Abstract

Optical sectioning of biological specimens provides detailed volumetric information regarding their internal structure. To provide a complementary approach to existing three-dimensional (3D) microscopy modalities, we have recently demonstrated lensfree optical tomography that offers high-throughput imaging within a compact and simple platform. In this approach, in-line holograms of objects at different angles of partially coherent illumination are recorded using a digital sensor-array, which enables computing pixel super-resolved tomographic images of the specimen. This imaging modality, which forms the focus of this review, offers micrometer-scale 3D resolution over large imaging volumes of, for example, 1015mm3, and can be assembled in light weight and compact architectures. Therefore, lensfree optical tomography might be particularly useful for lab-on-a-chip applications as well as for microscopy needs in resource-limited settings.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
    [CrossRef]
  2. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006).
    [CrossRef]
  3. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).
    [CrossRef]
  4. E. N. Leith, J. Upatnieks, and K. A. Haines, “Microscopy by wavefront reconstruction,” J. Opt. Soc. Am. 55, 981–986 (1965).
    [CrossRef]
  5. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).
    [CrossRef]
  6. L. Onural and P. D. Scott, “Digital decoding of in-line holograms,” Opt. Eng. 26, 1124–1132 (1987).
  7. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291–293 (1999).
    [CrossRef]
  8. D. Carl, B. Kemper, G. Wernicke, and G. von Ball, “Parameter-optimized digital holographic microscope for high-resolution living-cell analysis,” Appl. Opt. 43, 6536–6544 (2004).
    [CrossRef]
  9. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31, 775–777 (2006).
    [CrossRef]
  10. H. Ding and G. Popescu, “Instantaneous spatial light interference microscopy,” Opt. Express 18, 1569–1575 (2010).
    [CrossRef]
  11. S. D. Babacan, Z. Wang, M. Do, and G. Popescu, “Cell imaging beyond the diffraction limit using sparse deconvolution spatial light interference microscopy,” Biomed. Opt. Express 2, 1815–1827 (2011).
    [CrossRef]
  12. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997).
    [CrossRef]
  13. T. Zhang and I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23, 1221–1223 (1998).
    [CrossRef]
  14. P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42, 1938–1946 (2003).
  15. J. P. Liu and T. C. Poon, “Two-step-only quadrature phase-shifting digital holography,” Opt. Lett. 34, 250–252 (2009).
    [CrossRef]
  16. Z. Zalevsky and D. Mendlovic, Optical Super Resolution (Springer, Heidelberg, 2002).
  17. Z. Zalevsky, D. Mendlovic, and A. W. Lohmann, “Super resolution optical systems using fixed gratings,” Opt. Commun. 163, 79–85 (1999).
    [CrossRef]
  18. J. García, Z. Zalevsky, and D. Fixler, “Synthetic aperture superresolution by speckle pattern projection,” Opt. Express 13, 6073–6078 (2005).
    [CrossRef]
  19. L. Tian, N. Loomis, J. A. Domínguez-Caballero, and G. Barbastathis, “Quantitative measurement of size and three-dimensional position of fast-moving bubbles in air-water mixture flows using digital holography,” Appl. Opt. 49, 1549–1554 (2010).
    [CrossRef]
  20. F. Dubois, L. Joannes, and J. C. Legro, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38, 7085–7094 (1999).
    [CrossRef]
  21. S. S. Kou and C. J. R. Sheppard, “Image formation in holographic tomography: high-aperture imaging conditions,” Appl. Opt. 48, H168–H175 (2009).
    [CrossRef]
  22. E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
    [CrossRef]
  23. E. Y. Lam, X. Zhang, H. Vo, T. C. Poon, and G. Indebetouw, “Three-dimensional microscopy and sectional image reconstruction using optical scanning holography,” Appl. Opt. 48, H113–H119 (2009).
    [CrossRef]
  24. D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17, 13040–13049 (2009).
    [CrossRef]
  25. H. Meng and F. Hussain, “In-line recording and off-axis viewing technique for holographic particle velocimetry,” Appl. Opt. 34, 1827–1840 (1995).
    [CrossRef]
  26. F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. D. Mitchell, P. Marquet, and B. Rappaz, “Living specimen tomography by digital holographic microscopy: Morphometry of testate amoeba,” Opt. Express 14, 7005–7013 (2006).
    [CrossRef]
  27. O. Haeberle, K. Belkebir, H. Giovaninni, and A. Sentenac, “Tomographic diffractive microscopy: Basics, techniques and perspectives,” J. Mod. Opt. 57, 686–699 (2010).
    [CrossRef]
  28. Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
    [CrossRef]
  29. M. Debailleul, B. Simon, V. Georges, O. Haeberle, and V. Lauer, “Holographic microscopy and diffractive microtomography of transparent samples,” Meas. Sci. Technol. 19, 074009 (2008).
    [CrossRef]
  30. C. Fang-Yen, Y. Sung, C. J. Holbrow, R. R. Dasari, and M. S. Feld, “Video-rate tomographic phase microscopy,” J. Biomed. Opt. 16, 011005 (2011).
    [CrossRef]
  31. T. C. Poon, M. H. Wu, K. Shinoda, and Y. Suzuki, “Optical scanning holography,” Proc. IEEE 84, 753–764 (1996).
    [CrossRef]
  32. Y. C. Lin, C. J. Cheng, and T. C. Poon, “Optical sectioning with a low-coherence phase-shifting digital holographic microscope,” Appl. Opt. 50, B25–B30 (2011).
    [CrossRef]
  33. L. M. León, G. Pedrini, and W. Osten, “Applications of short-coherence digital holography in microscopy,” Appl. Opt. 44, 3977–3984 (2005).
    [CrossRef]
  34. L. Yu and M. K. Kim, “Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method,” Opt. Lett. 30, 2092–2094 (2005).
    [CrossRef]
  35. J. Hahn, S. Lim, K. Choi, R. Horisaki, and D. J. Brady, “Video-rate compressive holographic microscopic tomography,” Opt. Express 19, 7289–7298 (2011).
    [CrossRef]
  36. I. Moon and B. Javidi, “3-D visualization and identification of biological microorganisms using partially temporal incoherent light in-line computational holographic imaging,” IEEE Trans. Med. Imaging 27, 1782–1790 (2008).
    [CrossRef]
  37. I. Moon, M. Daneshpanah, B. Javidi, and A. Stern, “Automated three dimensional identification and tracking of micro/nano biological organisms by computational holographic microscopy,” Proc. IEEE 97, 990–1010 (2009).
    [CrossRef]
  38. B. Javidi, I. Moon, S. Yeom, and E. Carapezza, “Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography,” Opt. Express 13, 4492–4506 (2005).
    [CrossRef]
  39. J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photon. 2, 190–195 (2008).
    [CrossRef]
  40. J. Rosen and G. Brooker, “Fluorescence incoherent color holography,” Opt. Express 15, 2244–2250 (2007).
    [CrossRef]
  41. J. Rosen, B. Katz, and G. Brooker, “Review of three-dimensional holographic imaging by Fresnel incoherent correlation holograms,” 3D Research 1, 28–35 (2009).
  42. S. O. Isikman, W. Bishara, S. Mavandadi, S. W. Yu, S. Feng, R. Lau, and A. Ozcan, “Lens-free optical tomographic microscope with a large imaging volume on a chip,” Proc. Nat. Acad. Sci. 108, 7296–7301 (2011).
  43. S. O. Isikman, W. Bishara, U. Sikora, O. Yaglidere, J. Yeah, and A. Ozcan, “Field-portable Lensfree Tomographic Microscope,” Lab Chip 11, 2222–2230 (2011).
    [CrossRef]
  44. S. O. Isikman, W. Bishara, H. Zhu, and A. Ozcan, “Optofluidic Tomography on a chip,” Appl. Phys. Lett. 98, 161109 (2011).
    [CrossRef]
  45. C. Oh, S. O. Isikman, B. Khademhosseini, and A. Ozcan, “On-chip differential interference contrast microscopy using lensless digital holography,” Opt. Express 18, 4717–4726 (2010).
    [CrossRef]
  46. O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010).
    [CrossRef]
  47. D. J. Brady, Optical Imaging and Spectroscopy (John Wiley & Sons, 2009).
  48. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company Publishers, 2005).
  49. W. Bishara, T. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18, 11181–11191 (2010).
    [CrossRef]
  50. W. Bishara, U. Sikora, O. Mudanyali, T. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11, 1276–1279 (2011).
    [CrossRef]
  51. J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D Microscopy and gene expression studies,” Science 296, 541–545 (2002).
    [CrossRef]
  52. M. Radermacher, Weighted Back-Projection Methods. Electron Tomography: Methods for Three Dimensional Visualization of Structures in the Cell, 2nd ed. (Springer, 2006).
  53. C. Messaoudi, T. Boudier, C. O. S. Sorzano, and S. Marco, “TomoJ: tomography software for three-dimensional reconstruction in transmission electron microscopy,” BMC Bioinfo. 8, 288 (2007).
  54. D. N. Mastronarde, “Dual-axis tomography: An approach with alignment methods that preserve resolution,” J. Struct. Biol. 120, 343–352 (1997).
    [CrossRef]
  55. W. Y. Oh, B. E. Bouma, N. Iftimia, R. Yelin, and G. J. Tearney, “Spectrally-modulated full-field optical coherence microscopy for ultrahigh-resolution endoscopic imaging,” Opt. Express 14, 8675–8684 (2006).
    [CrossRef]
  56. V. Ntziachristos, “Going deeper than microscopy: The optical imaging frontier in biology,” Nat. Methods 7, 603–614 (2010).
    [CrossRef]
  57. D. Psaltis, S. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
    [CrossRef]

2011 (8)

C. Fang-Yen, Y. Sung, C. J. Holbrow, R. R. Dasari, and M. S. Feld, “Video-rate tomographic phase microscopy,” J. Biomed. Opt. 16, 011005 (2011).
[CrossRef]

S. O. Isikman, W. Bishara, S. Mavandadi, S. W. Yu, S. Feng, R. Lau, and A. Ozcan, “Lens-free optical tomographic microscope with a large imaging volume on a chip,” Proc. Nat. Acad. Sci. 108, 7296–7301 (2011).

S. O. Isikman, W. Bishara, U. Sikora, O. Yaglidere, J. Yeah, and A. Ozcan, “Field-portable Lensfree Tomographic Microscope,” Lab Chip 11, 2222–2230 (2011).
[CrossRef]

S. O. Isikman, W. Bishara, H. Zhu, and A. Ozcan, “Optofluidic Tomography on a chip,” Appl. Phys. Lett. 98, 161109 (2011).
[CrossRef]

W. Bishara, U. Sikora, O. Mudanyali, T. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11, 1276–1279 (2011).
[CrossRef]

Y. C. Lin, C. J. Cheng, and T. C. Poon, “Optical sectioning with a low-coherence phase-shifting digital holographic microscope,” Appl. Opt. 50, B25–B30 (2011).
[CrossRef]

J. Hahn, S. Lim, K. Choi, R. Horisaki, and D. J. Brady, “Video-rate compressive holographic microscopic tomography,” Opt. Express 19, 7289–7298 (2011).
[CrossRef]

S. D. Babacan, Z. Wang, M. Do, and G. Popescu, “Cell imaging beyond the diffraction limit using sparse deconvolution spatial light interference microscopy,” Biomed. Opt. Express 2, 1815–1827 (2011).
[CrossRef]

2010 (7)

H. Ding and G. Popescu, “Instantaneous spatial light interference microscopy,” Opt. Express 18, 1569–1575 (2010).
[CrossRef]

C. Oh, S. O. Isikman, B. Khademhosseini, and A. Ozcan, “On-chip differential interference contrast microscopy using lensless digital holography,” Opt. Express 18, 4717–4726 (2010).
[CrossRef]

L. Tian, N. Loomis, J. A. Domínguez-Caballero, and G. Barbastathis, “Quantitative measurement of size and three-dimensional position of fast-moving bubbles in air-water mixture flows using digital holography,” Appl. Opt. 49, 1549–1554 (2010).
[CrossRef]

W. Bishara, T. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18, 11181–11191 (2010).
[CrossRef]

V. Ntziachristos, “Going deeper than microscopy: The optical imaging frontier in biology,” Nat. Methods 7, 603–614 (2010).
[CrossRef]

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010).
[CrossRef]

O. Haeberle, K. Belkebir, H. Giovaninni, and A. Sentenac, “Tomographic diffractive microscopy: Basics, techniques and perspectives,” J. Mod. Opt. 57, 686–699 (2010).
[CrossRef]

2009 (7)

2008 (3)

I. Moon and B. Javidi, “3-D visualization and identification of biological microorganisms using partially temporal incoherent light in-line computational holographic imaging,” IEEE Trans. Med. Imaging 27, 1782–1790 (2008).
[CrossRef]

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photon. 2, 190–195 (2008).
[CrossRef]

M. Debailleul, B. Simon, V. Georges, O. Haeberle, and V. Lauer, “Holographic microscopy and diffractive microtomography of transparent samples,” Meas. Sci. Technol. 19, 074009 (2008).
[CrossRef]

2007 (2)

C. Messaoudi, T. Boudier, C. O. S. Sorzano, and S. Marco, “TomoJ: tomography software for three-dimensional reconstruction in transmission electron microscopy,” BMC Bioinfo. 8, 288 (2007).

J. Rosen and G. Brooker, “Fluorescence incoherent color holography,” Opt. Express 15, 2244–2250 (2007).
[CrossRef]

2006 (5)

2005 (4)

2004 (1)

2003 (1)

2002 (1)

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D Microscopy and gene expression studies,” Science 296, 541–545 (2002).
[CrossRef]

2001 (1)

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).
[CrossRef]

1999 (3)

1998 (1)

1997 (2)

I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997).
[CrossRef]

D. N. Mastronarde, “Dual-axis tomography: An approach with alignment methods that preserve resolution,” J. Struct. Biol. 120, 343–352 (1997).
[CrossRef]

1996 (1)

T. C. Poon, M. H. Wu, K. Shinoda, and Y. Suzuki, “Optical scanning holography,” Proc. IEEE 84, 753–764 (1996).
[CrossRef]

1995 (1)

1994 (1)

1987 (1)

L. Onural and P. D. Scott, “Digital decoding of in-line holograms,” Opt. Eng. 26, 1124–1132 (1987).

1969 (1)

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
[CrossRef]

1965 (1)

1948 (1)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[CrossRef]

Ahlgren, U.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D Microscopy and gene expression studies,” Science 296, 541–545 (2002).
[CrossRef]

Babacan, S. D.

Badizadegan, K.

Baldock, R.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D Microscopy and gene expression studies,” Science 296, 541–545 (2002).
[CrossRef]

Barbastathis, G.

Belkebir, K.

O. Haeberle, K. Belkebir, H. Giovaninni, and A. Sentenac, “Tomographic diffractive microscopy: Basics, techniques and perspectives,” J. Mod. Opt. 57, 686–699 (2010).
[CrossRef]

Bevilacqua, F.

Bishara, W.

W. Bishara, U. Sikora, O. Mudanyali, T. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11, 1276–1279 (2011).
[CrossRef]

S. O. Isikman, W. Bishara, U. Sikora, O. Yaglidere, J. Yeah, and A. Ozcan, “Field-portable Lensfree Tomographic Microscope,” Lab Chip 11, 2222–2230 (2011).
[CrossRef]

S. O. Isikman, W. Bishara, H. Zhu, and A. Ozcan, “Optofluidic Tomography on a chip,” Appl. Phys. Lett. 98, 161109 (2011).
[CrossRef]

S. O. Isikman, W. Bishara, S. Mavandadi, S. W. Yu, S. Feng, R. Lau, and A. Ozcan, “Lens-free optical tomographic microscope with a large imaging volume on a chip,” Proc. Nat. Acad. Sci. 108, 7296–7301 (2011).

W. Bishara, T. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18, 11181–11191 (2010).
[CrossRef]

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010).
[CrossRef]

Boudier, T.

C. Messaoudi, T. Boudier, C. O. S. Sorzano, and S. Marco, “TomoJ: tomography software for three-dimensional reconstruction in transmission electron microscopy,” BMC Bioinfo. 8, 288 (2007).

Bouma, B. E.

Brady, D. J.

Brooker, G.

J. Rosen, B. Katz, and G. Brooker, “Review of three-dimensional holographic imaging by Fresnel incoherent correlation holograms,” 3D Research 1, 28–35 (2009).

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photon. 2, 190–195 (2008).
[CrossRef]

J. Rosen and G. Brooker, “Fluorescence incoherent color holography,” Opt. Express 15, 2244–2250 (2007).
[CrossRef]

Carapezza, E.

Carl, D.

Charrière, F.

Cheng, C. J.

Choi, K.

Choi, W.

Colomb, T.

Coppola, G.

Coskun, A. F.

Cuche, E.

Daneshpanah, M.

I. Moon, M. Daneshpanah, B. Javidi, and A. Stern, “Automated three dimensional identification and tracking of micro/nano biological organisms by computational holographic microscopy,” Proc. IEEE 97, 990–1010 (2009).
[CrossRef]

Dasari, R. R.

Davidson, D.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D Microscopy and gene expression studies,” Science 296, 541–545 (2002).
[CrossRef]

De Nicola, S.

Debailleul, M.

M. Debailleul, B. Simon, V. Georges, O. Haeberle, and V. Lauer, “Holographic microscopy and diffractive microtomography of transparent samples,” Meas. Sci. Technol. 19, 074009 (2008).
[CrossRef]

Depeursinge, C.

Ding, H.

Do, M.

Domínguez-Caballero, J. A.

Dubois, F.

Fang-Yen, C.

C. Fang-Yen, Y. Sung, C. J. Holbrow, R. R. Dasari, and M. S. Feld, “Video-rate tomographic phase microscopy,” J. Biomed. Opt. 16, 011005 (2011).
[CrossRef]

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
[CrossRef]

Feld, M. S.

Feng, S.

S. O. Isikman, W. Bishara, S. Mavandadi, S. W. Yu, S. Feng, R. Lau, and A. Ozcan, “Lens-free optical tomographic microscope with a large imaging volume on a chip,” Proc. Nat. Acad. Sci. 108, 7296–7301 (2011).

Ferraro, P.

Finizio, A.

Fixler, D.

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[CrossRef]

García, J.

Garcia-Sucerquia, J.

Georges, V.

M. Debailleul, B. Simon, V. Georges, O. Haeberle, and V. Lauer, “Holographic microscopy and diffractive microtomography of transparent samples,” Meas. Sci. Technol. 19, 074009 (2008).
[CrossRef]

Giovaninni, H.

O. Haeberle, K. Belkebir, H. Giovaninni, and A. Sentenac, “Tomographic diffractive microscopy: Basics, techniques and perspectives,” J. Mod. Opt. 57, 686–699 (2010).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (Roberts & Company Publishers, 2005).

Grilli, S.

Haeberle, O.

O. Haeberle, K. Belkebir, H. Giovaninni, and A. Sentenac, “Tomographic diffractive microscopy: Basics, techniques and perspectives,” J. Mod. Opt. 57, 686–699 (2010).
[CrossRef]

M. Debailleul, B. Simon, V. Georges, O. Haeberle, and V. Lauer, “Holographic microscopy and diffractive microtomography of transparent samples,” Meas. Sci. Technol. 19, 074009 (2008).
[CrossRef]

Hahn, J.

Haines, K. A.

Hecksher-Sørensen, J.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D Microscopy and gene expression studies,” Science 296, 541–545 (2002).
[CrossRef]

Heger, T. J.

Hill, B.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D Microscopy and gene expression studies,” Science 296, 541–545 (2002).
[CrossRef]

Holbrow, C. J.

C. Fang-Yen, Y. Sung, C. J. Holbrow, R. R. Dasari, and M. S. Feld, “Video-rate tomographic phase microscopy,” J. Biomed. Opt. 16, 011005 (2011).
[CrossRef]

Horisaki, R.

Hussain, F.

Iftimia, N.

Ikeda, T.

Indebetouw, G.

Isikman, S. O.

S. O. Isikman, W. Bishara, H. Zhu, and A. Ozcan, “Optofluidic Tomography on a chip,” Appl. Phys. Lett. 98, 161109 (2011).
[CrossRef]

S. O. Isikman, W. Bishara, S. Mavandadi, S. W. Yu, S. Feng, R. Lau, and A. Ozcan, “Lens-free optical tomographic microscope with a large imaging volume on a chip,” Proc. Nat. Acad. Sci. 108, 7296–7301 (2011).

S. O. Isikman, W. Bishara, U. Sikora, O. Yaglidere, J. Yeah, and A. Ozcan, “Field-portable Lensfree Tomographic Microscope,” Lab Chip 11, 2222–2230 (2011).
[CrossRef]

C. Oh, S. O. Isikman, B. Khademhosseini, and A. Ozcan, “On-chip differential interference contrast microscopy using lensless digital holography,” Opt. Express 18, 4717–4726 (2010).
[CrossRef]

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010).
[CrossRef]

Javidi, B.

I. Moon, M. Daneshpanah, B. Javidi, and A. Stern, “Automated three dimensional identification and tracking of micro/nano biological organisms by computational holographic microscopy,” Proc. IEEE 97, 990–1010 (2009).
[CrossRef]

I. Moon and B. Javidi, “3-D visualization and identification of biological microorganisms using partially temporal incoherent light in-line computational holographic imaging,” IEEE Trans. Med. Imaging 27, 1782–1790 (2008).
[CrossRef]

B. Javidi, I. Moon, S. Yeom, and E. Carapezza, “Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography,” Opt. Express 13, 4492–4506 (2005).
[CrossRef]

Jericho, M. H.

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006).
[CrossRef]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).
[CrossRef]

Jericho, S. K.

Joannes, L.

Jüptner, W.

Katz, B.

J. Rosen, B. Katz, and G. Brooker, “Review of three-dimensional holographic imaging by Fresnel incoherent correlation holograms,” 3D Research 1, 28–35 (2009).

Kemper, B.

Khademhosseini, B.

C. Oh, S. O. Isikman, B. Khademhosseini, and A. Ozcan, “On-chip differential interference contrast microscopy using lensless digital holography,” Opt. Express 18, 4717–4726 (2010).
[CrossRef]

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010).
[CrossRef]

Kim, M. K.

Klages, P.

Kou, S. S.

Kreuzer, H. J.

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006).
[CrossRef]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).
[CrossRef]

Lam, E. Y.

Lau, R.

S. O. Isikman, W. Bishara, S. Mavandadi, S. W. Yu, S. Feng, R. Lau, and A. Ozcan, “Lens-free optical tomographic microscope with a large imaging volume on a chip,” Proc. Nat. Acad. Sci. 108, 7296–7301 (2011).

Lauer, V.

M. Debailleul, B. Simon, V. Georges, O. Haeberle, and V. Lauer, “Holographic microscopy and diffractive microtomography of transparent samples,” Meas. Sci. Technol. 19, 074009 (2008).
[CrossRef]

Legro, J. C.

Leith, E. N.

León, L. M.

Lim, S.

Lin, Y. C.

Liu, J. P.

Lohmann, A. W.

Z. Zalevsky, D. Mendlovic, and A. W. Lohmann, “Super resolution optical systems using fixed gratings,” Opt. Commun. 163, 79–85 (1999).
[CrossRef]

Loomis, N.

Luckhart, S.

W. Bishara, U. Sikora, O. Mudanyali, T. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11, 1276–1279 (2011).
[CrossRef]

Magro, C.

Marco, S.

C. Messaoudi, T. Boudier, C. O. S. Sorzano, and S. Marco, “TomoJ: tomography software for three-dimensional reconstruction in transmission electron microscopy,” BMC Bioinfo. 8, 288 (2007).

Marks, D. L.

Marquet, P.

Mastronarde, D. N.

D. N. Mastronarde, “Dual-axis tomography: An approach with alignment methods that preserve resolution,” J. Struct. Biol. 120, 343–352 (1997).
[CrossRef]

Mavandadi, S.

S. O. Isikman, W. Bishara, S. Mavandadi, S. W. Yu, S. Feng, R. Lau, and A. Ozcan, “Lens-free optical tomographic microscope with a large imaging volume on a chip,” Proc. Nat. Acad. Sci. 108, 7296–7301 (2011).

Meinertzhagen, I. A.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).
[CrossRef]

Mendlovic, D.

Z. Zalevsky, D. Mendlovic, and A. W. Lohmann, “Super resolution optical systems using fixed gratings,” Opt. Commun. 163, 79–85 (1999).
[CrossRef]

Z. Zalevsky and D. Mendlovic, Optical Super Resolution (Springer, Heidelberg, 2002).

Meng, H.

Messaoudi, C.

C. Messaoudi, T. Boudier, C. O. S. Sorzano, and S. Marco, “TomoJ: tomography software for three-dimensional reconstruction in transmission electron microscopy,” BMC Bioinfo. 8, 288 (2007).

Mitchell, E. A. D.

Moon, I.

I. Moon, M. Daneshpanah, B. Javidi, and A. Stern, “Automated three dimensional identification and tracking of micro/nano biological organisms by computational holographic microscopy,” Proc. IEEE 97, 990–1010 (2009).
[CrossRef]

I. Moon and B. Javidi, “3-D visualization and identification of biological microorganisms using partially temporal incoherent light in-line computational holographic imaging,” IEEE Trans. Med. Imaging 27, 1782–1790 (2008).
[CrossRef]

B. Javidi, I. Moon, S. Yeom, and E. Carapezza, “Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography,” Opt. Express 13, 4492–4506 (2005).
[CrossRef]

Mudanyali, O.

W. Bishara, U. Sikora, O. Mudanyali, T. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11, 1276–1279 (2011).
[CrossRef]

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010).
[CrossRef]

Ntziachristos, V.

V. Ntziachristos, “Going deeper than microscopy: The optical imaging frontier in biology,” Nat. Methods 7, 603–614 (2010).
[CrossRef]

Oh, C.

C. Oh, S. O. Isikman, B. Khademhosseini, and A. Ozcan, “On-chip differential interference contrast microscopy using lensless digital holography,” Opt. Express 18, 4717–4726 (2010).
[CrossRef]

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010).
[CrossRef]

Oh, W. Y.

Onural, L.

L. Onural and P. D. Scott, “Digital decoding of in-line holograms,” Opt. Eng. 26, 1124–1132 (1987).

Osten, W.

Ozcan, A.

S. O. Isikman, W. Bishara, H. Zhu, and A. Ozcan, “Optofluidic Tomography on a chip,” Appl. Phys. Lett. 98, 161109 (2011).
[CrossRef]

S. O. Isikman, W. Bishara, S. Mavandadi, S. W. Yu, S. Feng, R. Lau, and A. Ozcan, “Lens-free optical tomographic microscope with a large imaging volume on a chip,” Proc. Nat. Acad. Sci. 108, 7296–7301 (2011).

W. Bishara, U. Sikora, O. Mudanyali, T. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11, 1276–1279 (2011).
[CrossRef]

S. O. Isikman, W. Bishara, U. Sikora, O. Yaglidere, J. Yeah, and A. Ozcan, “Field-portable Lensfree Tomographic Microscope,” Lab Chip 11, 2222–2230 (2011).
[CrossRef]

C. Oh, S. O. Isikman, B. Khademhosseini, and A. Ozcan, “On-chip differential interference contrast microscopy using lensless digital holography,” Opt. Express 18, 4717–4726 (2010).
[CrossRef]

W. Bishara, T. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18, 11181–11191 (2010).
[CrossRef]

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010).
[CrossRef]

Oztoprak, C.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010).
[CrossRef]

Pavillon, N.

Pedrini, G.

Perry, P.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D Microscopy and gene expression studies,” Science 296, 541–545 (2002).
[CrossRef]

Pierattini, G.

Poon, T. C.

Popescu, G.

Psaltis, D.

D. Psaltis, S. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[CrossRef]

Quake, S.

D. Psaltis, S. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[CrossRef]

Radermacher, M.

M. Radermacher, Weighted Back-Projection Methods. Electron Tomography: Methods for Three Dimensional Visualization of Structures in the Cell, 2nd ed. (Springer, 2006).

Rappaz, B.

Rosen, J.

J. Rosen, B. Katz, and G. Brooker, “Review of three-dimensional holographic imaging by Fresnel incoherent correlation holograms,” 3D Research 1, 28–35 (2009).

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photon. 2, 190–195 (2008).
[CrossRef]

J. Rosen and G. Brooker, “Fluorescence incoherent color holography,” Opt. Express 15, 2244–2250 (2007).
[CrossRef]

Ross, A.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D Microscopy and gene expression studies,” Science 296, 541–545 (2002).
[CrossRef]

Schnars, U.

Scott, P. D.

L. Onural and P. D. Scott, “Digital decoding of in-line holograms,” Opt. Eng. 26, 1124–1132 (1987).

Sencan, I.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010).
[CrossRef]

Sentenac, A.

O. Haeberle, K. Belkebir, H. Giovaninni, and A. Sentenac, “Tomographic diffractive microscopy: Basics, techniques and perspectives,” J. Mod. Opt. 57, 686–699 (2010).
[CrossRef]

Seo, S.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010).
[CrossRef]

Sharpe, J.

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D Microscopy and gene expression studies,” Science 296, 541–545 (2002).
[CrossRef]

Sheppard, C. J. R.

Shinoda, K.

T. C. Poon, M. H. Wu, K. Shinoda, and Y. Suzuki, “Optical scanning holography,” Proc. IEEE 84, 753–764 (1996).
[CrossRef]

Sikora, U.

W. Bishara, U. Sikora, O. Mudanyali, T. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11, 1276–1279 (2011).
[CrossRef]

S. O. Isikman, W. Bishara, U. Sikora, O. Yaglidere, J. Yeah, and A. Ozcan, “Field-portable Lensfree Tomographic Microscope,” Lab Chip 11, 2222–2230 (2011).
[CrossRef]

Simon, B.

M. Debailleul, B. Simon, V. Georges, O. Haeberle, and V. Lauer, “Holographic microscopy and diffractive microtomography of transparent samples,” Meas. Sci. Technol. 19, 074009 (2008).
[CrossRef]

Sorzano, C. O. S.

C. Messaoudi, T. Boudier, C. O. S. Sorzano, and S. Marco, “TomoJ: tomography software for three-dimensional reconstruction in transmission electron microscopy,” BMC Bioinfo. 8, 288 (2007).

Stern, A.

I. Moon, M. Daneshpanah, B. Javidi, and A. Stern, “Automated three dimensional identification and tracking of micro/nano biological organisms by computational holographic microscopy,” Proc. IEEE 97, 990–1010 (2009).
[CrossRef]

Su, T.

W. Bishara, U. Sikora, O. Mudanyali, T. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11, 1276–1279 (2011).
[CrossRef]

W. Bishara, T. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18, 11181–11191 (2010).
[CrossRef]

Sung, Y.

C. Fang-Yen, Y. Sung, C. J. Holbrow, R. R. Dasari, and M. S. Feld, “Video-rate tomographic phase microscopy,” J. Biomed. Opt. 16, 011005 (2011).
[CrossRef]

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
[CrossRef]

Suzuki, Y.

T. C. Poon, M. H. Wu, K. Shinoda, and Y. Suzuki, “Optical scanning holography,” Proc. IEEE 84, 753–764 (1996).
[CrossRef]

Tearney, G. J.

Tian, L.

Tseng, D.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010).
[CrossRef]

Upatnieks, J.

Vo, H.

von Ball, G.

Wang, Z.

Wernicke, G.

Wolf, E.

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
[CrossRef]

Wu, M. H.

T. C. Poon, M. H. Wu, K. Shinoda, and Y. Suzuki, “Optical scanning holography,” Proc. IEEE 84, 753–764 (1996).
[CrossRef]

Xu, W.

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006).
[CrossRef]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).
[CrossRef]

Yaglidere, O.

W. Bishara, U. Sikora, O. Mudanyali, T. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11, 1276–1279 (2011).
[CrossRef]

S. O. Isikman, W. Bishara, U. Sikora, O. Yaglidere, J. Yeah, and A. Ozcan, “Field-portable Lensfree Tomographic Microscope,” Lab Chip 11, 2222–2230 (2011).
[CrossRef]

Yamaguchi, I.

Yang, C.

D. Psaltis, S. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[CrossRef]

Yeah, J.

S. O. Isikman, W. Bishara, U. Sikora, O. Yaglidere, J. Yeah, and A. Ozcan, “Field-portable Lensfree Tomographic Microscope,” Lab Chip 11, 2222–2230 (2011).
[CrossRef]

Yelin, R.

Yeom, S.

Yu, L.

Yu, S. W.

S. O. Isikman, W. Bishara, S. Mavandadi, S. W. Yu, S. Feng, R. Lau, and A. Ozcan, “Lens-free optical tomographic microscope with a large imaging volume on a chip,” Proc. Nat. Acad. Sci. 108, 7296–7301 (2011).

Zalevsky, Z.

J. García, Z. Zalevsky, and D. Fixler, “Synthetic aperture superresolution by speckle pattern projection,” Opt. Express 13, 6073–6078 (2005).
[CrossRef]

Z. Zalevsky, D. Mendlovic, and A. W. Lohmann, “Super resolution optical systems using fixed gratings,” Opt. Commun. 163, 79–85 (1999).
[CrossRef]

Z. Zalevsky and D. Mendlovic, Optical Super Resolution (Springer, Heidelberg, 2002).

Zhang, T.

Zhang, X.

Zhu, H.

S. O. Isikman, W. Bishara, H. Zhu, and A. Ozcan, “Optofluidic Tomography on a chip,” Appl. Phys. Lett. 98, 161109 (2011).
[CrossRef]

3D Research (1)

J. Rosen, B. Katz, and G. Brooker, “Review of three-dimensional holographic imaging by Fresnel incoherent correlation holograms,” 3D Research 1, 28–35 (2009).

Appl. Opt. (11)

U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).
[CrossRef]

F. Dubois, L. Joannes, and J. C. Legro, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38, 7085–7094 (1999).
[CrossRef]

H. Meng and F. Hussain, “In-line recording and off-axis viewing technique for holographic particle velocimetry,” Appl. Opt. 34, 1827–1840 (1995).
[CrossRef]

P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42, 1938–1946 (2003).

D. Carl, B. Kemper, G. Wernicke, and G. von Ball, “Parameter-optimized digital holographic microscope for high-resolution living-cell analysis,” Appl. Opt. 43, 6536–6544 (2004).
[CrossRef]

L. M. León, G. Pedrini, and W. Osten, “Applications of short-coherence digital holography in microscopy,” Appl. Opt. 44, 3977–3984 (2005).
[CrossRef]

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006).
[CrossRef]

E. Y. Lam, X. Zhang, H. Vo, T. C. Poon, and G. Indebetouw, “Three-dimensional microscopy and sectional image reconstruction using optical scanning holography,” Appl. Opt. 48, H113–H119 (2009).
[CrossRef]

S. S. Kou and C. J. R. Sheppard, “Image formation in holographic tomography: high-aperture imaging conditions,” Appl. Opt. 48, H168–H175 (2009).
[CrossRef]

L. Tian, N. Loomis, J. A. Domínguez-Caballero, and G. Barbastathis, “Quantitative measurement of size and three-dimensional position of fast-moving bubbles in air-water mixture flows using digital holography,” Appl. Opt. 49, 1549–1554 (2010).
[CrossRef]

Y. C. Lin, C. J. Cheng, and T. C. Poon, “Optical sectioning with a low-coherence phase-shifting digital holographic microscope,” Appl. Opt. 50, B25–B30 (2011).
[CrossRef]

Appl. Phys. Lett. (1)

S. O. Isikman, W. Bishara, H. Zhu, and A. Ozcan, “Optofluidic Tomography on a chip,” Appl. Phys. Lett. 98, 161109 (2011).
[CrossRef]

Biomed. Opt. Express (1)

BMC Bioinfo. (1)

C. Messaoudi, T. Boudier, C. O. S. Sorzano, and S. Marco, “TomoJ: tomography software for three-dimensional reconstruction in transmission electron microscopy,” BMC Bioinfo. 8, 288 (2007).

IEEE Trans. Med. Imaging (1)

I. Moon and B. Javidi, “3-D visualization and identification of biological microorganisms using partially temporal incoherent light in-line computational holographic imaging,” IEEE Trans. Med. Imaging 27, 1782–1790 (2008).
[CrossRef]

J. Biomed. Opt. (1)

C. Fang-Yen, Y. Sung, C. J. Holbrow, R. R. Dasari, and M. S. Feld, “Video-rate tomographic phase microscopy,” J. Biomed. Opt. 16, 011005 (2011).
[CrossRef]

J. Mod. Opt. (1)

O. Haeberle, K. Belkebir, H. Giovaninni, and A. Sentenac, “Tomographic diffractive microscopy: Basics, techniques and perspectives,” J. Mod. Opt. 57, 686–699 (2010).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Struct. Biol. (1)

D. N. Mastronarde, “Dual-axis tomography: An approach with alignment methods that preserve resolution,” J. Struct. Biol. 120, 343–352 (1997).
[CrossRef]

Lab Chip (3)

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010).
[CrossRef]

W. Bishara, U. Sikora, O. Mudanyali, T. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11, 1276–1279 (2011).
[CrossRef]

S. O. Isikman, W. Bishara, U. Sikora, O. Yaglidere, J. Yeah, and A. Ozcan, “Field-portable Lensfree Tomographic Microscope,” Lab Chip 11, 2222–2230 (2011).
[CrossRef]

Meas. Sci. Technol. (1)

M. Debailleul, B. Simon, V. Georges, O. Haeberle, and V. Lauer, “Holographic microscopy and diffractive microtomography of transparent samples,” Meas. Sci. Technol. 19, 074009 (2008).
[CrossRef]

Nat. Methods (1)

V. Ntziachristos, “Going deeper than microscopy: The optical imaging frontier in biology,” Nat. Methods 7, 603–614 (2010).
[CrossRef]

Nat. Photon. (1)

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photon. 2, 190–195 (2008).
[CrossRef]

Nature (2)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[CrossRef]

D. Psaltis, S. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[CrossRef]

Opt. Commun. (2)

Z. Zalevsky, D. Mendlovic, and A. W. Lohmann, “Super resolution optical systems using fixed gratings,” Opt. Commun. 163, 79–85 (1999).
[CrossRef]

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
[CrossRef]

Opt. Eng. (1)

L. Onural and P. D. Scott, “Digital decoding of in-line holograms,” Opt. Eng. 26, 1124–1132 (1987).

Opt. Express (11)

B. Javidi, I. Moon, S. Yeom, and E. Carapezza, “Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography,” Opt. Express 13, 4492–4506 (2005).
[CrossRef]

J. Hahn, S. Lim, K. Choi, R. Horisaki, and D. J. Brady, “Video-rate compressive holographic microscopic tomography,” Opt. Express 19, 7289–7298 (2011).
[CrossRef]

W. Bishara, T. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18, 11181–11191 (2010).
[CrossRef]

J. García, Z. Zalevsky, and D. Fixler, “Synthetic aperture superresolution by speckle pattern projection,” Opt. Express 13, 6073–6078 (2005).
[CrossRef]

D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17, 13040–13049 (2009).
[CrossRef]

H. Ding and G. Popescu, “Instantaneous spatial light interference microscopy,” Opt. Express 18, 1569–1575 (2010).
[CrossRef]

C. Oh, S. O. Isikman, B. Khademhosseini, and A. Ozcan, “On-chip differential interference contrast microscopy using lensless digital holography,” Opt. Express 18, 4717–4726 (2010).
[CrossRef]

F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. D. Mitchell, P. Marquet, and B. Rappaz, “Living specimen tomography by digital holographic microscopy: Morphometry of testate amoeba,” Opt. Express 14, 7005–7013 (2006).
[CrossRef]

W. Y. Oh, B. E. Bouma, N. Iftimia, R. Yelin, and G. J. Tearney, “Spectrally-modulated full-field optical coherence microscopy for ultrahigh-resolution endoscopic imaging,” Opt. Express 14, 8675–8684 (2006).
[CrossRef]

J. Rosen and G. Brooker, “Fluorescence incoherent color holography,” Opt. Express 15, 2244–2250 (2007).
[CrossRef]

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
[CrossRef]

Opt. Lett. (6)

Proc. IEEE (2)

T. C. Poon, M. H. Wu, K. Shinoda, and Y. Suzuki, “Optical scanning holography,” Proc. IEEE 84, 753–764 (1996).
[CrossRef]

I. Moon, M. Daneshpanah, B. Javidi, and A. Stern, “Automated three dimensional identification and tracking of micro/nano biological organisms by computational holographic microscopy,” Proc. IEEE 97, 990–1010 (2009).
[CrossRef]

Proc. Nat. Acad. Sci. (1)

S. O. Isikman, W. Bishara, S. Mavandadi, S. W. Yu, S. Feng, R. Lau, and A. Ozcan, “Lens-free optical tomographic microscope with a large imaging volume on a chip,” Proc. Nat. Acad. Sci. 108, 7296–7301 (2011).

Proc. Natl. Acad. Sci. USA (1)

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).
[CrossRef]

Science (1)

J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D Microscopy and gene expression studies,” Science 296, 541–545 (2002).
[CrossRef]

Other (4)

M. Radermacher, Weighted Back-Projection Methods. Electron Tomography: Methods for Three Dimensional Visualization of Structures in the Cell, 2nd ed. (Springer, 2006).

D. J. Brady, Optical Imaging and Spectroscopy (John Wiley & Sons, 2009).

J. W. Goodman, Introduction to Fourier Optics (Roberts & Company Publishers, 2005).

Z. Zalevsky and D. Mendlovic, Optical Super Resolution (Springer, Heidelberg, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Shows an illustration of the lensfree on-chip holography platform. The objects are placed on the top of an optoelectronic sensor array, with <4mm distance to its active area. The sensor records the holograms of objects as a partially coherent light source, such as an LED placed 40100mm away from the sensor, provides illumination. The LED illumination is spatially filtered by an aperture of diameter (D) of 0.050.1mm. Since holograms are recorded with unit fringe-magnification, imaging FOV equals the active area of the sensor, e.g., 24mm2.

Fig. 2.
Fig. 2.

(a) Shows a recorded lower-resolution (LR) hologram of a “UCLA” pattern etched on glass using focused-ion beam (FIB) milling. The aliasing artifacts can be observed in the fringes away from the hologram center. (b) Shows the pixel super-resolved (SR) hologram synthesized by using multiple (1520) slightly shifted LR holograms, one of which is shown in (a). (c) and (d) show the reconstructed phase images using the LR and SR holograms, respectively. The color-bar applies to the reconstructed phase images in (c) and (d), and its unit is radians.

Fig. 3.
Fig. 3.

(a1–a3) Show slice images (for a microsphere with 2 μm diameter) in x-y, y-z and x-z planes, respectively, obtained by reconstructing a raw LR hologram at different depths along the optic axis (z-axis). (b1–b3) Similar to (a1–a3), but obtained by reconstructing an SR hologram of the same microparticle. View 1 and View 2 provide the full 3D datasets for LR and SR reconstructions, respectively.

Fig. 4.
Fig. 4.

(a) Shows the schematic illustration of the bench-top implementation of lensfree optical tomography system. The sample is sequentially illuminated from multiple angles, and PSR is employed at each angle to obtain high-resolution projection images for different viewing directions. (b) Illustrates the field-portable tomographic microscope that weighs only 110 grams, particularly designed for low-resource settings. Multimode optical fibers (with 0.1mm core diameter) are electromagnetically actuated to record subpixel shifted holograms and achieve PSR. (c) A photograph of the field-portable tomographic microscope is shown.

Fig. 5.
Fig. 5.

(a1–a3) Shows the cropped PSR holograms for three different angles of partially coherent illumination. The sample is a chamber filled with randomly distributed microspheres with 2 μm diameter. (b1–b3) Shows the projection images obtained by reconstructing the holograms in (a1–a3). These images are registered with respect to the same microparticle that is seen at the center of each projection image. The microparticles in the projection images are indeed at different depth layers, as a result of which the projection images look different at different angles. Nevertheless, due to the low axial-resolution of in-line holography, all the particles appear to be in-focus in each image.

Fig. 6.
Fig. 6.

(a) Shows a recorded hologram with 24mm2 FOV for the case of vertical illumination. (b) Shows the holographic reconstruction for a small region-of-interest within the large imaging FOV, where all the beads appear in-focus. (c1–c4) Show depth-resolved slice images in the x-y plane for different depths, obtained by tomographic reconstruction. The sectioning results provided by lensfree optical tomography can be compared against the section images in (d1–d4) obtained using a conventional bright-field microscope (0.65-NA) that focused at different depth layers. Full 3D datasets for computed tomograms are provided in View 3.

Fig. 7.
Fig. 7.

(a1–a3) Show slice images for a 2 μm bead in the x-y, y-z and x-z planes, respectively. Since the tomograms are computed with a dual-axis scheme (light source is rotated along x and y axes, sequentially), the x-y cross-section does not show any asymmetrical artifacts that are normally observed in limited-angle single-axis tomography. On the other hand, the elongation in the axial direction is not entirely eliminated. (b1–b3) Show the line profiles for beads at three different depth regions in the camber. The FWHM values for the lateral line profiles (along x and y) are measured as 2.2μm, while the axial FWHM is 5.5μm.

Fig. 8.
Fig. 8.

Shows the change in lateral (left) and axial (right) resolution as the sample-to-sensor distance (z2) is increased. Spatial resolution achieved by lensfree tomography degrades approximately by a factor of 2 at z24mm compared to z21mm.

Datasets

Datasets associated with ISP articles are stored in an online database called MIDAS. Clicking a "View" link in an OSA ISP article will launch the ISP software (if installed) and pull the relevant data from MIDAS. Visit MIDAS to browse and download the datasets directly. A package containing the PDF article and full datasets is available in MIDAS for offline viewing.

Questions or Problems? See the ISP FAQ. Already used the ISP software? Take a quick survey to tell us what you think.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

W(x1,y1,x2,y2,γ)=S(γ)p(x1,y1)δ(x1x2)δ(y1y2),
W(Δx,Δy,q,γ)=S(γ)(λz1)2ej2πγqcz1p(x,y)ej2πλz1(xΔx+yΔy)dxdy,
W(xD1,yD1,xD2,yD2,γ)=W(Δx,Δy,q,γ)t*(x1,y1)t(x2,y2)hc*(x1,xD1,y1,yD1,γ)hc(x2,xD2,y2,yD2,γ)dx1dy1dx2dy2,
C(xD,yD)=D0+|c1|2S0(λ0z1z2)2P˜(0,0)+|c2|2S0(λ0z1z2)2P˜(0,0),
I(xD,yD)=c2c1*S0(λ0z1z2)2P˜(2aλ0z1,0)ej4πaxDλ0z2+c.c.,
H1(xD,yD)=S0(λ0z1)2[c1·{p(xD·M+a·M·F,yD·M)*hc(xD,yD)}+c.c.],
H2(xD,yD)=S0(λ0z1)2[c2·{p(xD·Ma·M·F,yD·M)*hc(xD,yD)}+c.c.].
H(xD,yD)S0(λ0z1)2(z2z1)2[{s(xDF,yDF)*hc(xD,yD)}+c.c.],
|s(xθ,yθ,zθ)|·dzθ,

Metrics