, 8549–8556(2008).
[CrossRef]

J. Hahn, H. Kim, Y. Lim, G. Park, and B. Lee, “Wide viewing angle dynamic holographic stereogram with a curved array of spatial light modulators,” Opt. Express 16, 12372–12386(2008).
[CrossRef]

J. Kim, S.-W. Min, and B. Lee, “Viewing region maximization of an integral floating display through location adjustment of viewing window,” Opt. Express 15, 13023–13034 (2007).
[CrossRef]

R. Martinez-Cuenca, H. Navarro, G. Saavedra, B. Javidi, and M. Martinez-Corral, “Enhanced viewing-angle integral imaging by multiple-axis telecentric relay system,” Opt. Express 15, 16255–16260 (2007).
[CrossRef]

Y. Kim, J. Kim, J.-M. Kang, J.-H. Jung, H. Choi, and B. Lee, “Point light source integral imaging with improved resolution and viewing angle by the use of electrically movable pinhole array,” Opt. Express 15, 18253–18267 (2007).
[CrossRef]

S.-W. Min, M. Hahn, J. Kim, and B. Lee, “Three-dimensional electro-floating display system using an integral imaging method,” Opt. Express 13, 4358–4369 (2005).
[CrossRef]

Y. Takaki, Y. Urano, S. Kashiwada, H. Ando, and K. Nakamura, “Super multi-view windshield display for long-distance image information presentation,” Opt. Express 19, 704–716 (2011).
[CrossRef]

H. Liao, T. Dohi, and M. Iwahara, “Improved viewing resolution of integral videography by use of rotated prism sheets,” Opt. Express 15, 4814–4822 (2007).
[CrossRef]

Y. Takaki, K. Tanaka, and J. Nakamura, “Super multi-view display with a lower resolution flat-panel display,” Opt. Express 19, 4129–4139 (2011).
[CrossRef]

Y. Takaki and M. Yokouchi, “Speckle-free and grayscale hologram reconstruction using time-multiplexing technique,” Opt. Express 19, 7567–7579 (2011).
[CrossRef]

J. Hong, Y. Kim, S. Park, J.-H. Hong, S.-W. Min, S.-D. Lee, and B. Lee, “3D/2D convertible projection-type integral imaging using concave half mirror array,” Opt. Express 18, 20628–20637 (2010).
[CrossRef]

H. Kim, J. Hahn, and B. Lee, “The use of a negative index planoconcave lens array for wide-viewing angle integral imaging,” Opt. Express 16, 21865–21880 (2008).
[CrossRef]

N. Chen, J.-H. Park, and N. Kim, “Parameter analysis of integral Fourier hologram and its resolution enhancement,” Opt. Express 18, 2152–2167 (2010).
[CrossRef]

Y. Takaki and N. Nago, “Multi-projection of lenticular displays to construct a 256-view super multi-view display,” Opt. Express 18, 8824–8835 (2010).
[CrossRef]

G. Baasantseren, J.-H. Park, K.-C. Kwon, and N. Kim, “Viewing angle enhanced integral imaging display using two elemental image masks,” Opt. Express 17, 14405–14417(2009).
[CrossRef]

G. Park, J.-H. Jung, K. Hong, Y. Kim, Y.-H. Kim, S.-W. Min, and B. Lee, “Multi-viewer tracking integral imaging system and its viewing zone analysis,” Opt. Express 17, 17895–17908 (2009).
[CrossRef]

J.-H. Park, M.-S. Kim, G. Baasantseren, and N. Kim, “Fresnel and Fourier hologram generation using orthographic projection images,” Opt. Express 17, 6320–6334 (2009).
[CrossRef]

Opt. Lett. (13)

D. Cheng, Y. Wang, H. Hua, and J. Sasian, “Design of a wide-angle, lightweight head-mounted display using free-form optics tiling,” Opt. Lett. 36, 2098–2100 (2011).
[CrossRef]

F. Okano, J. Arai, and M. Kawakita, “Wave optical analysis of integral method for three-dimensional images,” Opt. Lett. 32, 364–366 (2007).
[CrossRef]

X. Wang and H. Hua, “Theoretical analysis for integral imaging performance based on microscanning of a microlens array,” Opt. Lett. 33, 449–451 (2008).
[CrossRef]

M. Kawakita, H. Sasaki, J. Arai, F. Okano, K. Suehiro, Y. Haino, M. Yoshimura, and M. Sato, “Geometric analysis of spatial distortion in projection-type integral imaging,” Opt. Lett. 33, 684–686 (2008).
[CrossRef]

S.-W. Cho, J.-H. Park, Y. Kim, H. Choi, J. Kim, and B. Lee, “Convertible two-dimensional–three-dimensional display using an LED array based on modified integral imaging,” Opt. Lett. 31, 2852–2854 (2006).
[CrossRef]

J. Hong, J.-H. Park, S. Jung, and B. Lee, “Depth enhanced integral imaging by use of optical path control,” Opt. Lett. 29, 1790–1792 (2004).
[CrossRef]

S.-W. Min, J. Kim, and B. Lee, “Wide-viewing projection-type integral imaging system with an embossed screen,” Opt. Lett. 29, 2420–2422 (2004).
[CrossRef]

J.-S. Jang and B. Javidi, “Large depth-of-focus time-multiplexed three-dimensional integral imaging by use of lenslet with nonuniform focal lengths and aperture sizes,” Opt. Lett. 28, 1924–1926 (2003).
[CrossRef]

J.-S. Jang, F. Jin, and B. Javidi, “Three-dimensional integral imaging with large depth of focus by use of real and virtual image fields,” Opt. Lett. 28, 1421–1423 (2003).
[CrossRef]

J.-S. Jang and B. Javidi, “Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics,” Opt. Lett. 27, 324–326 (2002).
[CrossRef]

B. Lee, S. Jung, and J.-H. Park, “Viewing-angle-enhanced integral imaging by lens switching,” Opt. Lett. 27, 818–820(2002).
[CrossRef]

I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997).
[CrossRef]

I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997).
[CrossRef]

Opt. Rev. (1)

I. Kasai, Y. Tanijiri, T. Endo, and H. Ueda, “A practical see-through head mounted display using a holographic optical element,” Opt. Rev. 8, 241–244 (2001).
[CrossRef]

Philos. Trans. R. Soc. London (1)

C. Wheatstone, “Contributions to the physiology of vision. Part the first. On some remarkable, and hitherto unobserved, phenomena of binocular vision,” Philos. Trans. R. Soc. London 128, 371–394 (1838).
[CrossRef]

Proc. IEEE (2)

A. V. Oppenheim and J. S. Lim, “The importance of phase in signals,” Proc. IEEE 69, 529–541 (1981).
[CrossRef]

L. Onural, F. Yaraş, and H. Kang, “Digital holographic three-dimensional video displays,” Proc. IEEE 99, 576–589 (2011).
[CrossRef]

Proc. SPIE (12)

K. Maeno, N. Fukaya, O. Nishikawa, K. Sato, and T. Honda, “Electro-holographic display using 15 mega pixels LCD,” Proc. SPIE 2652, 15–23 (1996).
[CrossRef]

J. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. C. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
[CrossRef]

M. Stanley, R. W. Bannister, C. D. Cameron, S. D. Coomber, I. G. Cresswell, J. R. Hughes, V. Hui, P. O. Jackson, K. A. Milham, R. J. Miller, D. A. Payne, J. Quarrel, D. C. Scattergood, A. P. Smith, M. A. Smith, D. L. Tipton, P. J. Watson, P. J. Webber, and C. W. Slinger, “100 mega-pixel computer generated holographic images from active tiling--a dynamic and scalable electro-optic modulator system,” Proc. SPIE 5005, 247–258 (2003).
[CrossRef]

R. Haussler, S. Reichelt, N. Leister, E. Zschau, R. Missbach, and A. Schwerdtner, “Large real-time holographic displays: from prototypes to a consumer product,” Proc. SPIE 7237, 72370S (2009).
[CrossRef]

H. Kakeya, “Autostereoscopic display with real-image virtual screen and light filters,” Proc. SPIE 4660, 349–357(2002).
[CrossRef]

H. Kakeya, “MOEVsion: simple multiview display with clear floating image,” Proc. SPIE 6490, 64900J (2007).
[CrossRef]

A. Olwal, J. Gustafsson, and C. Lindfors, “Spatial augmented reality on industrial CNC-machines,” Proc. SPIE 6804, 680409 (2008).
[CrossRef]

K. Sakamoto, M. Okamoto, H. Ueda, H. Takahashi, and E. Shimizu, “Real-time 3D color display using a holographic optical element,” Proc. SPIE 2652, 124–131 (1996).
[CrossRef]

K. Sakamoto, H. Takahashi, E. Shimizu, H. Ueda, K. Tanaka, and M. Okamoto, “New approach to the real-time 3D display using a holographic optical element,” Proc. SPIE 3011, 36–44 (1997).
[CrossRef]

R. Kishigami, H. Takahashi, and E. Shimizu, “Real-time color three-dimensional display system using holographic optical elements,” Proc. SPIE 4296, 102–107 (2001).
[CrossRef]

H. Takahashi, H. Fujinami, and K. Yamada, “Wide-viewing-angle three-dimensional display system using HOE lens array,” Proc. SPIE 6055, 60551C (2006).
[CrossRef]

S. DiVerdi, I. Rakkolainen, T. Höllerer, and A. Olwal, “A novel walk-through 3D display,” Proc. SPIE 6055, 605519 (2006).
[CrossRef]

Sov. Phys. Dokl. (1)

Y. N. Denisyuk, “Photographic reconstruction of the optical properties of an object in its own scattered field,” Sov. Phys. Dokl. 7, 543 (1962).

Vision Res. (1)

S. Suyama, Y. Ishigure, H. Takada, K. Nakazawa, J. Hosohata, Y. Takao, and T. Fujikao, “Apparent 3-D image perceived from luminance-modulated two 2-D images displayed at different depths,” Vision Res. 44, 785–793 (2004).
[CrossRef]

Other (29)

Y. Ishigure, S. Suyama, H. Takada, K. Nakazawa, J. Hosohata, Y. Takao, and T. Fujikado, “Evaluation of visual fatigue relative in the viewing of a depth-fused 3D display and 2D display,” in Proceedings of International Display Workshops (Society for Information Display. 2004), pp. 1627–1630.

H. Morishima, T. Akiyama, N. Nanba, and T. Tanaka, “The design of off-axial optical system consisting of aspherical mirrors without rotational symmetry,” in 20th Optical Symposium, Extended Abstracts (Optical Society of Japan, 1995), Vol.  21, pp. 53–56.

K. Inoguchi, H. Morishima, N. Nanaba, S. Takeshita, and Y. Yamazaki, “Fabrication and evaluation of HMD optical system consisting of aspherical mirrors without rotation symmetry,” in Japan Optics’95, Extended Abstracts (Optical Society of Japan, 1995), pp. 19–20.

F. Zhou, H. B.-L. Duh, and M. Billinghurst, “Trends in augmented reality tracking, interaction and display: a review of ten years of ISMAR,” in Proceedings of 7th IEEE/ACM International Symposium (IEEE, 2008), pp. 193–202.

A. Olwal and T. Höllerer, “POLAR: portable, optical see-through, low-cost augmented reality,” in Proceedings of the ACM Symposium on Virtual Reality Software and Technology (ACM, 2005), pp. 227–230.

W. Wu, F. Blaicher, J. Yang, T. Seder, and D. Cui, “A prototype of landmark-based car navigation using a full-windshield head-up display system,” in Proceedings of the 2009 Workshop on Ambient Media Computing (ACM2009), pp. 21–28.

A. Sato, I. Kitahara, K. Yoshinari, and O. Yuichi, “Visual navigation system on windshield head-up display,” in Proceedings of 13th World Congress & Exhibition on Intelligent Transport Systems and Services (Brintex, 2006).

K. Palovuori and I. Rakkolainen, “Method and apparatus for forming a projection screen or a projection volume,” U.S. patent 6,819,487 (16 November 2004).

S. Eitoku, K. Nishimura, T. Tanikawa, and M. Hirose, “Study on design of controllable particle display using water drops suitable for light environment,” in Proceeding of the ACM Symposium on Virtual Reality Software and Technology (ACM, 2009), pp. 23–26.

A. Olwal, S. DiVerdi, N. Candussi, I. Rakkolainen, and T. Höllerer, “An immaterial, dual-sided display system with 3D interaction,” in Proceedings of the IEEE Conference on Virtual Reality (IEEE, 2006), pp. 279–280.

B. Lee, J.-H. Park, and S.-W. Min, “Three-dimensional display and information processing based on integral imaging,” in Digital Holography and Three-Dimensional DisplayT.-C.Poon, ed. (Springer, 2006), Chap. 12, pp. 333–378.

S. S. Kim, B. H. You, H. Choi, B. H. Berkeley, and N. D. Kim, “World's first 240 Hz TFT-LCD technology for full-HD LCD-TV and its application to 3D display,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2009), Vol.  40, pp. 424–427.

D.-S. Kim, S.-M. Park, J.-H. Jung, and D.-C. Hwang, “New 240 Hz driving method for Full HD and high quality 3D LCD TV,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2010), Vol.  41, pp. 762–765.

H. Kang, S.-D. Roh, I.-S. Baik, H.-J. Jung, W.-N. Jeong, J.-K. Shin, and I.-J. Chung, “A novel polarizer glasses-type 3D displays with a patterned retarder,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2010), Vol.  41, pp. 1–4.

S.-M. Jung, Y.-B. Lee, H.-J. Park, S.-C. Lee, W.-N. Jeong, J.-K. Shin, and I.-J. Chung, “Improvement of 3-D crosstalk with over-driving method for the active retarder 3-D displays,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2010), Vol.  41, pp. 1264–1267.

S. T. de Zwart, W. L. Ijzerman, T. Dekker, and W. A. M. Wolter, “A 20 in. switchable auto-stereoscopic 2D/3D display,” in Proceedings of International Display Workshops (Society for Information Display, 2004), pp. 1459–1460.

G. J. Woodgate and J. Harrold, “A new architecture for high resolution autostereoscopic 2D/3D displays using free-standing liquid crystal microlenses,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2005), Vol.  36, pp. 378–381.

H.-K. Hong, S.-M. Jung, B.-J. Lee, H.-J. Im, and H.-H. Shin, “Autostereoscopic 2D/3D switching display using electric-field-driven LC lens (ELC lens),” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2008), Vol.  39, pp. 348–351.

C.-W. Chen, Y.-C. Huang, and Y.-P. Huang, “Fast switching Fresnel liquid crystal lens for autostereoscopic 2D/3D display,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2010), Vol.  41, pp. 428–431.

A. Takagi, T. Saishu, M. Kashiwagi, K. Taira, and Y. Hirayama, “Autostereoscopic partial 2-D/3-D switchable display using liquid-crystal gradient index lens,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2010), Vol.  41, pp. 436–439.

H. J. Lee, H. Nam, J. D. Lee, H. W. Jang, M. S. Song, B. S. Kim, J. S. Gu, C. Y. Park, and K. H. Choi, “A high resolution autostereoscopic display employing a time division parallax barrier,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2006), Vol.  37, pp. 81–84.

G. Hamagishi, “Analysis and improvement of viewing conditions for two-view and multi-view 3D displays,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2009), Vol.  40, pp. 340–343.

O. Cakmakci, Y. Ha, and J. P. Rolland, “A compact optical see-through head-worn display with occlusion support,” in Proceedings of the 3rd IEEE/ACM International Symposium on Mixed and Augmented Reality (IEEE/ACM, 2004), pp. 16–25.

K. Kiyokawa, Y. Kurata, and H. Ohno, “Occlusive optical see-through displays in a collaborative setup,” in Proceedings of the ACM SIGGRAPH (ACM2002), p. 74.

K. Kiyokawa, M. Billinghurst, S. E. Hayes, A. Gupta, Y. Sannohe, and H. Kato, “Communications behaviors of co-located users in collaborative AR interfaces,” in Proceedings of the IEEE/ACM International Symposium on Mixed and Augmented Reality (IEEE/ACM2002), pp. 139–148.

K. Kiyokawa, M. Billinghurst, B. Campbell, and E. Woods, “An occlusion-capable optical see-through head mount display for supporting co-located collaboration,” in Proceedings of the 2nd IEEE/ACM International Symposium on Mixed and Augmented Reality (IEEE/ACM2003), pp. 133–141.

J. W. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts, 2004).

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts, 2007).

D. J. Brady, Optical Imaging and Spectroscopy (Wiley, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (35)

Fig. 1
Fig. 1

Number of search results from Google Scholar (http://scholar.google.com). Searching was restricted only to titles of papers. Queries for each technology were “stereoscopy or stereoscopic,” “integral imaging,” “lenticular lens,” and “parallax barrier.”. Numbers in 2011 are estimations based on the results obtained on July 2011.

Fig. 2
Fig. 2

Depth cues associated with 3D information: (a) psychological cues and (b) physiological cues.

Fig. 3
Fig. 3

Principle of stereoscopic 3D display with LC shutter glasses.

Fig. 4
Fig. 4

Structure and principle of PR technology.

Fig. 5
Fig. 5

Structure and principle of AR or SIP technology.

Fig. 6
Fig. 6

Principle and structure of a three-view lenticular lens 3D display.

Fig. 7
Fig. 7

Operation of a 2D/3D convertible lenticular lens display using the patterned electrode method: (a) 3D mode and (b) 2D mode.

Fig. 8
Fig. 8

Operation of a 2D/3D convertible parallax barrier display using an LC panel: (a) 3D mode and (b) 2D mode.

Fig. 9
Fig. 9

Structure and concept of integral imaging.

Fig. 10
Fig. 10

Display modes of integral imaging: (a) focal display mode, (b) real/virtual display mode, and (c) simulation results of reconstructed 3D image in focal display mode and real/virtual display mode. For the simulation of focal display mode, a 1 mm × 1 mm lens array with focal length of 3 mm was assumed. For the real/virtual mode, a 10 mm × 10 mm lens array with focal length of 30 mm was assumed and the CDP is located 90 mm in front of the lens array. The pixel pitch of the display is 0.08 mm × 0.08 mm for both cases. In this figure, distortion of the reconstructed image at two locations out from the in-focus plane is compared. In ISP data, a change in the distortion level of the reconstructed image can be explored according to its location from the in-focus plane (View 1).

Fig. 11
Fig. 11

Simulation results according to the rotated angle of the lens array on the display device. For the simulation, a 1 mm × 1 mm lens array with focal length of 3 mm is assumed. The pixel pitch of the display was 0.1 mm × 0.1 mm and the rotation was counterclockwise (View 2).

Fig. 12
Fig. 12

Examples of a viewing angle enhancing configuration: (a) tracking method; (b) curved lens array.

Fig. 13
Fig. 13

Spatial multiplexing configuration of projectors for enhancing the resolution.

Fig. 14
Fig. 14

Examples of a depth range enhancing configuration: (a) multiple focal planes of elemental images; (b) integral floating display.

Fig. 15
Fig. 15

View volume displayed by a single SLM. (a) View volume is determined by overlap among higher-order diffraction terms. (b) It has a wedge shape and its angle represents the field of view.

Fig. 16
Fig. 16

View-window formation in a holographic 3D display. (a) Diffracted light does not converge. (b) Diffracted light converges to form a view-window.

Fig. 17
Fig. 17

Concept of a subhologram. (a) Usual hologram where the whole SLM area contributes to reconstruction of each 3D image point. (b) Subhologram where only the area corresponding to the view window contributes to the reconstruction.

Fig. 18
Fig. 18

Hologram synthesis using integral imaging: (a) capture set of elemental images, (b) subimages generated from elemental images, (c) synthesized hologram, and (d) numerical reconstruction at various distances (View 3).

Fig. 19
Fig. 19

Triangular-mesh object.

Fig. 20
Fig. 20

Visibility problem: (a) front view of a 3D object and (b) the corresponding set of visible triangles; (c) perspective view of a 3D object and (d) the corresponding set of visible triangles.

Fig. 21
Fig. 21

Angular spectrum representation of arbitrarily tilted triangle aperture. A triangle facet is subdivided into several identical triangles on the same plane. A texture effect on a triangle facet can be realized by encoding complex numbers on each subdivision triangle.

Fig. 22
Fig. 22

(a) CGH synthesis setup and (b) CGH display setup.

Fig. 23
Fig. 23

Numerical results of observation sim ulation. The observation simulation of CGH is performed. The observed holographic images taken at different focal planes are presented (View 4).

Fig. 24
Fig. 24

Typical configuration of an optical see-through HMD adopting a wedge-shaped prism.

Fig. 25
Fig. 25

System configuration of an FOV-enhanced optical see-through HMD with tiled wedge-shaped prisms.

Fig. 26
Fig. 26

Layout of an off-axis projection optical see-through HMD system.

Fig. 27
Fig. 27

Configuration to resolve an occlusion problem in an optical see-through HMD. (a) Creation of occlusion with an LC mask. f in and f out are the inner and outer focal lengths of the convex lenses, respectively. (b) Ring-shaped structure of the entire system to compensate the shifted viewpoint and the inverted real-world scene.

Fig. 28
Fig. 28

Accommodation-cue-addressable system using a liquid lens for a varifocal feature.

Fig. 29
Fig. 29

See-through 3D display system that adopts SMV display. (a) Conceptual diagram of a system configuration. (b) Implementation of SMV feature with reduced pitch of each viewing zone by a projection lens.

Fig. 30
Fig. 30

See-through 3D display adopting DFD feature to show a 3D image with a diffusive screen.

Fig. 31
Fig. 31

Concept of a multilayered display with water drops. (a) Side view. (b) Top view.

Fig. 32
Fig. 32

Autostereoscopic see-through display adopting an HOE and two projectors.

Fig. 33
Fig. 33

See-through 3D display adopting a lenticular-lens-like HOE. (a) Structure of the HOE and grating cell. (b) Directions of rays diffracted by one grating cell. (c) Wide- viewing-angle implementation with a curved-lens-like recording of HOE.

Fig. 34
Fig. 34

See-through 3D display system based on CHMA.

Fig. 35
Fig. 35

Sampling and reconstruction processes of outlined technologies: (a) integral imaging, (b) multiview display, (c) holography, and (d) see-through 3D display.

Datasets

Datasets associated with ISP articles are stored in an online database called MIDAS. Clicking a "View" link in an OSA ISP article will launch the ISP software (if installed) and pull the relevant data from MIDAS. Visit MIDAS to browse and download the datasets directly. A package containing the PDF article and full datasets is available in MIDAS for offline viewing.

Questions or Problems? See the ISP FAQ. Already used the ISP software? Take a quick survey to tell us what you think.

Metrics