Abstract

The research on reflectance distributions in computer-generated holograms (CGHs) is particularly sparse, and the textures of materials are not expressed. Thus, we propose a method for calculating reflectance distributions in CGHs that uses the finite-difference time-domain method. In this method, reflected light from an uneven surface made on a computer is analyzed by finite-difference time-domain simulation, and the reflected light distribution is applied to the CGH as an object light. We report the relations between the surface roughness of the objects and the reflectance distributions, and show that the reflectance distributions are given to CGHs by imaging simulation.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Kang, T. Yamaguchi, H. Yoshikawa, S.-C. Kim, and E.-S. Kim, “Acceleration method of computing a compensated phase-added stereogram on a graphic processing unit,” Appl. Opt. 47, 5784–5789 (2008).
    [CrossRef]
  2. Y. Ichihashi, H. Nakayama, T. Ito, N. Masuda, T. Shimobaba, A. Shiraki, and T. Sugie, “HORN-6 special-purpose clustered computing system for electroholography,” Opt. Express 17, 13895–13903 (2009).
    [CrossRef]
  3. H. Yoshikawa, T. Yamaguchi, and R. Kitayama, “Real-time generation of full color image hologram with compact distance look-up table,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2009), paper DWC4.
  4. H. Sakata and Y. Sakamoto, “Fast computation method for a Fresnel hologram using three-dimensional affine transformations in real space,” Appl. Opt. 48, H212–H221 (2009).
    [CrossRef]
  5. K. Matsushima, “Exact hidden-surface removal in digitally synthetic full-parallax holograms,” Proc. SPIE 5742, 25–32 (2005).
    [CrossRef]
  6. K. Matsushima, “Computer-generated holograms for three-dimensional surface objects with shade and texture,” Appl. Opt. 44, 4607–4614 (2005).
    [CrossRef]
  7. K. Yamaguchi, T. Ichikawa, and Y. Sakamoto, “Calculation method for CGH considering smooth shading with polygon models,” Proc. SPIE 7957, 795706 (2011).
    [CrossRef]
  8. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).
  9. J. P. Waters, “Holographic image synthesis utilizing theoretical methods,” Appl. Phys. Lett. 9, 405–407 (1966).
    [CrossRef]
  10. J. W. Goodman, Introduction to Fourier Optics2nd ed.(1995).
  11. K. Matsuhima, H. Schimmel, and F. Wyrowski, “Fast calculation method for optical diffraction on tilted planes by use of the angular spectrum of plane waves,” J. Opt. Soc. Am. A 20, 1755–1762 (2003).
    [CrossRef]
  12. K. Matsushima and T. Shimobaba, “Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near field,” Opt. Express 17, 19662–19673 (2009).
    [CrossRef]
  13. R. P. Muffoletto, J. M. Tyler, and J. E. Tohline, “Shifted Fresnel diffraction for computational holography,” Opt. Express 15, 5631–5640 (2007).
    [CrossRef]
  14. R. Bräuer, F. Wyrowski, and O. Bryngdahl, “Diffusers in digital holography,” J. Opt. Soc. Am. A 8, 572–578 (1991).
    [CrossRef]
  15. Y. Sakamoto and A. Tsuruno, “A representation method for object surface glossiness in computer-generated hologram,” IEICE Trans. Inf. Syst. , J88-D-2, 2046–2053 (2005) (Japanese ed.).
  16. K. Yamaguchi and Y. Sakamoto, “Computer generated hologram with characteristics of reflection: reflectance distributions and reflected images,” Appl. Opt. 48, H203–H211(2009).
    [CrossRef]
  17. M. W. Chevalier, R. J. Luebbers, and V. P. Cable, “FDTD local grid with material traverse,” IEEE Trans. Antennas Propag. 45, 411–421 (1997).
    [CrossRef]

2011

K. Yamaguchi, T. Ichikawa, and Y. Sakamoto, “Calculation method for CGH considering smooth shading with polygon models,” Proc. SPIE 7957, 795706 (2011).
[CrossRef]

2009

2008

2007

2005

Y. Sakamoto and A. Tsuruno, “A representation method for object surface glossiness in computer-generated hologram,” IEICE Trans. Inf. Syst. , J88-D-2, 2046–2053 (2005) (Japanese ed.).

K. Matsushima, “Exact hidden-surface removal in digitally synthetic full-parallax holograms,” Proc. SPIE 5742, 25–32 (2005).
[CrossRef]

K. Matsushima, “Computer-generated holograms for three-dimensional surface objects with shade and texture,” Appl. Opt. 44, 4607–4614 (2005).
[CrossRef]

2003

1997

M. W. Chevalier, R. J. Luebbers, and V. P. Cable, “FDTD local grid with material traverse,” IEEE Trans. Antennas Propag. 45, 411–421 (1997).
[CrossRef]

1991

1966

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).

J. P. Waters, “Holographic image synthesis utilizing theoretical methods,” Appl. Phys. Lett. 9, 405–407 (1966).
[CrossRef]

Bräuer, R.

Bryngdahl, O.

Cable, V. P.

M. W. Chevalier, R. J. Luebbers, and V. P. Cable, “FDTD local grid with material traverse,” IEEE Trans. Antennas Propag. 45, 411–421 (1997).
[CrossRef]

Chevalier, M. W.

M. W. Chevalier, R. J. Luebbers, and V. P. Cable, “FDTD local grid with material traverse,” IEEE Trans. Antennas Propag. 45, 411–421 (1997).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics2nd ed.(1995).

Ichihashi, Y.

Ichikawa, T.

K. Yamaguchi, T. Ichikawa, and Y. Sakamoto, “Calculation method for CGH considering smooth shading with polygon models,” Proc. SPIE 7957, 795706 (2011).
[CrossRef]

Ito, T.

Kang, H.

Kim, E.-S.

Kim, S.-C.

Kitayama, R.

H. Yoshikawa, T. Yamaguchi, and R. Kitayama, “Real-time generation of full color image hologram with compact distance look-up table,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2009), paper DWC4.

Luebbers, R. J.

M. W. Chevalier, R. J. Luebbers, and V. P. Cable, “FDTD local grid with material traverse,” IEEE Trans. Antennas Propag. 45, 411–421 (1997).
[CrossRef]

Masuda, N.

Matsuhima, K.

Matsushima, K.

Muffoletto, R. P.

Nakayama, H.

Sakamoto, Y.

K. Yamaguchi, T. Ichikawa, and Y. Sakamoto, “Calculation method for CGH considering smooth shading with polygon models,” Proc. SPIE 7957, 795706 (2011).
[CrossRef]

H. Sakata and Y. Sakamoto, “Fast computation method for a Fresnel hologram using three-dimensional affine transformations in real space,” Appl. Opt. 48, H212–H221 (2009).
[CrossRef]

K. Yamaguchi and Y. Sakamoto, “Computer generated hologram with characteristics of reflection: reflectance distributions and reflected images,” Appl. Opt. 48, H203–H211(2009).
[CrossRef]

Y. Sakamoto and A. Tsuruno, “A representation method for object surface glossiness in computer-generated hologram,” IEICE Trans. Inf. Syst. , J88-D-2, 2046–2053 (2005) (Japanese ed.).

Sakata, H.

Schimmel, H.

Shimobaba, T.

Shiraki, A.

Sugie, T.

Tohline, J. E.

Tsuruno, A.

Y. Sakamoto and A. Tsuruno, “A representation method for object surface glossiness in computer-generated hologram,” IEICE Trans. Inf. Syst. , J88-D-2, 2046–2053 (2005) (Japanese ed.).

Tyler, J. M.

Waters, J. P.

J. P. Waters, “Holographic image synthesis utilizing theoretical methods,” Appl. Phys. Lett. 9, 405–407 (1966).
[CrossRef]

Wyrowski, F.

Yamaguchi, K.

K. Yamaguchi, T. Ichikawa, and Y. Sakamoto, “Calculation method for CGH considering smooth shading with polygon models,” Proc. SPIE 7957, 795706 (2011).
[CrossRef]

K. Yamaguchi and Y. Sakamoto, “Computer generated hologram with characteristics of reflection: reflectance distributions and reflected images,” Appl. Opt. 48, H203–H211(2009).
[CrossRef]

Yamaguchi, T.

H. Kang, T. Yamaguchi, H. Yoshikawa, S.-C. Kim, and E.-S. Kim, “Acceleration method of computing a compensated phase-added stereogram on a graphic processing unit,” Appl. Opt. 47, 5784–5789 (2008).
[CrossRef]

H. Yoshikawa, T. Yamaguchi, and R. Kitayama, “Real-time generation of full color image hologram with compact distance look-up table,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2009), paper DWC4.

Yee, K. S.

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).

Yoshikawa, H.

H. Kang, T. Yamaguchi, H. Yoshikawa, S.-C. Kim, and E.-S. Kim, “Acceleration method of computing a compensated phase-added stereogram on a graphic processing unit,” Appl. Opt. 47, 5784–5789 (2008).
[CrossRef]

H. Yoshikawa, T. Yamaguchi, and R. Kitayama, “Real-time generation of full color image hologram with compact distance look-up table,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2009), paper DWC4.

Appl. Opt.

Appl. Phys. Lett.

J. P. Waters, “Holographic image synthesis utilizing theoretical methods,” Appl. Phys. Lett. 9, 405–407 (1966).
[CrossRef]

IEEE Trans. Antennas Propag.

M. W. Chevalier, R. J. Luebbers, and V. P. Cable, “FDTD local grid with material traverse,” IEEE Trans. Antennas Propag. 45, 411–421 (1997).
[CrossRef]

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).

IEICE Trans. Inf. Syst.

Y. Sakamoto and A. Tsuruno, “A representation method for object surface glossiness in computer-generated hologram,” IEICE Trans. Inf. Syst. , J88-D-2, 2046–2053 (2005) (Japanese ed.).

J. Opt. Soc. Am. A

Opt. Express

Proc. SPIE

K. Matsushima, “Exact hidden-surface removal in digitally synthetic full-parallax holograms,” Proc. SPIE 5742, 25–32 (2005).
[CrossRef]

K. Yamaguchi, T. Ichikawa, and Y. Sakamoto, “Calculation method for CGH considering smooth shading with polygon models,” Proc. SPIE 7957, 795706 (2011).
[CrossRef]

Other

J. W. Goodman, Introduction to Fourier Optics2nd ed.(1995).

H. Yoshikawa, T. Yamaguchi, and R. Kitayama, “Real-time generation of full color image hologram with compact distance look-up table,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2009), paper DWC4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Shifted-Fresnel diffraction geometry.

Fig. 2.
Fig. 2.

Reflectance distributions.

Fig. 3.
Fig. 3.

Surface roughness.

Fig. 4.
Fig. 4.

Uneven surface made by the method in Subsection 4.A.1.

Fig. 5.
Fig. 5.

Samples.

Fig. 6.
Fig. 6.

3D images of surface structure.

Fig. 7.
Fig. 7.

Calculation of reflection from the minute surface.

Fig. 8.
Fig. 8.

Alignment of reflected light.

Fig. 9.
Fig. 9.

Experiment geometry.

Fig. 10.
Fig. 10.

Specular reflectance.

Fig. 11.
Fig. 11.

Specular reflectance using surface structures made by the AFM measurement.

Fig. 12.
Fig. 12.

Comparison of the specular reflectance by Eq. 7 and AFM.

Fig. 13.
Fig. 13.

3D images by the imaging simulation.

Tables (3)

Tables Icon

Table 1. Setup Parameters for FDTD Analysis

Tables Icon

Table 2. Setup Parameters for Computer Simulation

Tables Icon

Table 3. Setup Parameters for Imaging Simulations

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

xm=x0+mΔx,yn=y0+nΔy,
xp=x0+pΔx,yq=y0+qΔy.
Ud(m,n)=(iλd)1exp(ikd)exp[iπ(xm2+yn2)/λd]·exp[i2π(x0mΔx+y0nΔy)/λd]×p=0P1q=0Q1([u(p,q)exp[iπ(xp2+yq2)/λd]·exp[i2π(xpx0+yqy0)/λd]·exp[i2π(ΔxΔxpm+ΔyΔyqn)/λd]).
Ry=max(f(x))min(f(x)),
Ra=1l0l|f(x)|dx,
RSm=1mi=1mXsi.
F(x,y)=A(x,y)·Ry·sin(2πRSmx)sin(2πRSmy).
y(n·Δt)=Csin(2πfΔtn).
R=XY|u(x,y)|2I0(x,y).

Metrics