Abstract

We propose a novel configuration for angular multiplexing holographic encoding in which the signal beam and the reference beam are combined into a single beam. By using a spatial light modulator based on twisted nematic liquid crystals, the signal and the reference beams are modulated in amplitude mode and phase mode, respectively. The multiplexed interference patterns with the reference beams of different incident angles are recorded near the Fourier transform plane, and then the signals are selectively reconstructed by the corresponding reference beam. Both the simulation and the experiment of single-beam angular multiplexed holography are performed with consistent results. Compared with the traditional angular multiplexing holographic recording system, the single-beam configuration is more compact, easier to adjust, and less sensitive to the vibration of the environment. Therefore, it will be more attractive for potential applications in many fields, such as high-density signal recording and data encryption.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y.-W. Yu, C.-Y. Chen, and C.-C. Sun, “Increase of signal-to-noise ratio of a collinear holographic storage system with reference modulated by a ring lens array,” Opt. Lett. 35, 1130–1132 (2010).
    [CrossRef] [PubMed]
  2. X. Pan, C. Wang, C. Wang, and X. Zhang, “Image storage based on circular-polarization holography in an azobenzene side-chain liquid-crystalline polymer,” Appl. Opt. 47, 93–98 (2008).
    [CrossRef]
  3. Y. Shinoda, J.-P. Liu, P. S. Chung, K. Dobson, X. Zhou, and T.-C. Poon, “Three-dimensional complex image coding using a circular Dammann grating,” Appl. Opt. 50, B38–B45 (2011).
    [CrossRef] [PubMed]
  4. X. Sang, F. C.Fan, C. C. Jiang, S. Choi, W. Dou, C. Yu, and D. Xu, “Demonstration of a large-size real-time full-color three-dimensional display,” Opt. Lett. 34, 3803–3805 (2009).
    [CrossRef] [PubMed]
  5. X. Shi and D. Zhao, “Image hiding in Fourier domain by use of joint transform correlator architecture and holographic technique,” Appl. Opt. 50, 766–772 (2011).
    [CrossRef] [PubMed]
  6. V. Bavigadda, R. Jallapuram, E. Mihaylova, and V. Toal, “Electronic speckle-pattern interferometer using holographic optical elements for vibration measurements,” Opt. Lett. 35, 3273–3275 (2010).
    [CrossRef] [PubMed]
  7. P. W. M. Tsang, T.-C. Poon, and K. W. K. Cheung, “Fast numerical generation and encryption of computer-generated Fresnel holograms,” Appl. Opt. 50, B46–B52 (2011).
    [CrossRef] [PubMed]
  8. N. Zhu, Y. Wang, J. Liu, and J. Xie, “Holographic projection based on interference and analytical algorithm,” Opt. Commun. 283, 4969–4971 (2010).
    [CrossRef]
  9. F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915–917 (1993).
    [CrossRef] [PubMed]
  10. A. Calabuig, V. Micó, J. Garcia, Z. Zalevsky, and C. Ferreira, “Single-exposure super-resolved interferometric microscopy by red–green–blue multiplexing,” Opt. Lett. 36, 885–887(2011).
    [CrossRef] [PubMed]
  11. L. Granero, V. Micó, Z. Zalevsky, and J. García, “Synthetic aperture superresolved microscopy in digital lensless Fourier holography by time and angular multiplexing of the object information,” Appl. Opt. 49, 845–857 (2010).
    [CrossRef] [PubMed]
  12. C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Potentialities and limitations of hologram multiplexing by using the phase-encoding technique,” Appl. Opt. 31, 5700–5705 (1992).
    [CrossRef] [PubMed]
  13. V. Micó and J. García, “Common-path phase-shifting lensless holographic microscopy,” Opt. Lett. 35, 3919–3921 (2010).
    [CrossRef] [PubMed]
  14. G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17, 1471–1473 (1992).
    [CrossRef] [PubMed]
  15. W.-C. Su, C.-M. Chen, and Y. Ouyang, “Orthogonal polarization simultaneous readout for volume holograms with hybrid angle and polarization multiplexing in LiNbO3,” Appl. Opt. 46, 3233–3238 (2007).
    [CrossRef] [PubMed]
  16. H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44, 2575–2579 (2005).
    [CrossRef] [PubMed]
  17. T. Shimura, S. Ichimura, R. Fujimura, K. Kuroda, X. Tan, and H. Horimai, “Analysis of a collinear holographic storage system: introduction of pixel spread function,” Opt. Lett. 31, 1208–1210 (2006).
    [CrossRef] [PubMed]
  18. W. Jia, Z. Chen, F. J. Wen, and P. S. Chung, “Implementation of single-beam multiplexing encoding with a dually modulated spatial light modulator,” Appl. Opt. 50, B12–B17(2011).
    [CrossRef] [PubMed]
  19. Z. Y. Chen and P. S. Chung, “A high-capacity storage device for communications and multimedia systems,” Proc. SPIE 6775, 6770S (2007).
    [CrossRef]
  20. Z. Y. Chan and P. S. Chung, “Using dual modulation modes in spatial light modulator (SLM) for a novel single-beam image storage and retrieval system,” Proc. SPIE 7723, 77231M(2010).
    [CrossRef]
  21. R. J. Hernández-Hernández, R. A. Terborg, I. Ricardez-Vargas, and K. Volke-Sepúlveda, “Experimental generation of Mathieu–Gauss beams with a phase-only spatial light modulator,” Appl. Opt. 49, 6903–6909 (2010).
    [CrossRef] [PubMed]
  22. W. Chi and N. George, “Optical imaging with phase-coded aperture,” Opt. Express 19, 4294–4300 (2011).
    [CrossRef] [PubMed]
  23. J. L. Martínez, P. García-Martínez, M. del Mar Sánchez-López, and I. Moreno, “Accurate color predictability based on a spectral retardance model of a twisted-nematic liquid-crystal display,” Opt. Commun. 284, 2441–2447 (2011).
    [CrossRef]
  24. http://www.holoeye.com/spatial_light_modulator_lc_r_2500.html.

2011

2010

2009

2008

2007

2006

2005

1993

1992

Bavigadda, V.

Calabuig, A.

Chan, Z. Y.

Z. Y. Chan and P. S. Chung, “Using dual modulation modes in spatial light modulator (SLM) for a novel single-beam image storage and retrieval system,” Proc. SPIE 7723, 77231M(2010).
[CrossRef]

Chen, C.-M.

Chen, C.-Y.

Chen, Z.

Chen, Z. Y.

Z. Y. Chen and P. S. Chung, “A high-capacity storage device for communications and multimedia systems,” Proc. SPIE 6775, 6770S (2007).
[CrossRef]

Cheung, K. W. K.

Chi, W.

Choi, S.

Chung, P. S.

Y. Shinoda, J.-P. Liu, P. S. Chung, K. Dobson, X. Zhou, and T.-C. Poon, “Three-dimensional complex image coding using a circular Dammann grating,” Appl. Opt. 50, B38–B45 (2011).
[CrossRef] [PubMed]

W. Jia, Z. Chen, F. J. Wen, and P. S. Chung, “Implementation of single-beam multiplexing encoding with a dually modulated spatial light modulator,” Appl. Opt. 50, B12–B17(2011).
[CrossRef] [PubMed]

Z. Y. Chan and P. S. Chung, “Using dual modulation modes in spatial light modulator (SLM) for a novel single-beam image storage and retrieval system,” Proc. SPIE 7723, 77231M(2010).
[CrossRef]

Z. Y. Chen and P. S. Chung, “A high-capacity storage device for communications and multimedia systems,” Proc. SPIE 6775, 6770S (2007).
[CrossRef]

del Mar Sánchez-López, M.

J. L. Martínez, P. García-Martínez, M. del Mar Sánchez-López, and I. Moreno, “Accurate color predictability based on a spectral retardance model of a twisted-nematic liquid-crystal display,” Opt. Commun. 284, 2441–2447 (2011).
[CrossRef]

Denz, C.

Dobson, K.

Dou, W.

Fan, F. C.

Ferreira, C.

Fujimura, R.

Garcia, J.

García, J.

García-Martínez, P.

J. L. Martínez, P. García-Martínez, M. del Mar Sánchez-López, and I. Moreno, “Accurate color predictability based on a spectral retardance model of a twisted-nematic liquid-crystal display,” Opt. Commun. 284, 2441–2447 (2011).
[CrossRef]

George, N.

Granero, L.

Hernández-Hernández, R. J.

Horimai, H.

Ichimura, S.

Jallapuram, R.

Jia, W.

Jiang, C. C.

Kuroda, K.

Leyva, V.

Li, J.

Liu, J.

N. Zhu, Y. Wang, J. Liu, and J. Xie, “Holographic projection based on interference and analytical algorithm,” Opt. Commun. 283, 4969–4971 (2010).
[CrossRef]

Liu, J.-P.

Martínez, J. L.

J. L. Martínez, P. García-Martínez, M. del Mar Sánchez-López, and I. Moreno, “Accurate color predictability based on a spectral retardance model of a twisted-nematic liquid-crystal display,” Opt. Commun. 284, 2441–2447 (2011).
[CrossRef]

Micó, V.

Mihaylova, E.

Mok, F. H.

Moreno, I.

J. L. Martínez, P. García-Martínez, M. del Mar Sánchez-López, and I. Moreno, “Accurate color predictability based on a spectral retardance model of a twisted-nematic liquid-crystal display,” Opt. Commun. 284, 2441–2447 (2011).
[CrossRef]

Ouyang, Y.

Pan, X.

Pauliat, G.

Poon, T.-C.

Rakuljic, G. A.

Ricardez-Vargas, I.

Roosen, G.

Sang, X.

Shi, X.

Shimura, T.

Shinoda, Y.

Su, W.-C.

Sun, C.-C.

Tan, X.

Terborg, R. A.

Toal, V.

Tsang, P. W. M.

Tschudi, T.

Volke-Sepúlveda, K.

Wang, C.

Wang, Y.

N. Zhu, Y. Wang, J. Liu, and J. Xie, “Holographic projection based on interference and analytical algorithm,” Opt. Commun. 283, 4969–4971 (2010).
[CrossRef]

Wen, F. J.

Xie, J.

N. Zhu, Y. Wang, J. Liu, and J. Xie, “Holographic projection based on interference and analytical algorithm,” Opt. Commun. 283, 4969–4971 (2010).
[CrossRef]

Xu, D.

Yariv, A.

Yu, C.

Yu, Y.-W.

Zalevsky, Z.

Zhang, X.

Zhao, D.

Zhou, X.

Zhu, N.

N. Zhu, Y. Wang, J. Liu, and J. Xie, “Holographic projection based on interference and analytical algorithm,” Opt. Commun. 283, 4969–4971 (2010).
[CrossRef]

Appl. Opt.

X. Pan, C. Wang, C. Wang, and X. Zhang, “Image storage based on circular-polarization holography in an azobenzene side-chain liquid-crystalline polymer,” Appl. Opt. 47, 93–98 (2008).
[CrossRef]

Y. Shinoda, J.-P. Liu, P. S. Chung, K. Dobson, X. Zhou, and T.-C. Poon, “Three-dimensional complex image coding using a circular Dammann grating,” Appl. Opt. 50, B38–B45 (2011).
[CrossRef] [PubMed]

X. Shi and D. Zhao, “Image hiding in Fourier domain by use of joint transform correlator architecture and holographic technique,” Appl. Opt. 50, 766–772 (2011).
[CrossRef] [PubMed]

P. W. M. Tsang, T.-C. Poon, and K. W. K. Cheung, “Fast numerical generation and encryption of computer-generated Fresnel holograms,” Appl. Opt. 50, B46–B52 (2011).
[CrossRef] [PubMed]

L. Granero, V. Micó, Z. Zalevsky, and J. García, “Synthetic aperture superresolved microscopy in digital lensless Fourier holography by time and angular multiplexing of the object information,” Appl. Opt. 49, 845–857 (2010).
[CrossRef] [PubMed]

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Potentialities and limitations of hologram multiplexing by using the phase-encoding technique,” Appl. Opt. 31, 5700–5705 (1992).
[CrossRef] [PubMed]

W.-C. Su, C.-M. Chen, and Y. Ouyang, “Orthogonal polarization simultaneous readout for volume holograms with hybrid angle and polarization multiplexing in LiNbO3,” Appl. Opt. 46, 3233–3238 (2007).
[CrossRef] [PubMed]

H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44, 2575–2579 (2005).
[CrossRef] [PubMed]

W. Jia, Z. Chen, F. J. Wen, and P. S. Chung, “Implementation of single-beam multiplexing encoding with a dually modulated spatial light modulator,” Appl. Opt. 50, B12–B17(2011).
[CrossRef] [PubMed]

R. J. Hernández-Hernández, R. A. Terborg, I. Ricardez-Vargas, and K. Volke-Sepúlveda, “Experimental generation of Mathieu–Gauss beams with a phase-only spatial light modulator,” Appl. Opt. 49, 6903–6909 (2010).
[CrossRef] [PubMed]

Opt. Commun.

J. L. Martínez, P. García-Martínez, M. del Mar Sánchez-López, and I. Moreno, “Accurate color predictability based on a spectral retardance model of a twisted-nematic liquid-crystal display,” Opt. Commun. 284, 2441–2447 (2011).
[CrossRef]

N. Zhu, Y. Wang, J. Liu, and J. Xie, “Holographic projection based on interference and analytical algorithm,” Opt. Commun. 283, 4969–4971 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Y.-W. Yu, C.-Y. Chen, and C.-C. Sun, “Increase of signal-to-noise ratio of a collinear holographic storage system with reference modulated by a ring lens array,” Opt. Lett. 35, 1130–1132 (2010).
[CrossRef] [PubMed]

F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915–917 (1993).
[CrossRef] [PubMed]

A. Calabuig, V. Micó, J. Garcia, Z. Zalevsky, and C. Ferreira, “Single-exposure super-resolved interferometric microscopy by red–green–blue multiplexing,” Opt. Lett. 36, 885–887(2011).
[CrossRef] [PubMed]

V. Bavigadda, R. Jallapuram, E. Mihaylova, and V. Toal, “Electronic speckle-pattern interferometer using holographic optical elements for vibration measurements,” Opt. Lett. 35, 3273–3275 (2010).
[CrossRef] [PubMed]

X. Sang, F. C.Fan, C. C. Jiang, S. Choi, W. Dou, C. Yu, and D. Xu, “Demonstration of a large-size real-time full-color three-dimensional display,” Opt. Lett. 34, 3803–3805 (2009).
[CrossRef] [PubMed]

T. Shimura, S. Ichimura, R. Fujimura, K. Kuroda, X. Tan, and H. Horimai, “Analysis of a collinear holographic storage system: introduction of pixel spread function,” Opt. Lett. 31, 1208–1210 (2006).
[CrossRef] [PubMed]

V. Micó and J. García, “Common-path phase-shifting lensless holographic microscopy,” Opt. Lett. 35, 3919–3921 (2010).
[CrossRef] [PubMed]

G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17, 1471–1473 (1992).
[CrossRef] [PubMed]

Proc. SPIE

Z. Y. Chen and P. S. Chung, “A high-capacity storage device for communications and multimedia systems,” Proc. SPIE 6775, 6770S (2007).
[CrossRef]

Z. Y. Chan and P. S. Chung, “Using dual modulation modes in spatial light modulator (SLM) for a novel single-beam image storage and retrieval system,” Proc. SPIE 7723, 77231M(2010).
[CrossRef]

Other

http://www.holoeye.com/spatial_light_modulator_lc_r_2500.html.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Dependence of intensity and phase on gray level for (a) amplitude modulation and (b) phase modulation.

Fig. 2
Fig. 2

Schematic diagram of the beam modulated by the SLM.

Fig. 3
Fig. 3

Single-beam holographic data encoding and reconstruction system with angular multiplexing technique.

Fig. 4
Fig. 4

Simulation results of single-beam angular multiplexing: (a)–(c) three beams with different phase modulation; (d) angular multiplexed hologram of (a) and (b); (e) retrieved image of hologram (d); (f) and (g) angular multiplexed hologram and retrieval of (b) and (c).

Fig. 5
Fig. 5

Optical configuration for signal encoding and retrieving of the single-beam multiplexing holography. 1, He–Ne laser; 2, half-wave plate; 3, beam expander; 4, polarizer; 5, SLM; 6, analyzer; 7, polarizer; 8, lens 1; 9, hologram; 10: lens 2; 11, CCD.

Fig. 6
Fig. 6

Experimental results for angular multiplexing: (a) and (b) gray level distribution displayed on SLM; (c) and (d) the reconstructed signals.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ρ ( θ ) = f 2 tan θ h ,
D 1 α 1 = λ , D 2 α 2 = λ , α 1 = f h θ 1 , α 2 = f h θ 2 ,
D 2 ( α 1 + α ) = λ .
δ f α = f 2 λ h ( 1 d 2 1 d 1 ) ,
δ = f h Δ f ,

Metrics