Abstract

A technique is presented for realistic rendering in polygon-based computer-generated holograms (CGHs). In this technique, the spatial spectrum of the reflected light is modified to imitate specular reflection. The spectral envelopes of the reflected light are fitted to a spectral shape based on the Phong reflection model used in computer graphics. The technique features fast computation of the field of objects, composed of many specular polygons, and is applicable to creating high-definition CGHs with several billions of pixels. An actual high-definition CGH is created using the proposed technique and is demonstrated for verification of the optical reconstruction of specular surfaces.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Matsushima and S. Nakahara, “Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method,” Appl. Opt. 48, H54–H63 (2009).
    [CrossRef]
  2. K. Matsushima and S. Nakahara, “High-definition full-parallax CGHs created by using the polygon-based method and the shifted angular spectrum method,” Proc. SPIE 7619, 761913 (2010).
    [CrossRef]
  3. K. Matsushima, M. Nakamura, and S. Nakahara, “Novel techniques introduced into polygon-based high-definition CGHs,” in Topical Meeting on Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JMA10.
  4. K. Matsusima, M. Nakamura, I. Kanaya, and S. Nakahara, “Computational holography: real 3-D by fast wave-field rendering in ultra high resolution,” in Proceedings of SIGGRAPH Posters 2010 (ACM, 2010), http://doi.acm.org/10.1145/1836845.1836974 .
  5. H. Nishi, K. Higashi, Y. Arima, K. Matsushima, and S. Nakahara, “New techniques for wave-field rendering of polygon-based high-definition CGHs,” Proc. SPIE 7957, 79571A (2011).
    [CrossRef]
  6. J. P. Waters, “Holographic image synthesis utilizing theoretical methods,” Appl. Phys. Lett. 9, 405–407 (1966).
    [CrossRef]
  7. A. D. Stein, Z. Wang, and J. J. S. Leigh, “Computer-generated holograms: a simplified ray-tracing approach,” Comput. Phys. 6, 389–392 (1992).
    [CrossRef]
  8. M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2, 28–34 (1993).
    [CrossRef]
  9. A. Ritter, J. Böttger, O. Deussen, M. König, and T. Strothotte, “Hardware-based rendering of full-parallax synthetic holograms,” Appl. Opt. 38, 1364–1369 (1999).
    [CrossRef]
  10. K. Matsushima and M. Takai, “Recurrence formulas for fast creation of synthetic three-dimensional holograms,” Appl. Opt. 39, 6587–6594 (2000).
    [CrossRef]
  11. H. Yoshikawa, S. Iwase, and T. Oneda, “Fast computation of Fresnel holograms employing difference,” Proc. SPIE 3956, 48–55 (2000).
    [CrossRef]
  12. N. Masuda, T. Ito, T. Tanaka, A. Shiraki, and T. Sugie, “Computer generated holography using a graphics processing unit,” Opt. Express 14, 603–608 (2006).
    [CrossRef]
  13. Y. Ichihashi, H. Nakayama, T. Ito, N. Masuda, T. Shimobaba, A. Shiraki, and T. Sugie, “HORN-6 special-purpose clustered computing system for electroholography,” Opt. Express 17, 13895–13903 (2009).
    [CrossRef]
  14. N. T. Shaked, B. Katz, and J. Rosen, “Review of three-dimensional holographic imaging by multiple-viewpoint-projection based methods,” Appl. Opt. 48, H120–H136 (2009).
    [CrossRef]
  15. T. Yatagai, “Stereoscopic approach to 3-D display using computer-generated holograms,” Appl. Opt. 15, 2722–2729 (1976).
    [CrossRef]
  16. H. Kang, T. Fujii, T. Yamaguchi, and H. Yoshikawa, “Compensated phase-added stereogram for real-time holographic display,” Opt. Eng. 46, 095802 (2007).
    [CrossRef]
  17. K. Wakunami and M. Yamaguchi, “Calculation for computer generated hologram using ray-sampling plane,” Opt. Express 19, 9086–9101 (2011).
    [CrossRef]
  18. A. W. Lohmann, “Three-dimensional properties of wave-fields,” Optik 51, 105–117 (1978).
  19. M. Bayraktar and M. Özcan, “Method to calculate the far field of three-dimensional objects for computer-generated holography,” Appl. Opt. 49, 4647–4654 (2010).
    [CrossRef]
  20. K. Matsushima, “Computer-generated holograms for three-dimensional surface objects with shade and texture,” Appl. Opt. 44, 4607–4614 (2005).
    [CrossRef]
  21. L. Ahrenberg, P. Benzie, M. Magnor, and J. Watson, “Computer generated holograms from three dimensional meshes using an analytic light transport model,” Appl. Opt. 47, 1567–1574 (2008).
    [CrossRef]
  22. H. Kim, J. Hahn, and B. Lee, “Mathematical modeling of triangle-mesh-modeled three-dimensional surface objects for digital holography,” Appl. Opt. 47, D117–D127(2008).
    [CrossRef]
  23. Y.-Z. Liu, J.-W. Dong, Y.-Y. Pu, B.-C. Chen, H.-X. He, and H.-Z. Wang, “High-speed full analytical holographic computations for true-life scenes,” Opt. Express 18, 3345–3351(2010).
    [CrossRef]
  24. K. Yamaguchi and Y. Sakamoto, “Computer generated hologram with characteristics of reflection: reflectance distributions and reflected images,” Appl. Opt. 48, H203–H211 (2009).
    [CrossRef]
  25. T. Ichikawa, Y. Sakamoto, A. Subagyo, and K. Sueoka, “A method of calculating reflectance distributions for CGH with FDTD using the structure of actual surfaces,” Proc. SPIE 7957, 795707 (2011).
    [CrossRef]
  26. M. Janda, I. Hanák, and L. Onural, “Hologram synthesis for photorealistic reconstruction,” J. Opt. Soc. Am. A 25, 3083–3096 (2008).
    [CrossRef]
  27. Y. Sakamoto and Y. Yamashita, “An algorithm for object-light calculation considering reflectance distribution for computer-generated holograms,” J. Inst. Image Inf. Television Eng. 56, 611–616 (2002), in Japanese.
    [CrossRef]
  28. Y. Sakamoto and A. Tsuruno, “A representation method for object surface glossiness in computer-generated hologram,” IEICE Trans. Inf. Syst. 2 J88-D-2, 2046–2053 (2005), in Japanese.
  29. K. Matsushima, H. Nishi, and S. Nakahara are preparing a manuscript to be called “Simple wave-field rendering for photorealistic reconstruction in polygon-based high-definition computer holography.”
  30. B. T. Phong, “Illumination for computer generated pictures,” Commun. ACM 18, 311–317 (1975).
    [CrossRef]

2011

H. Nishi, K. Higashi, Y. Arima, K. Matsushima, and S. Nakahara, “New techniques for wave-field rendering of polygon-based high-definition CGHs,” Proc. SPIE 7957, 79571A (2011).
[CrossRef]

K. Wakunami and M. Yamaguchi, “Calculation for computer generated hologram using ray-sampling plane,” Opt. Express 19, 9086–9101 (2011).
[CrossRef]

T. Ichikawa, Y. Sakamoto, A. Subagyo, and K. Sueoka, “A method of calculating reflectance distributions for CGH with FDTD using the structure of actual surfaces,” Proc. SPIE 7957, 795707 (2011).
[CrossRef]

2010

2009

2008

2007

H. Kang, T. Fujii, T. Yamaguchi, and H. Yoshikawa, “Compensated phase-added stereogram for real-time holographic display,” Opt. Eng. 46, 095802 (2007).
[CrossRef]

2006

2005

K. Matsushima, “Computer-generated holograms for three-dimensional surface objects with shade and texture,” Appl. Opt. 44, 4607–4614 (2005).
[CrossRef]

Y. Sakamoto and A. Tsuruno, “A representation method for object surface glossiness in computer-generated hologram,” IEICE Trans. Inf. Syst. 2 J88-D-2, 2046–2053 (2005), in Japanese.

2002

Y. Sakamoto and Y. Yamashita, “An algorithm for object-light calculation considering reflectance distribution for computer-generated holograms,” J. Inst. Image Inf. Television Eng. 56, 611–616 (2002), in Japanese.
[CrossRef]

2000

K. Matsushima and M. Takai, “Recurrence formulas for fast creation of synthetic three-dimensional holograms,” Appl. Opt. 39, 6587–6594 (2000).
[CrossRef]

H. Yoshikawa, S. Iwase, and T. Oneda, “Fast computation of Fresnel holograms employing difference,” Proc. SPIE 3956, 48–55 (2000).
[CrossRef]

1999

1993

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2, 28–34 (1993).
[CrossRef]

1992

A. D. Stein, Z. Wang, and J. J. S. Leigh, “Computer-generated holograms: a simplified ray-tracing approach,” Comput. Phys. 6, 389–392 (1992).
[CrossRef]

1978

A. W. Lohmann, “Three-dimensional properties of wave-fields,” Optik 51, 105–117 (1978).

1976

1975

B. T. Phong, “Illumination for computer generated pictures,” Commun. ACM 18, 311–317 (1975).
[CrossRef]

1966

J. P. Waters, “Holographic image synthesis utilizing theoretical methods,” Appl. Phys. Lett. 9, 405–407 (1966).
[CrossRef]

Ahrenberg, L.

Arima, Y.

H. Nishi, K. Higashi, Y. Arima, K. Matsushima, and S. Nakahara, “New techniques for wave-field rendering of polygon-based high-definition CGHs,” Proc. SPIE 7957, 79571A (2011).
[CrossRef]

Bayraktar, M.

Benzie, P.

Böttger, J.

Chen, B.-C.

Deussen, O.

Dong, J.-W.

Fujii, T.

H. Kang, T. Fujii, T. Yamaguchi, and H. Yoshikawa, “Compensated phase-added stereogram for real-time holographic display,” Opt. Eng. 46, 095802 (2007).
[CrossRef]

Hahn, J.

Hanák, I.

He, H.-X.

Higashi, K.

H. Nishi, K. Higashi, Y. Arima, K. Matsushima, and S. Nakahara, “New techniques for wave-field rendering of polygon-based high-definition CGHs,” Proc. SPIE 7957, 79571A (2011).
[CrossRef]

Ichihashi, Y.

Ichikawa, T.

T. Ichikawa, Y. Sakamoto, A. Subagyo, and K. Sueoka, “A method of calculating reflectance distributions for CGH with FDTD using the structure of actual surfaces,” Proc. SPIE 7957, 795707 (2011).
[CrossRef]

Ito, T.

Iwase, S.

H. Yoshikawa, S. Iwase, and T. Oneda, “Fast computation of Fresnel holograms employing difference,” Proc. SPIE 3956, 48–55 (2000).
[CrossRef]

Janda, M.

Kanaya, I.

K. Matsusima, M. Nakamura, I. Kanaya, and S. Nakahara, “Computational holography: real 3-D by fast wave-field rendering in ultra high resolution,” in Proceedings of SIGGRAPH Posters 2010 (ACM, 2010), http://doi.acm.org/10.1145/1836845.1836974 .

Kang, H.

H. Kang, T. Fujii, T. Yamaguchi, and H. Yoshikawa, “Compensated phase-added stereogram for real-time holographic display,” Opt. Eng. 46, 095802 (2007).
[CrossRef]

Katz, B.

Kim, H.

König, M.

Lee, B.

Leigh, J. J. S.

A. D. Stein, Z. Wang, and J. J. S. Leigh, “Computer-generated holograms: a simplified ray-tracing approach,” Comput. Phys. 6, 389–392 (1992).
[CrossRef]

Liu, Y.-Z.

Lohmann, A. W.

A. W. Lohmann, “Three-dimensional properties of wave-fields,” Optik 51, 105–117 (1978).

Lucente, M.

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2, 28–34 (1993).
[CrossRef]

Magnor, M.

Masuda, N.

Matsushima, K.

H. Nishi, K. Higashi, Y. Arima, K. Matsushima, and S. Nakahara, “New techniques for wave-field rendering of polygon-based high-definition CGHs,” Proc. SPIE 7957, 79571A (2011).
[CrossRef]

K. Matsushima and S. Nakahara, “High-definition full-parallax CGHs created by using the polygon-based method and the shifted angular spectrum method,” Proc. SPIE 7619, 761913 (2010).
[CrossRef]

K. Matsushima and S. Nakahara, “Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method,” Appl. Opt. 48, H54–H63 (2009).
[CrossRef]

K. Matsushima, “Computer-generated holograms for three-dimensional surface objects with shade and texture,” Appl. Opt. 44, 4607–4614 (2005).
[CrossRef]

K. Matsushima and M. Takai, “Recurrence formulas for fast creation of synthetic three-dimensional holograms,” Appl. Opt. 39, 6587–6594 (2000).
[CrossRef]

K. Matsushima, M. Nakamura, and S. Nakahara, “Novel techniques introduced into polygon-based high-definition CGHs,” in Topical Meeting on Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JMA10.

Matsusima, K.

K. Matsusima, M. Nakamura, I. Kanaya, and S. Nakahara, “Computational holography: real 3-D by fast wave-field rendering in ultra high resolution,” in Proceedings of SIGGRAPH Posters 2010 (ACM, 2010), http://doi.acm.org/10.1145/1836845.1836974 .

Nakahara, S.

H. Nishi, K. Higashi, Y. Arima, K. Matsushima, and S. Nakahara, “New techniques for wave-field rendering of polygon-based high-definition CGHs,” Proc. SPIE 7957, 79571A (2011).
[CrossRef]

K. Matsushima and S. Nakahara, “High-definition full-parallax CGHs created by using the polygon-based method and the shifted angular spectrum method,” Proc. SPIE 7619, 761913 (2010).
[CrossRef]

K. Matsushima and S. Nakahara, “Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method,” Appl. Opt. 48, H54–H63 (2009).
[CrossRef]

K. Matsusima, M. Nakamura, I. Kanaya, and S. Nakahara, “Computational holography: real 3-D by fast wave-field rendering in ultra high resolution,” in Proceedings of SIGGRAPH Posters 2010 (ACM, 2010), http://doi.acm.org/10.1145/1836845.1836974 .

K. Matsushima, M. Nakamura, and S. Nakahara, “Novel techniques introduced into polygon-based high-definition CGHs,” in Topical Meeting on Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JMA10.

Nakamura, M.

K. Matsusima, M. Nakamura, I. Kanaya, and S. Nakahara, “Computational holography: real 3-D by fast wave-field rendering in ultra high resolution,” in Proceedings of SIGGRAPH Posters 2010 (ACM, 2010), http://doi.acm.org/10.1145/1836845.1836974 .

K. Matsushima, M. Nakamura, and S. Nakahara, “Novel techniques introduced into polygon-based high-definition CGHs,” in Topical Meeting on Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JMA10.

Nakayama, H.

Nishi, H.

H. Nishi, K. Higashi, Y. Arima, K. Matsushima, and S. Nakahara, “New techniques for wave-field rendering of polygon-based high-definition CGHs,” Proc. SPIE 7957, 79571A (2011).
[CrossRef]

Oneda, T.

H. Yoshikawa, S. Iwase, and T. Oneda, “Fast computation of Fresnel holograms employing difference,” Proc. SPIE 3956, 48–55 (2000).
[CrossRef]

Onural, L.

Özcan, M.

Phong, B. T.

B. T. Phong, “Illumination for computer generated pictures,” Commun. ACM 18, 311–317 (1975).
[CrossRef]

Pu, Y.-Y.

Ritter, A.

Rosen, J.

Sakamoto, Y.

T. Ichikawa, Y. Sakamoto, A. Subagyo, and K. Sueoka, “A method of calculating reflectance distributions for CGH with FDTD using the structure of actual surfaces,” Proc. SPIE 7957, 795707 (2011).
[CrossRef]

K. Yamaguchi and Y. Sakamoto, “Computer generated hologram with characteristics of reflection: reflectance distributions and reflected images,” Appl. Opt. 48, H203–H211 (2009).
[CrossRef]

Y. Sakamoto and A. Tsuruno, “A representation method for object surface glossiness in computer-generated hologram,” IEICE Trans. Inf. Syst. 2 J88-D-2, 2046–2053 (2005), in Japanese.

Y. Sakamoto and Y. Yamashita, “An algorithm for object-light calculation considering reflectance distribution for computer-generated holograms,” J. Inst. Image Inf. Television Eng. 56, 611–616 (2002), in Japanese.
[CrossRef]

Shaked, N. T.

Shimobaba, T.

Shiraki, A.

Stein, A. D.

A. D. Stein, Z. Wang, and J. J. S. Leigh, “Computer-generated holograms: a simplified ray-tracing approach,” Comput. Phys. 6, 389–392 (1992).
[CrossRef]

Strothotte, T.

Subagyo, A.

T. Ichikawa, Y. Sakamoto, A. Subagyo, and K. Sueoka, “A method of calculating reflectance distributions for CGH with FDTD using the structure of actual surfaces,” Proc. SPIE 7957, 795707 (2011).
[CrossRef]

Sueoka, K.

T. Ichikawa, Y. Sakamoto, A. Subagyo, and K. Sueoka, “A method of calculating reflectance distributions for CGH with FDTD using the structure of actual surfaces,” Proc. SPIE 7957, 795707 (2011).
[CrossRef]

Sugie, T.

Takai, M.

Tanaka, T.

Tsuruno, A.

Y. Sakamoto and A. Tsuruno, “A representation method for object surface glossiness in computer-generated hologram,” IEICE Trans. Inf. Syst. 2 J88-D-2, 2046–2053 (2005), in Japanese.

Wakunami, K.

Wang, H.-Z.

Wang, Z.

A. D. Stein, Z. Wang, and J. J. S. Leigh, “Computer-generated holograms: a simplified ray-tracing approach,” Comput. Phys. 6, 389–392 (1992).
[CrossRef]

Waters, J. P.

J. P. Waters, “Holographic image synthesis utilizing theoretical methods,” Appl. Phys. Lett. 9, 405–407 (1966).
[CrossRef]

Watson, J.

Yamaguchi, K.

Yamaguchi, M.

Yamaguchi, T.

H. Kang, T. Fujii, T. Yamaguchi, and H. Yoshikawa, “Compensated phase-added stereogram for real-time holographic display,” Opt. Eng. 46, 095802 (2007).
[CrossRef]

Yamashita, Y.

Y. Sakamoto and Y. Yamashita, “An algorithm for object-light calculation considering reflectance distribution for computer-generated holograms,” J. Inst. Image Inf. Television Eng. 56, 611–616 (2002), in Japanese.
[CrossRef]

Yatagai, T.

Yoshikawa, H.

H. Kang, T. Fujii, T. Yamaguchi, and H. Yoshikawa, “Compensated phase-added stereogram for real-time holographic display,” Opt. Eng. 46, 095802 (2007).
[CrossRef]

H. Yoshikawa, S. Iwase, and T. Oneda, “Fast computation of Fresnel holograms employing difference,” Proc. SPIE 3956, 48–55 (2000).
[CrossRef]

Appl. Opt.

K. Matsushima and S. Nakahara, “Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method,” Appl. Opt. 48, H54–H63 (2009).
[CrossRef]

A. Ritter, J. Böttger, O. Deussen, M. König, and T. Strothotte, “Hardware-based rendering of full-parallax synthetic holograms,” Appl. Opt. 38, 1364–1369 (1999).
[CrossRef]

K. Matsushima and M. Takai, “Recurrence formulas for fast creation of synthetic three-dimensional holograms,” Appl. Opt. 39, 6587–6594 (2000).
[CrossRef]

N. T. Shaked, B. Katz, and J. Rosen, “Review of three-dimensional holographic imaging by multiple-viewpoint-projection based methods,” Appl. Opt. 48, H120–H136 (2009).
[CrossRef]

T. Yatagai, “Stereoscopic approach to 3-D display using computer-generated holograms,” Appl. Opt. 15, 2722–2729 (1976).
[CrossRef]

M. Bayraktar and M. Özcan, “Method to calculate the far field of three-dimensional objects for computer-generated holography,” Appl. Opt. 49, 4647–4654 (2010).
[CrossRef]

K. Matsushima, “Computer-generated holograms for three-dimensional surface objects with shade and texture,” Appl. Opt. 44, 4607–4614 (2005).
[CrossRef]

L. Ahrenberg, P. Benzie, M. Magnor, and J. Watson, “Computer generated holograms from three dimensional meshes using an analytic light transport model,” Appl. Opt. 47, 1567–1574 (2008).
[CrossRef]

H. Kim, J. Hahn, and B. Lee, “Mathematical modeling of triangle-mesh-modeled three-dimensional surface objects for digital holography,” Appl. Opt. 47, D117–D127(2008).
[CrossRef]

K. Yamaguchi and Y. Sakamoto, “Computer generated hologram with characteristics of reflection: reflectance distributions and reflected images,” Appl. Opt. 48, H203–H211 (2009).
[CrossRef]

Appl. Phys. Lett.

J. P. Waters, “Holographic image synthesis utilizing theoretical methods,” Appl. Phys. Lett. 9, 405–407 (1966).
[CrossRef]

Commun. ACM

B. T. Phong, “Illumination for computer generated pictures,” Commun. ACM 18, 311–317 (1975).
[CrossRef]

Comput. Phys.

A. D. Stein, Z. Wang, and J. J. S. Leigh, “Computer-generated holograms: a simplified ray-tracing approach,” Comput. Phys. 6, 389–392 (1992).
[CrossRef]

IEICE Trans. Inf. Syst. 2

Y. Sakamoto and A. Tsuruno, “A representation method for object surface glossiness in computer-generated hologram,” IEICE Trans. Inf. Syst. 2 J88-D-2, 2046–2053 (2005), in Japanese.

J. Electron. Imaging

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2, 28–34 (1993).
[CrossRef]

J. Inst. Image Inf. Television Eng.

Y. Sakamoto and Y. Yamashita, “An algorithm for object-light calculation considering reflectance distribution for computer-generated holograms,” J. Inst. Image Inf. Television Eng. 56, 611–616 (2002), in Japanese.
[CrossRef]

J. Opt. Soc. Am. A

Opt. Eng.

H. Kang, T. Fujii, T. Yamaguchi, and H. Yoshikawa, “Compensated phase-added stereogram for real-time holographic display,” Opt. Eng. 46, 095802 (2007).
[CrossRef]

Opt. Express

Optik

A. W. Lohmann, “Three-dimensional properties of wave-fields,” Optik 51, 105–117 (1978).

Proc. SPIE

H. Yoshikawa, S. Iwase, and T. Oneda, “Fast computation of Fresnel holograms employing difference,” Proc. SPIE 3956, 48–55 (2000).
[CrossRef]

K. Matsushima and S. Nakahara, “High-definition full-parallax CGHs created by using the polygon-based method and the shifted angular spectrum method,” Proc. SPIE 7619, 761913 (2010).
[CrossRef]

T. Ichikawa, Y. Sakamoto, A. Subagyo, and K. Sueoka, “A method of calculating reflectance distributions for CGH with FDTD using the structure of actual surfaces,” Proc. SPIE 7957, 795707 (2011).
[CrossRef]

H. Nishi, K. Higashi, Y. Arima, K. Matsushima, and S. Nakahara, “New techniques for wave-field rendering of polygon-based high-definition CGHs,” Proc. SPIE 7957, 79571A (2011).
[CrossRef]

Other

K. Matsushima, H. Nishi, and S. Nakahara are preparing a manuscript to be called “Simple wave-field rendering for photorealistic reconstruction in polygon-based high-definition computer holography.”

K. Matsushima, M. Nakamura, and S. Nakahara, “Novel techniques introduced into polygon-based high-definition CGHs,” in Topical Meeting on Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JMA10.

K. Matsusima, M. Nakamura, I. Kanaya, and S. Nakahara, “Computational holography: real 3-D by fast wave-field rendering in ultra high resolution,” in Proceedings of SIGGRAPH Posters 2010 (ACM, 2010), http://doi.acm.org/10.1145/1836845.1836974 .

Supplementary Material (2)

» Media 1: MOV (2775 KB)     
» Media 2: MOV (4664 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Coordinate system used for formulation.

Fig. 2.
Fig. 2.

Schematic illustration of wave fields emitted from the slanted aperture (a) before and (b) after spectral remapping.

Fig. 3.
Fig. 3.

Example of the surface function of (a) a diffuse surface and (b) its Fourier spectrum.

Fig. 4.
Fig. 4.

Schematic illustration of (a) diffuse and (b) specular reflection.

Fig. 5.
Fig. 5.

Schematic illustration of the spatial spectrum of diffuse and specular reflection.

Fig. 6.
Fig. 6.

Phong model for specular reflection.

Fig. 7.
Fig. 7.

Two types of spectral shapes based on the Phong model for specular reflection.

Fig. 8.
Fig. 8.

Example of the modified spectrum G1(u,v;R) (a) that is the product of the spectral envelope I1(u,v;R)1/2 (b) and the spectrum of the original diffuser Φ(u,v) in (c). Here α=30 and θ=π/6.

Fig. 9.
Fig. 9.

Reflection in polygon surfaces.

Fig. 10.
Fig. 10.

Example of the procedure for generating a specular surface.

Fig. 11.
Fig. 11.

3D scene of The Metal Venus I.

Fig. 12.
Fig. 12.

Itemized computation time of The Metal Venus I and The Venus. The computation time for The Venus is not the same as that reported in [1] because recent developments in computers and algorithms accelerated the computation.

Fig. 13.
Fig. 13.

Photographs of optical reconstructions of (a) The Metal Venus I (Media1) and (b) The Venus [1] using transmitted illumination of an He–Ne laser. The photographs are taken from different viewpoints.

Fig. 14.
Fig. 14.

Photographs of optical reconstructions of The Metal Venus I (Media2) using reflected illumination of an ordinary red LED.

Tables (1)

Tables Icon

Table 1. Parameters Used for Creation of The Metal Venus I

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

h(x,y)=a(x,y)exp[iϕ(x,y)],
H(u,v)=F{h(x,y)},
Δu=sinθλ,
I(V;R)=(R·V)α,
V=k/k,
k=2π(ux+vy+wz),
w=(λ2u2v2)1/2.
V=V(u,v)=λ[ux+vy+(λ2u2v2)1/2z].
I1(u,v;R)={λα[Rxu+Ryv+Rz(λ2u2v2)1/2]αR·V(u,v)0,0otherwise.
G1(u,v;R)=Φ(u,v)I1(u,v;R)1/2,
Φ(u,v)=F{exp[iϕ(x,y)]}.
ϕ1(x,y;R)=arg{F1{G1(u,v;R)}},
h1(x,y;R)=as(x,y)exp[iϕ1(x,y;R)],
H1(u,v,R)=F{as(x,y)exp[iarg{F1{G1(u,v;R)}}]},
h(x,y;z)=as(x,y)exp[iϕ1(x,y;z)].
h2(x,y;R)=h(x,y;z)exp[ikR·r],
H2(u,v;R)=F{h2(x,y;R)}=H0(uRxλ,vRyλ),
H0(u,v)=F{h(x,y;z)}.
I2(u,v;R)=F{F1{I1(u,v;z)}exp[ikR·r]}=I1(uRxλ,vRyλ;z).
h(x,y)=Kdhd(x,y)+Kshs(x,y),
H(u,v)=KdHd(u,v)+KsH2(u,v;R),

Metrics