Abstract

The optical near-field surface plasmon effects of a triangular system of silver nanoshell cylinders are numerically studied using the two-dimensional finite difference time domain method. The dependence of interparticle distance, shell thickness of the cylinder, dielectric constant of shell core as well as embedding medium, and orientation of the optical source plane on the plasmonic resonances of the nanocylinder shells is studied. The plasmonic resonances are found to have strong dependence on the interparticle distance. As the size of the particle is increased, the field intensity peak shows a redshift. The resonance condition varies with the dielectric constant of the environment as well as the core. In addition, the orientation of the incident source plane has a significant role in the near-field intensity distribution. Since the near-field intensity has the same trend as that of the scattering cross section, the results can be used in the design of various applications like sensing, antennas, and waveguides.

© 2011 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Surface plasmon resonance in a hexagonal nanostructure formed by seven core shell nanocylinders

Ming-Je Sung, Yao-Feng Ma, Yuan-Fong Chau, and Ding-Wei Huang
Appl. Opt. 49(5) 920-926 (2010)

Controlling surface plasmon of several pair arrays of silver-shell nanocylinders

Yuan-Fong Chau, Han-Hsuan Yeh, Chiung-Chou Liao, Hong-Fa Ho, Chi-Yu Liu, and Din Ping Tsai
Appl. Opt. 49(7) 1163-1169 (2010)

Plasmon field enhancement in silver core-protruded silicon shell nanocylinder illuminated with light at 633nm

Ming-Je Sung, Yao-Feng Ma, Yuan-Fong Chau, and Ding-Wei Huang
Appl. Opt. 49(32) 6295-6301 (2010)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription