Abstract

We report on large-area manipulation of microdroplets by holographic optical tweezers based on a hybrid diffractive system, in which a static computer-generated hologram and a spatial light modulator (SLM) are used. The hybrid diffractive system is useful to manipulate microdroplets on distant areas with the same manner. Experimental results demonstrated that microdroplets were transported successfully in parallel with approximately equivalent velocities over the entire manipulation area. Fusion of microdroplets was also achieved at a position where the optical pattern generated by the SLM alone did not reach.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6, 24–27 (1999).
    [CrossRef]
  2. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
    [CrossRef]
  3. E. Eriksson, S. Keen, J. Leach, M. Goksör, and M. J. Padgett, “The effect of external forces on discrete motion within holographic optical tweezers,” Opt. Express 15, 18268–18274(2007).
    [CrossRef] [PubMed]
  4. S. Zwick, C. Schaub, T. Haist, and W. Osten, “Light fields with an axially expanded intensity distribution for stable three-dimensional optical trapping,” Opt. Express 18, 19941–19950(2010).
    [CrossRef] [PubMed]
  5. M. Padgett and R. D. Leonardo, “Holographic optical tweezers and their relevance to lab on chip devices,” Lab Chip 11, 1196–1205 (2011).
    [CrossRef] [PubMed]
  6. K. T. Gahagan and G. A. Swartzlander, “Trapping of low-index microparticles in an optical vortex,” J. Opt. Soc. Am. B 15, 524–534 (1998).
    [CrossRef]
  7. P. Rodrigo, V. Daria, and J. Glückstad, “Real-time interactive optical micromanipulation of a mixture of high-and low-index particles,” Opt. Express 12, 1417–1425 (2004).
    [CrossRef] [PubMed]
  8. P. Prentice, M. MacDonald, T. Frank, A. Cuschier, G. Spalding, W. Sibbett, P. Campbell, and K. Dholakia, “Manipulation and filtration of low index particles with holographic Laguerre-Gaussian optical trap arrays,” Opt. Express 12, 593–600(2004).
    [CrossRef] [PubMed]
  9. M. Miyazaki and Y. Hayasaki, “Motion control of low-index microspheres in liquid based on optical repulsive force of a focused beam array,” Opt. Lett. 34, 821–823 (2009).
    [CrossRef] [PubMed]
  10. N. R. Beer, E. K. Wheeler, L. Lee-Houghton, N. Watkins, S. Nasarabadi, N. Hebert, P. Leung, D. W. Arnold, C. G. Bailey, and B. W. Colston, “On-chip single-copy real-time reverse-transcription PCR in isolated picoliter droplets,” Anal. Chem. 80, 1854–1858 (2008).
    [CrossRef] [PubMed]
  11. P. Mary, L. Dauphinot, N. Bois, M-C. Potier, V. Studer, and P. Tabeling, “Analysis of gene expression at the single-cell level using microdroplet-based microfluidic technology,” Biomicrofluidics 5, 024109 (2011).
    [CrossRef]
  12. Y. Ogura, T. Nishimura, and J. Tanida, “Spatially parallel control of DNA reactions in optically manipulated micro-droplets,” J. Nanophoton. 5, 051702 (2011).
    [CrossRef]
  13. Y. Ogura, T. Nishimura, and J. Tanida, “Nanoscale logic operation in optically manipulated micro-droplets,” Proc. SPIE 7764, 77640H (2010).
    [CrossRef]
  14. M. Zheng, Y. Ogura, and J. Tanida, “Three-dimensional dynamic optical manipulation by combining a diffractive optical element and a spatial light modulator,” Opt. Rev. 15, 105–109 (2008).
    [CrossRef]
  15. V. R. Daria, P. J. Rodrigo, and J. Glückstad, “Dynamic array of dark optical traps,” Appl. Phys. Lett. 84, 323–325(2004).
    [CrossRef]
  16. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” J. Biophys. Biochem. Cytol. 61, 569–582 (1992).
    [CrossRef]

2011 (3)

M. Padgett and R. D. Leonardo, “Holographic optical tweezers and their relevance to lab on chip devices,” Lab Chip 11, 1196–1205 (2011).
[CrossRef] [PubMed]

P. Mary, L. Dauphinot, N. Bois, M-C. Potier, V. Studer, and P. Tabeling, “Analysis of gene expression at the single-cell level using microdroplet-based microfluidic technology,” Biomicrofluidics 5, 024109 (2011).
[CrossRef]

Y. Ogura, T. Nishimura, and J. Tanida, “Spatially parallel control of DNA reactions in optically manipulated micro-droplets,” J. Nanophoton. 5, 051702 (2011).
[CrossRef]

2010 (2)

2009 (1)

2008 (2)

M. Zheng, Y. Ogura, and J. Tanida, “Three-dimensional dynamic optical manipulation by combining a diffractive optical element and a spatial light modulator,” Opt. Rev. 15, 105–109 (2008).
[CrossRef]

N. R. Beer, E. K. Wheeler, L. Lee-Houghton, N. Watkins, S. Nasarabadi, N. Hebert, P. Leung, D. W. Arnold, C. G. Bailey, and B. W. Colston, “On-chip single-copy real-time reverse-transcription PCR in isolated picoliter droplets,” Anal. Chem. 80, 1854–1858 (2008).
[CrossRef] [PubMed]

2007 (1)

2004 (3)

2002 (1)

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[CrossRef]

1999 (1)

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6, 24–27 (1999).
[CrossRef]

1998 (1)

1992 (1)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” J. Biophys. Biochem. Cytol. 61, 569–582 (1992).
[CrossRef]

Arnold, D. W.

N. R. Beer, E. K. Wheeler, L. Lee-Houghton, N. Watkins, S. Nasarabadi, N. Hebert, P. Leung, D. W. Arnold, C. G. Bailey, and B. W. Colston, “On-chip single-copy real-time reverse-transcription PCR in isolated picoliter droplets,” Anal. Chem. 80, 1854–1858 (2008).
[CrossRef] [PubMed]

Ashkin, A.

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” J. Biophys. Biochem. Cytol. 61, 569–582 (1992).
[CrossRef]

Bailey, C. G.

N. R. Beer, E. K. Wheeler, L. Lee-Houghton, N. Watkins, S. Nasarabadi, N. Hebert, P. Leung, D. W. Arnold, C. G. Bailey, and B. W. Colston, “On-chip single-copy real-time reverse-transcription PCR in isolated picoliter droplets,” Anal. Chem. 80, 1854–1858 (2008).
[CrossRef] [PubMed]

Beer, N. R.

N. R. Beer, E. K. Wheeler, L. Lee-Houghton, N. Watkins, S. Nasarabadi, N. Hebert, P. Leung, D. W. Arnold, C. G. Bailey, and B. W. Colston, “On-chip single-copy real-time reverse-transcription PCR in isolated picoliter droplets,” Anal. Chem. 80, 1854–1858 (2008).
[CrossRef] [PubMed]

Bois, N.

P. Mary, L. Dauphinot, N. Bois, M-C. Potier, V. Studer, and P. Tabeling, “Analysis of gene expression at the single-cell level using microdroplet-based microfluidic technology,” Biomicrofluidics 5, 024109 (2011).
[CrossRef]

Campbell, P.

Colston, B. W.

N. R. Beer, E. K. Wheeler, L. Lee-Houghton, N. Watkins, S. Nasarabadi, N. Hebert, P. Leung, D. W. Arnold, C. G. Bailey, and B. W. Colston, “On-chip single-copy real-time reverse-transcription PCR in isolated picoliter droplets,” Anal. Chem. 80, 1854–1858 (2008).
[CrossRef] [PubMed]

Curtis, J. E.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[CrossRef]

Cuschier, A.

Daria, V.

Daria, V. R.

V. R. Daria, P. J. Rodrigo, and J. Glückstad, “Dynamic array of dark optical traps,” Appl. Phys. Lett. 84, 323–325(2004).
[CrossRef]

Dauphinot, L.

P. Mary, L. Dauphinot, N. Bois, M-C. Potier, V. Studer, and P. Tabeling, “Analysis of gene expression at the single-cell level using microdroplet-based microfluidic technology,” Biomicrofluidics 5, 024109 (2011).
[CrossRef]

Dholakia, K.

Eriksson, E.

Frank, T.

Gahagan, K. T.

Glückstad, J.

Goksör, M.

Grier, D. G.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[CrossRef]

Haist, T.

Hayasaki, Y.

M. Miyazaki and Y. Hayasaki, “Motion control of low-index microspheres in liquid based on optical repulsive force of a focused beam array,” Opt. Lett. 34, 821–823 (2009).
[CrossRef] [PubMed]

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6, 24–27 (1999).
[CrossRef]

Hebert, N.

N. R. Beer, E. K. Wheeler, L. Lee-Houghton, N. Watkins, S. Nasarabadi, N. Hebert, P. Leung, D. W. Arnold, C. G. Bailey, and B. W. Colston, “On-chip single-copy real-time reverse-transcription PCR in isolated picoliter droplets,” Anal. Chem. 80, 1854–1858 (2008).
[CrossRef] [PubMed]

Itoh, M.

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6, 24–27 (1999).
[CrossRef]

Keen, S.

Koss, B. A.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[CrossRef]

Leach, J.

Lee-Houghton, L.

N. R. Beer, E. K. Wheeler, L. Lee-Houghton, N. Watkins, S. Nasarabadi, N. Hebert, P. Leung, D. W. Arnold, C. G. Bailey, and B. W. Colston, “On-chip single-copy real-time reverse-transcription PCR in isolated picoliter droplets,” Anal. Chem. 80, 1854–1858 (2008).
[CrossRef] [PubMed]

Leonardo, R. D.

M. Padgett and R. D. Leonardo, “Holographic optical tweezers and their relevance to lab on chip devices,” Lab Chip 11, 1196–1205 (2011).
[CrossRef] [PubMed]

Leung, P.

N. R. Beer, E. K. Wheeler, L. Lee-Houghton, N. Watkins, S. Nasarabadi, N. Hebert, P. Leung, D. W. Arnold, C. G. Bailey, and B. W. Colston, “On-chip single-copy real-time reverse-transcription PCR in isolated picoliter droplets,” Anal. Chem. 80, 1854–1858 (2008).
[CrossRef] [PubMed]

MacDonald, M.

Mary, P.

P. Mary, L. Dauphinot, N. Bois, M-C. Potier, V. Studer, and P. Tabeling, “Analysis of gene expression at the single-cell level using microdroplet-based microfluidic technology,” Biomicrofluidics 5, 024109 (2011).
[CrossRef]

Miyazaki, M.

Nasarabadi, S.

N. R. Beer, E. K. Wheeler, L. Lee-Houghton, N. Watkins, S. Nasarabadi, N. Hebert, P. Leung, D. W. Arnold, C. G. Bailey, and B. W. Colston, “On-chip single-copy real-time reverse-transcription PCR in isolated picoliter droplets,” Anal. Chem. 80, 1854–1858 (2008).
[CrossRef] [PubMed]

Nishida, N.

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6, 24–27 (1999).
[CrossRef]

Nishimura, T.

Y. Ogura, T. Nishimura, and J. Tanida, “Spatially parallel control of DNA reactions in optically manipulated micro-droplets,” J. Nanophoton. 5, 051702 (2011).
[CrossRef]

Y. Ogura, T. Nishimura, and J. Tanida, “Nanoscale logic operation in optically manipulated micro-droplets,” Proc. SPIE 7764, 77640H (2010).
[CrossRef]

Ogura, Y.

Y. Ogura, T. Nishimura, and J. Tanida, “Spatially parallel control of DNA reactions in optically manipulated micro-droplets,” J. Nanophoton. 5, 051702 (2011).
[CrossRef]

Y. Ogura, T. Nishimura, and J. Tanida, “Nanoscale logic operation in optically manipulated micro-droplets,” Proc. SPIE 7764, 77640H (2010).
[CrossRef]

M. Zheng, Y. Ogura, and J. Tanida, “Three-dimensional dynamic optical manipulation by combining a diffractive optical element and a spatial light modulator,” Opt. Rev. 15, 105–109 (2008).
[CrossRef]

Osten, W.

Padgett, M.

M. Padgett and R. D. Leonardo, “Holographic optical tweezers and their relevance to lab on chip devices,” Lab Chip 11, 1196–1205 (2011).
[CrossRef] [PubMed]

Padgett, M. J.

Potier, M-C.

P. Mary, L. Dauphinot, N. Bois, M-C. Potier, V. Studer, and P. Tabeling, “Analysis of gene expression at the single-cell level using microdroplet-based microfluidic technology,” Biomicrofluidics 5, 024109 (2011).
[CrossRef]

Prentice, P.

Rodrigo, P.

Rodrigo, P. J.

V. R. Daria, P. J. Rodrigo, and J. Glückstad, “Dynamic array of dark optical traps,” Appl. Phys. Lett. 84, 323–325(2004).
[CrossRef]

Schaub, C.

Sibbett, W.

Spalding, G.

Studer, V.

P. Mary, L. Dauphinot, N. Bois, M-C. Potier, V. Studer, and P. Tabeling, “Analysis of gene expression at the single-cell level using microdroplet-based microfluidic technology,” Biomicrofluidics 5, 024109 (2011).
[CrossRef]

Swartzlander, G. A.

Tabeling, P.

P. Mary, L. Dauphinot, N. Bois, M-C. Potier, V. Studer, and P. Tabeling, “Analysis of gene expression at the single-cell level using microdroplet-based microfluidic technology,” Biomicrofluidics 5, 024109 (2011).
[CrossRef]

Tanida, J.

Y. Ogura, T. Nishimura, and J. Tanida, “Spatially parallel control of DNA reactions in optically manipulated micro-droplets,” J. Nanophoton. 5, 051702 (2011).
[CrossRef]

Y. Ogura, T. Nishimura, and J. Tanida, “Nanoscale logic operation in optically manipulated micro-droplets,” Proc. SPIE 7764, 77640H (2010).
[CrossRef]

M. Zheng, Y. Ogura, and J. Tanida, “Three-dimensional dynamic optical manipulation by combining a diffractive optical element and a spatial light modulator,” Opt. Rev. 15, 105–109 (2008).
[CrossRef]

Watkins, N.

N. R. Beer, E. K. Wheeler, L. Lee-Houghton, N. Watkins, S. Nasarabadi, N. Hebert, P. Leung, D. W. Arnold, C. G. Bailey, and B. W. Colston, “On-chip single-copy real-time reverse-transcription PCR in isolated picoliter droplets,” Anal. Chem. 80, 1854–1858 (2008).
[CrossRef] [PubMed]

Wheeler, E. K.

N. R. Beer, E. K. Wheeler, L. Lee-Houghton, N. Watkins, S. Nasarabadi, N. Hebert, P. Leung, D. W. Arnold, C. G. Bailey, and B. W. Colston, “On-chip single-copy real-time reverse-transcription PCR in isolated picoliter droplets,” Anal. Chem. 80, 1854–1858 (2008).
[CrossRef] [PubMed]

Yatagai, T.

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6, 24–27 (1999).
[CrossRef]

Zheng, M.

M. Zheng, Y. Ogura, and J. Tanida, “Three-dimensional dynamic optical manipulation by combining a diffractive optical element and a spatial light modulator,” Opt. Rev. 15, 105–109 (2008).
[CrossRef]

Zwick, S.

Anal. Chem. (1)

N. R. Beer, E. K. Wheeler, L. Lee-Houghton, N. Watkins, S. Nasarabadi, N. Hebert, P. Leung, D. W. Arnold, C. G. Bailey, and B. W. Colston, “On-chip single-copy real-time reverse-transcription PCR in isolated picoliter droplets,” Anal. Chem. 80, 1854–1858 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

V. R. Daria, P. J. Rodrigo, and J. Glückstad, “Dynamic array of dark optical traps,” Appl. Phys. Lett. 84, 323–325(2004).
[CrossRef]

Biomicrofluidics (1)

P. Mary, L. Dauphinot, N. Bois, M-C. Potier, V. Studer, and P. Tabeling, “Analysis of gene expression at the single-cell level using microdroplet-based microfluidic technology,” Biomicrofluidics 5, 024109 (2011).
[CrossRef]

J. Biophys. Biochem. Cytol. (1)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” J. Biophys. Biochem. Cytol. 61, 569–582 (1992).
[CrossRef]

J. Nanophoton. (1)

Y. Ogura, T. Nishimura, and J. Tanida, “Spatially parallel control of DNA reactions in optically manipulated micro-droplets,” J. Nanophoton. 5, 051702 (2011).
[CrossRef]

J. Opt. Soc. Am. B (1)

Lab Chip (1)

M. Padgett and R. D. Leonardo, “Holographic optical tweezers and their relevance to lab on chip devices,” Lab Chip 11, 1196–1205 (2011).
[CrossRef] [PubMed]

Opt. Commun. (1)

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Opt. Rev. (2)

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6, 24–27 (1999).
[CrossRef]

M. Zheng, Y. Ogura, and J. Tanida, “Three-dimensional dynamic optical manipulation by combining a diffractive optical element and a spatial light modulator,” Opt. Rev. 15, 105–109 (2008).
[CrossRef]

Proc. SPIE (1)

Y. Ogura, T. Nishimura, and J. Tanida, “Nanoscale logic operation in optically manipulated micro-droplets,” Proc. SPIE 7764, 77640H (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Fundamental configuration of a hybrid diffractive system. (b) Generation of optical patterns using an SLM and a static CGH. f SLM , optical pattern by the SLM alone; f CGH , optical pattern by the CGH alone.

Fig. 2
Fig. 2

(a) The considered optical patterns consisting of multiple spots. (b) Dependence of trapping efficiency on relative position.

Fig. 3
Fig. 3

The experimental setup.

Fig. 4
Fig. 4

Relationship between the maximum transport velocity and total illumination power.

Fig. 5
Fig. 5

Simultaneous transportation of three microdroplets at three positions.

Fig. 6
Fig. 6

(a) Optical pattern and the field of view used for fusion of two microdroplets. The microdroplets were fused into one at the position 80 μm distant from the origin. (b) Pictures of the microdroplets before and after the fusion.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

F i = Q i n 1 α i P c ,
F = i = 1 N F i = n 1 P c i = 1 N α i Q i .
Q = c F n 1 P .
F drag = 6 π η r s v ,

Metrics