Abstract

We have developed an encryption method using a computer-generated hologram (CGH) embedded in a dithered image. First, confidential information is converted into a CGH. Next, the CGH data undergo two separate dithering processes in parallel: one corresponding to CGH white pixels and one corresponding to CGH black pixels. The results from both processes are used to form a dither matrix for creating the final dithered and encoded image. In this way, confidential information can be embedded into the image. The confidential information can be extracted using a technique similar to CGH optical reconstruction.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. F. Ming and O. C. Au, “Data hiding in halftone images by stochastic error diffusion,” IEEE Trans. Image Process. 11, 477–484 (1997).
  2. P. Comesana, F. Perez-Gonzalez, and F. Balado, “On distortion-compensated dither modulation data-hiding with repetition coding,” IEEE Trans. Signal Process. 54, 585–600 (2006).
    [CrossRef]
  3. B. E. Bayer, “An optimum method for two-level rendition of continuous-tone pictures,” in IEEE Intl. Conf. on Communications (IEEE, 1976), pp. 2611–2615.
  4. M. Niimi, H. Noda, and E. Kawaguchi, “An image embedding in image by a complexity based region segmentation method,” in IEEE International Conference on Image Processing ’97 (IEEE, 1997), pp. 112–119.
  5. Y. Aoki, “Watermarking technique using computer-generated holograms,” Trans. IEICE (A) J82-A, 1092–1100 (1999).
  6. B. R. Brown and A. W. Lohmann, “Complex spatial filtering with binary masks,” Appl. Opt. 5, 967–969 (1966).
    [CrossRef]
  7. R. Hauck and O. Bryngdahl, “Computer-generated holograms with pulse-density modulation,” J. Opt. Soc. Am. A 1, 5–10 (1984).
    [CrossRef]
  8. R. Eschbach, “Comparison of error diffusion methods for computer-generated holograms,” Appl. Opt. 30, 3702–3710 (1991).
    [CrossRef]

2006 (1)

P. Comesana, F. Perez-Gonzalez, and F. Balado, “On distortion-compensated dither modulation data-hiding with repetition coding,” IEEE Trans. Signal Process. 54, 585–600 (2006).
[CrossRef]

1999 (1)

Y. Aoki, “Watermarking technique using computer-generated holograms,” Trans. IEICE (A) J82-A, 1092–1100 (1999).

1997 (1)

S. F. Ming and O. C. Au, “Data hiding in halftone images by stochastic error diffusion,” IEEE Trans. Image Process. 11, 477–484 (1997).

1991 (1)

1984 (1)

1966 (1)

Aoki, Y.

Y. Aoki, “Watermarking technique using computer-generated holograms,” Trans. IEICE (A) J82-A, 1092–1100 (1999).

Au, O. C.

S. F. Ming and O. C. Au, “Data hiding in halftone images by stochastic error diffusion,” IEEE Trans. Image Process. 11, 477–484 (1997).

Balado, F.

P. Comesana, F. Perez-Gonzalez, and F. Balado, “On distortion-compensated dither modulation data-hiding with repetition coding,” IEEE Trans. Signal Process. 54, 585–600 (2006).
[CrossRef]

Bayer, B. E.

B. E. Bayer, “An optimum method for two-level rendition of continuous-tone pictures,” in IEEE Intl. Conf. on Communications (IEEE, 1976), pp. 2611–2615.

Brown, B. R.

Bryngdahl, O.

Comesana, P.

P. Comesana, F. Perez-Gonzalez, and F. Balado, “On distortion-compensated dither modulation data-hiding with repetition coding,” IEEE Trans. Signal Process. 54, 585–600 (2006).
[CrossRef]

Eschbach, R.

Hauck, R.

Kawaguchi, E.

M. Niimi, H. Noda, and E. Kawaguchi, “An image embedding in image by a complexity based region segmentation method,” in IEEE International Conference on Image Processing ’97 (IEEE, 1997), pp. 112–119.

Lohmann, A. W.

Ming, S. F.

S. F. Ming and O. C. Au, “Data hiding in halftone images by stochastic error diffusion,” IEEE Trans. Image Process. 11, 477–484 (1997).

Niimi, M.

M. Niimi, H. Noda, and E. Kawaguchi, “An image embedding in image by a complexity based region segmentation method,” in IEEE International Conference on Image Processing ’97 (IEEE, 1997), pp. 112–119.

Noda, H.

M. Niimi, H. Noda, and E. Kawaguchi, “An image embedding in image by a complexity based region segmentation method,” in IEEE International Conference on Image Processing ’97 (IEEE, 1997), pp. 112–119.

Perez-Gonzalez, F.

P. Comesana, F. Perez-Gonzalez, and F. Balado, “On distortion-compensated dither modulation data-hiding with repetition coding,” IEEE Trans. Signal Process. 54, 585–600 (2006).
[CrossRef]

Appl. Opt. (2)

IEEE Trans. Image Process. (1)

S. F. Ming and O. C. Au, “Data hiding in halftone images by stochastic error diffusion,” IEEE Trans. Image Process. 11, 477–484 (1997).

IEEE Trans. Signal Process. (1)

P. Comesana, F. Perez-Gonzalez, and F. Balado, “On distortion-compensated dither modulation data-hiding with repetition coding,” IEEE Trans. Signal Process. 54, 585–600 (2006).
[CrossRef]

J. Opt. Soc. Am. A (1)

Trans. IEICE (A) (1)

Y. Aoki, “Watermarking technique using computer-generated holograms,” Trans. IEICE (A) J82-A, 1092–1100 (1999).

Other (2)

B. E. Bayer, “An optimum method for two-level rendition of continuous-tone pictures,” in IEEE Intl. Conf. on Communications (IEEE, 1976), pp. 2611–2615.

M. Niimi, H. Noda, and E. Kawaguchi, “An image embedding in image by a complexity based region segmentation method,” in IEEE International Conference on Image Processing ’97 (IEEE, 1997), pp. 112–119.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (25)

Fig. 1.
Fig. 1.

Dither matrices.

Fig. 2.
Fig. 2.

Cover image.

Fig. 3.
Fig. 3.

Confidential image.

Fig. 5.
Fig. 5.

Dither matrix combinations.

Fig. 4.
Fig. 4.

Optical system.

Fig. 6.
Fig. 6.

Binary image without embedded CGH.

Fig. 7.
Fig. 7.

Bayer dither (Type 1).

Fig. 8.
Fig. 8.

Bayer dither (Type 2).

Fig. 9.
Fig. 9.

Meshed dither (Type 1).

Fig. 10.
Fig. 10.

Meshed dither (Type 2).

Fig. 11.
Fig. 11.

Meshed dither (Type 3).

Fig. 12.
Fig. 12.

Pan magic dither.

Fig. 13.
Fig. 13.

Meshed dither (Type 1) in a CGH formed without using error diffusion.

Fig. 14.
Fig. 14.

Implications of an enlargement attack.

Fig. 15.
Fig. 15.

Implications of a reduction attack.

Fig. 16.
Fig. 16.

Implications of a rotation attack (π/6).

Fig. 17.
Fig. 17.

Rotation and information rotation (2°) and cropping (75%) attack (ROTCROP).

Fig. 18.
Fig. 18.

Implications of rotation (2°) and scaling (75%) attacks.

Fig. 19.
Fig. 19.

Implication of a cropping (50%) (CROP) attack.

Fig. 20.
Fig. 20.

Implications of a partial erasure attack (line decimation).

Fig. 21.
Fig. 21.

Implications of a smoothing filter attack.

Fig. 22.
Fig. 22.

Implications of an affine transformation attack.

Fig. 23.
Fig. 23.

Implications of a distortion attack.

Fig. 24.
Fig. 24.

Meshed dither (Type 1) with various cover image (lena).

Fig. 25.
Fig. 25.

Optical reconstructed image from Fig. 9(a). (The region of appear “A” is enlargement).

Tables (2)

Tables Icon

Table 1. Evaluation of Grayscale Expression

Tables Icon

Table 2. CGH Complexity

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R(x,y)=DFT[B(u,v)].
Em=(i,j)block1Np|g(i,j)bg(i,j)|

Metrics