Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Coaxial holographic encoding based on pure phase modulation

Not Accessible

Your library or personal account may give you access

Abstract

We describe a simple technique for coaxial holographic image recording and reconstruction, employing a spatial light modulator (SLM) modified in pure phase mode. In the image encoding system, both the reference beam in the outside part and the signal beam in the inside part are displayed by an SLM based on the twisted nematic LCD. For a binary image, the part with amplitude of “1” is modulated with random phase, while the part with amplitude of “0” is modulated with constant phase. After blocking the dc component of the spatial frequencies, a Fourier transform (FT) hologram is recorded with a uniform intensity distribution. The amplitude image is reconstructed by illuminating the reference beam onto the hologram, which is much simpler than existing phase modulated FT holography techniques. The technique of coaxial holographic image encoding and recovering with pure phase modulation is demonstrated theoretically and experimentally in this paper. As the holograms are recorded without the high-intensity dc component, the storage density with volume medium may be increased with the increase of dynamic range. Such a simple modulation method will have potential applications in areas such as holographic encryption and high-density disk storage systems.

© 2011 Optical Society of America

Full Article  |  PDF Article
More Like This
Linear phase encoding for holographic data storage with a single phase-only spatial light modulator

Teruyoshi Nobukawa and Takanori Nomura
Appl. Opt. 55(10) 2565-2573 (2016)

Phase modulated high density collinear holographic data storage system with phase-retrieval reference beam locking and orthogonal reference encoding

Jinpeng Liu, Hideyoshi Horimai, Xiao Lin, Yong Huang, and Xiaodi Tan
Opt. Express 26(4) 3828-3838 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved