Abstract

A high-speed imaging pyrometer was developed to investigate the behavior of flames and explosive events. The instrument consists of two monochrome high-speed Phantom v7.3 m cameras made by Vision Research Inc. arranged so that one lens assembly collects light for both cameras. The cameras are filtered at 700 or 900nm with a 10nm bandpass. The high irradiance produced by blackbody emission combined with variable shutter time and f-stop produces properly exposed images. The wavelengths were chosen with the expected temperatures in mind, and also to avoid any molecular or atomic gas phase emission. Temperatures measured using this pyrometer of exploded TNT charges are presented.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Katsuki, Y. Mizutani, and Y. Matsumoto, “An improved thermocouple technique for measurement of fluctuating temperatures in flames,” Combust. Flame 67, 27–36 (1987).
    [CrossRef]
  2. A. Ballantyne and J. B. Moss, “Fine wire thermocouple measurements of fluctuating temperature (in turbulent diffusion flames),” Combust. Sci. Technol. 17, 63–72 (1977).
    [CrossRef]
  3. P. A. Kinze, Thermocouple Temperature Measurement (Wiley, 1973).
  4. T. R. Harrison, Radiation Pyrometry and its Underlying Principles of Radiant Heat Transfer (Wiley, 1960).
  5. H. J. Kostkowski and R. D. Lee, “Theory and methods of optical pyrometry,” NBS Monograph 41 (U.S. Department of Commerce, National Bureau of Standards, 1962).
  6. M. D. Tarasov, A. I. Tolshmyakov, F. O. Kuznetsov, O. N. Petrushin, V. S. Petushkov, Yu. A. Savel'Ev, M. Y. Tarakanov, and V. A. Til'Kunov, “Detonation and shock wave front temperature measurement by two-wave pyrometer based on optical fibers,” Proc. SPIE 2869, 894–899 (1997).
    [CrossRef]
  7. K. L. McNesby and B. E. Homan, “Real-time optical measurements for improved understanding of enhanced blast materials,” ARL-TR-3483 (U.S. Army Research Laboratory, 2005).
  8. C. Meola and G. M. Carlomagno, “Infrared thermography of impact-drive thermal effects,” Appl. Phys. 96, 759–762(2009).
    [CrossRef]
  9. J. W. Ahn, R. Maingi, D. Mastrovito, and A. L. Roquemore, “High speed infrared camera diagnostics for heat flux measurement in NSTX,” Rev. Sci. Instrum. 81, 023501 (2010).
    [CrossRef] [PubMed]
  10. D. F. Simmons, C. M. Fortang, and D. B. Holtkamp, “Using multispectral imaging to measure temperature profiles and emissivity of large thermionic dispenser cathodes,” Rev. Sci. Instrum. 76, 044901 (2005).
    [CrossRef]
  11. S. P. Mates, D. Basak, F. S. Biancaniello, S. D. Ridder, and J. Geist, “Calibration of a two-color imaging pyrometer and its use for practical measurements in controlled air plasma spray experiments,” J. Therm. Spray Technol. 11, 195–205 (2002).
    [CrossRef]
  12. R. Parker and R. Allor, “Imaging pyrometer for monitoring the surface temperature of a spray formed steel billet,” Proc. SPIE 4360, 80–89 (2001).
    [CrossRef]
  13. J. E. Craig, D. Lee, R. A. Parker, F. S. Biancaniello, and S. D. Ridder, “Temperature imaging measurements with a two wavelength imaging pyrometer,” in Proceedings of the 18th ASM Heat Treating Society Conference, H.W.Walton and R.A.Wallis, eds. (ASM International, 1999), pp. 84–92.
  14. M. B. Kaplinsky, J. Li, N. J. McCaffrey, V. Patel, E. S. H. Hou, N. M. Ravindra, C. N. Manikopoulos, and W. F. Kosonocky, “Recent advances in the development of a multiwavelength imaging pyrometer,” Opt. Eng. 36, 3176–3187 (1997).
    [CrossRef]
  15. M. F. Hopkins, “Multi spectral measurement using a novel high speed imaging pyrometer,” Proc. SPIE 3173, 91–98 (1997).
    [CrossRef]
  16. J. M. Densmore, M. M. Biss, K. L. McNesby, and B. E. Homan, “High speed digital color imaging pyrometry,” Appl. Opt. 50, 2659–2665 (2011).
    [CrossRef] [PubMed]
  17. D. Ng and G. Fralick, “Use of a multiwavelength pyrometer in several elevated temperature aerospace applications,” Rev. Sci. Instrum. 72, 1522–1530 (2001).
    [CrossRef]
  18. F. Goulay, P. E. Schrader, and H. A. Michelsen, “Effect of the wavelength dependence of the emissivity on inferred soot temperatures measured by spectrally resolved laser-induced incandescence,” Appl. Phys. B 100, 655–663(2010).
    [CrossRef]
  19. Vision Research, “v7.3 spectral response,” http://www.visionresearch.com/uploads/Docs/SpectralResponse/V7.3 SensorSpectral Response.pdf.
  20. A.Hornberg, ed., Handbook of Machine Vision (Wiley-VCH, 2006).
    [CrossRef]

2011 (1)

2010 (2)

F. Goulay, P. E. Schrader, and H. A. Michelsen, “Effect of the wavelength dependence of the emissivity on inferred soot temperatures measured by spectrally resolved laser-induced incandescence,” Appl. Phys. B 100, 655–663(2010).
[CrossRef]

J. W. Ahn, R. Maingi, D. Mastrovito, and A. L. Roquemore, “High speed infrared camera diagnostics for heat flux measurement in NSTX,” Rev. Sci. Instrum. 81, 023501 (2010).
[CrossRef] [PubMed]

2009 (1)

C. Meola and G. M. Carlomagno, “Infrared thermography of impact-drive thermal effects,” Appl. Phys. 96, 759–762(2009).
[CrossRef]

2005 (1)

D. F. Simmons, C. M. Fortang, and D. B. Holtkamp, “Using multispectral imaging to measure temperature profiles and emissivity of large thermionic dispenser cathodes,” Rev. Sci. Instrum. 76, 044901 (2005).
[CrossRef]

2002 (1)

S. P. Mates, D. Basak, F. S. Biancaniello, S. D. Ridder, and J. Geist, “Calibration of a two-color imaging pyrometer and its use for practical measurements in controlled air plasma spray experiments,” J. Therm. Spray Technol. 11, 195–205 (2002).
[CrossRef]

2001 (2)

R. Parker and R. Allor, “Imaging pyrometer for monitoring the surface temperature of a spray formed steel billet,” Proc. SPIE 4360, 80–89 (2001).
[CrossRef]

D. Ng and G. Fralick, “Use of a multiwavelength pyrometer in several elevated temperature aerospace applications,” Rev. Sci. Instrum. 72, 1522–1530 (2001).
[CrossRef]

1997 (3)

M. B. Kaplinsky, J. Li, N. J. McCaffrey, V. Patel, E. S. H. Hou, N. M. Ravindra, C. N. Manikopoulos, and W. F. Kosonocky, “Recent advances in the development of a multiwavelength imaging pyrometer,” Opt. Eng. 36, 3176–3187 (1997).
[CrossRef]

M. F. Hopkins, “Multi spectral measurement using a novel high speed imaging pyrometer,” Proc. SPIE 3173, 91–98 (1997).
[CrossRef]

M. D. Tarasov, A. I. Tolshmyakov, F. O. Kuznetsov, O. N. Petrushin, V. S. Petushkov, Yu. A. Savel'Ev, M. Y. Tarakanov, and V. A. Til'Kunov, “Detonation and shock wave front temperature measurement by two-wave pyrometer based on optical fibers,” Proc. SPIE 2869, 894–899 (1997).
[CrossRef]

1987 (1)

M. Katsuki, Y. Mizutani, and Y. Matsumoto, “An improved thermocouple technique for measurement of fluctuating temperatures in flames,” Combust. Flame 67, 27–36 (1987).
[CrossRef]

1977 (1)

A. Ballantyne and J. B. Moss, “Fine wire thermocouple measurements of fluctuating temperature (in turbulent diffusion flames),” Combust. Sci. Technol. 17, 63–72 (1977).
[CrossRef]

Ahn, J. W.

J. W. Ahn, R. Maingi, D. Mastrovito, and A. L. Roquemore, “High speed infrared camera diagnostics for heat flux measurement in NSTX,” Rev. Sci. Instrum. 81, 023501 (2010).
[CrossRef] [PubMed]

Allor, R.

R. Parker and R. Allor, “Imaging pyrometer for monitoring the surface temperature of a spray formed steel billet,” Proc. SPIE 4360, 80–89 (2001).
[CrossRef]

Ballantyne, A.

A. Ballantyne and J. B. Moss, “Fine wire thermocouple measurements of fluctuating temperature (in turbulent diffusion flames),” Combust. Sci. Technol. 17, 63–72 (1977).
[CrossRef]

Basak, D.

S. P. Mates, D. Basak, F. S. Biancaniello, S. D. Ridder, and J. Geist, “Calibration of a two-color imaging pyrometer and its use for practical measurements in controlled air plasma spray experiments,” J. Therm. Spray Technol. 11, 195–205 (2002).
[CrossRef]

Biancaniello, F. S.

S. P. Mates, D. Basak, F. S. Biancaniello, S. D. Ridder, and J. Geist, “Calibration of a two-color imaging pyrometer and its use for practical measurements in controlled air plasma spray experiments,” J. Therm. Spray Technol. 11, 195–205 (2002).
[CrossRef]

J. E. Craig, D. Lee, R. A. Parker, F. S. Biancaniello, and S. D. Ridder, “Temperature imaging measurements with a two wavelength imaging pyrometer,” in Proceedings of the 18th ASM Heat Treating Society Conference, H.W.Walton and R.A.Wallis, eds. (ASM International, 1999), pp. 84–92.

Biss, M. M.

Carlomagno, G. M.

C. Meola and G. M. Carlomagno, “Infrared thermography of impact-drive thermal effects,” Appl. Phys. 96, 759–762(2009).
[CrossRef]

Craig, J. E.

J. E. Craig, D. Lee, R. A. Parker, F. S. Biancaniello, and S. D. Ridder, “Temperature imaging measurements with a two wavelength imaging pyrometer,” in Proceedings of the 18th ASM Heat Treating Society Conference, H.W.Walton and R.A.Wallis, eds. (ASM International, 1999), pp. 84–92.

Densmore, J. M.

Fortang, C. M.

D. F. Simmons, C. M. Fortang, and D. B. Holtkamp, “Using multispectral imaging to measure temperature profiles and emissivity of large thermionic dispenser cathodes,” Rev. Sci. Instrum. 76, 044901 (2005).
[CrossRef]

Fralick, G.

D. Ng and G. Fralick, “Use of a multiwavelength pyrometer in several elevated temperature aerospace applications,” Rev. Sci. Instrum. 72, 1522–1530 (2001).
[CrossRef]

Geist, J.

S. P. Mates, D. Basak, F. S. Biancaniello, S. D. Ridder, and J. Geist, “Calibration of a two-color imaging pyrometer and its use for practical measurements in controlled air plasma spray experiments,” J. Therm. Spray Technol. 11, 195–205 (2002).
[CrossRef]

Goulay, F.

F. Goulay, P. E. Schrader, and H. A. Michelsen, “Effect of the wavelength dependence of the emissivity on inferred soot temperatures measured by spectrally resolved laser-induced incandescence,” Appl. Phys. B 100, 655–663(2010).
[CrossRef]

Harrison, T. R.

T. R. Harrison, Radiation Pyrometry and its Underlying Principles of Radiant Heat Transfer (Wiley, 1960).

Holtkamp, D. B.

D. F. Simmons, C. M. Fortang, and D. B. Holtkamp, “Using multispectral imaging to measure temperature profiles and emissivity of large thermionic dispenser cathodes,” Rev. Sci. Instrum. 76, 044901 (2005).
[CrossRef]

Homan, B. E.

J. M. Densmore, M. M. Biss, K. L. McNesby, and B. E. Homan, “High speed digital color imaging pyrometry,” Appl. Opt. 50, 2659–2665 (2011).
[CrossRef] [PubMed]

K. L. McNesby and B. E. Homan, “Real-time optical measurements for improved understanding of enhanced blast materials,” ARL-TR-3483 (U.S. Army Research Laboratory, 2005).

Hopkins, M. F.

M. F. Hopkins, “Multi spectral measurement using a novel high speed imaging pyrometer,” Proc. SPIE 3173, 91–98 (1997).
[CrossRef]

Hou, E. S. H.

M. B. Kaplinsky, J. Li, N. J. McCaffrey, V. Patel, E. S. H. Hou, N. M. Ravindra, C. N. Manikopoulos, and W. F. Kosonocky, “Recent advances in the development of a multiwavelength imaging pyrometer,” Opt. Eng. 36, 3176–3187 (1997).
[CrossRef]

Kaplinsky, M. B.

M. B. Kaplinsky, J. Li, N. J. McCaffrey, V. Patel, E. S. H. Hou, N. M. Ravindra, C. N. Manikopoulos, and W. F. Kosonocky, “Recent advances in the development of a multiwavelength imaging pyrometer,” Opt. Eng. 36, 3176–3187 (1997).
[CrossRef]

Katsuki, M.

M. Katsuki, Y. Mizutani, and Y. Matsumoto, “An improved thermocouple technique for measurement of fluctuating temperatures in flames,” Combust. Flame 67, 27–36 (1987).
[CrossRef]

Kinze, P. A.

P. A. Kinze, Thermocouple Temperature Measurement (Wiley, 1973).

Kosonocky, W. F.

M. B. Kaplinsky, J. Li, N. J. McCaffrey, V. Patel, E. S. H. Hou, N. M. Ravindra, C. N. Manikopoulos, and W. F. Kosonocky, “Recent advances in the development of a multiwavelength imaging pyrometer,” Opt. Eng. 36, 3176–3187 (1997).
[CrossRef]

Kostkowski, H. J.

H. J. Kostkowski and R. D. Lee, “Theory and methods of optical pyrometry,” NBS Monograph 41 (U.S. Department of Commerce, National Bureau of Standards, 1962).

Kuznetsov, F. O.

M. D. Tarasov, A. I. Tolshmyakov, F. O. Kuznetsov, O. N. Petrushin, V. S. Petushkov, Yu. A. Savel'Ev, M. Y. Tarakanov, and V. A. Til'Kunov, “Detonation and shock wave front temperature measurement by two-wave pyrometer based on optical fibers,” Proc. SPIE 2869, 894–899 (1997).
[CrossRef]

Lee, D.

J. E. Craig, D. Lee, R. A. Parker, F. S. Biancaniello, and S. D. Ridder, “Temperature imaging measurements with a two wavelength imaging pyrometer,” in Proceedings of the 18th ASM Heat Treating Society Conference, H.W.Walton and R.A.Wallis, eds. (ASM International, 1999), pp. 84–92.

Lee, R. D.

H. J. Kostkowski and R. D. Lee, “Theory and methods of optical pyrometry,” NBS Monograph 41 (U.S. Department of Commerce, National Bureau of Standards, 1962).

Li, J.

M. B. Kaplinsky, J. Li, N. J. McCaffrey, V. Patel, E. S. H. Hou, N. M. Ravindra, C. N. Manikopoulos, and W. F. Kosonocky, “Recent advances in the development of a multiwavelength imaging pyrometer,” Opt. Eng. 36, 3176–3187 (1997).
[CrossRef]

Maingi, R.

J. W. Ahn, R. Maingi, D. Mastrovito, and A. L. Roquemore, “High speed infrared camera diagnostics for heat flux measurement in NSTX,” Rev. Sci. Instrum. 81, 023501 (2010).
[CrossRef] [PubMed]

Manikopoulos, C. N.

M. B. Kaplinsky, J. Li, N. J. McCaffrey, V. Patel, E. S. H. Hou, N. M. Ravindra, C. N. Manikopoulos, and W. F. Kosonocky, “Recent advances in the development of a multiwavelength imaging pyrometer,” Opt. Eng. 36, 3176–3187 (1997).
[CrossRef]

Mastrovito, D.

J. W. Ahn, R. Maingi, D. Mastrovito, and A. L. Roquemore, “High speed infrared camera diagnostics for heat flux measurement in NSTX,” Rev. Sci. Instrum. 81, 023501 (2010).
[CrossRef] [PubMed]

Mates, S. P.

S. P. Mates, D. Basak, F. S. Biancaniello, S. D. Ridder, and J. Geist, “Calibration of a two-color imaging pyrometer and its use for practical measurements in controlled air plasma spray experiments,” J. Therm. Spray Technol. 11, 195–205 (2002).
[CrossRef]

Matsumoto, Y.

M. Katsuki, Y. Mizutani, and Y. Matsumoto, “An improved thermocouple technique for measurement of fluctuating temperatures in flames,” Combust. Flame 67, 27–36 (1987).
[CrossRef]

McCaffrey, N. J.

M. B. Kaplinsky, J. Li, N. J. McCaffrey, V. Patel, E. S. H. Hou, N. M. Ravindra, C. N. Manikopoulos, and W. F. Kosonocky, “Recent advances in the development of a multiwavelength imaging pyrometer,” Opt. Eng. 36, 3176–3187 (1997).
[CrossRef]

McNesby, K. L.

J. M. Densmore, M. M. Biss, K. L. McNesby, and B. E. Homan, “High speed digital color imaging pyrometry,” Appl. Opt. 50, 2659–2665 (2011).
[CrossRef] [PubMed]

K. L. McNesby and B. E. Homan, “Real-time optical measurements for improved understanding of enhanced blast materials,” ARL-TR-3483 (U.S. Army Research Laboratory, 2005).

Meola, C.

C. Meola and G. M. Carlomagno, “Infrared thermography of impact-drive thermal effects,” Appl. Phys. 96, 759–762(2009).
[CrossRef]

Michelsen, H. A.

F. Goulay, P. E. Schrader, and H. A. Michelsen, “Effect of the wavelength dependence of the emissivity on inferred soot temperatures measured by spectrally resolved laser-induced incandescence,” Appl. Phys. B 100, 655–663(2010).
[CrossRef]

Mizutani, Y.

M. Katsuki, Y. Mizutani, and Y. Matsumoto, “An improved thermocouple technique for measurement of fluctuating temperatures in flames,” Combust. Flame 67, 27–36 (1987).
[CrossRef]

Moss, J. B.

A. Ballantyne and J. B. Moss, “Fine wire thermocouple measurements of fluctuating temperature (in turbulent diffusion flames),” Combust. Sci. Technol. 17, 63–72 (1977).
[CrossRef]

Ng, D.

D. Ng and G. Fralick, “Use of a multiwavelength pyrometer in several elevated temperature aerospace applications,” Rev. Sci. Instrum. 72, 1522–1530 (2001).
[CrossRef]

Parker, R.

R. Parker and R. Allor, “Imaging pyrometer for monitoring the surface temperature of a spray formed steel billet,” Proc. SPIE 4360, 80–89 (2001).
[CrossRef]

Parker, R. A.

J. E. Craig, D. Lee, R. A. Parker, F. S. Biancaniello, and S. D. Ridder, “Temperature imaging measurements with a two wavelength imaging pyrometer,” in Proceedings of the 18th ASM Heat Treating Society Conference, H.W.Walton and R.A.Wallis, eds. (ASM International, 1999), pp. 84–92.

Patel, V.

M. B. Kaplinsky, J. Li, N. J. McCaffrey, V. Patel, E. S. H. Hou, N. M. Ravindra, C. N. Manikopoulos, and W. F. Kosonocky, “Recent advances in the development of a multiwavelength imaging pyrometer,” Opt. Eng. 36, 3176–3187 (1997).
[CrossRef]

Petrushin, O. N.

M. D. Tarasov, A. I. Tolshmyakov, F. O. Kuznetsov, O. N. Petrushin, V. S. Petushkov, Yu. A. Savel'Ev, M. Y. Tarakanov, and V. A. Til'Kunov, “Detonation and shock wave front temperature measurement by two-wave pyrometer based on optical fibers,” Proc. SPIE 2869, 894–899 (1997).
[CrossRef]

Petushkov, V. S.

M. D. Tarasov, A. I. Tolshmyakov, F. O. Kuznetsov, O. N. Petrushin, V. S. Petushkov, Yu. A. Savel'Ev, M. Y. Tarakanov, and V. A. Til'Kunov, “Detonation and shock wave front temperature measurement by two-wave pyrometer based on optical fibers,” Proc. SPIE 2869, 894–899 (1997).
[CrossRef]

Ravindra, N. M.

M. B. Kaplinsky, J. Li, N. J. McCaffrey, V. Patel, E. S. H. Hou, N. M. Ravindra, C. N. Manikopoulos, and W. F. Kosonocky, “Recent advances in the development of a multiwavelength imaging pyrometer,” Opt. Eng. 36, 3176–3187 (1997).
[CrossRef]

Research, Vision

Vision Research, “v7.3 spectral response,” http://www.visionresearch.com/uploads/Docs/SpectralResponse/V7.3 SensorSpectral Response.pdf.

Ridder, S. D.

S. P. Mates, D. Basak, F. S. Biancaniello, S. D. Ridder, and J. Geist, “Calibration of a two-color imaging pyrometer and its use for practical measurements in controlled air plasma spray experiments,” J. Therm. Spray Technol. 11, 195–205 (2002).
[CrossRef]

J. E. Craig, D. Lee, R. A. Parker, F. S. Biancaniello, and S. D. Ridder, “Temperature imaging measurements with a two wavelength imaging pyrometer,” in Proceedings of the 18th ASM Heat Treating Society Conference, H.W.Walton and R.A.Wallis, eds. (ASM International, 1999), pp. 84–92.

Roquemore, A. L.

J. W. Ahn, R. Maingi, D. Mastrovito, and A. L. Roquemore, “High speed infrared camera diagnostics for heat flux measurement in NSTX,” Rev. Sci. Instrum. 81, 023501 (2010).
[CrossRef] [PubMed]

Savel'Ev, Yu. A.

M. D. Tarasov, A. I. Tolshmyakov, F. O. Kuznetsov, O. N. Petrushin, V. S. Petushkov, Yu. A. Savel'Ev, M. Y. Tarakanov, and V. A. Til'Kunov, “Detonation and shock wave front temperature measurement by two-wave pyrometer based on optical fibers,” Proc. SPIE 2869, 894–899 (1997).
[CrossRef]

Schrader, P. E.

F. Goulay, P. E. Schrader, and H. A. Michelsen, “Effect of the wavelength dependence of the emissivity on inferred soot temperatures measured by spectrally resolved laser-induced incandescence,” Appl. Phys. B 100, 655–663(2010).
[CrossRef]

Simmons, D. F.

D. F. Simmons, C. M. Fortang, and D. B. Holtkamp, “Using multispectral imaging to measure temperature profiles and emissivity of large thermionic dispenser cathodes,” Rev. Sci. Instrum. 76, 044901 (2005).
[CrossRef]

Tarakanov, M. Y.

M. D. Tarasov, A. I. Tolshmyakov, F. O. Kuznetsov, O. N. Petrushin, V. S. Petushkov, Yu. A. Savel'Ev, M. Y. Tarakanov, and V. A. Til'Kunov, “Detonation and shock wave front temperature measurement by two-wave pyrometer based on optical fibers,” Proc. SPIE 2869, 894–899 (1997).
[CrossRef]

Tarasov, M. D.

M. D. Tarasov, A. I. Tolshmyakov, F. O. Kuznetsov, O. N. Petrushin, V. S. Petushkov, Yu. A. Savel'Ev, M. Y. Tarakanov, and V. A. Til'Kunov, “Detonation and shock wave front temperature measurement by two-wave pyrometer based on optical fibers,” Proc. SPIE 2869, 894–899 (1997).
[CrossRef]

Til'Kunov, V. A.

M. D. Tarasov, A. I. Tolshmyakov, F. O. Kuznetsov, O. N. Petrushin, V. S. Petushkov, Yu. A. Savel'Ev, M. Y. Tarakanov, and V. A. Til'Kunov, “Detonation and shock wave front temperature measurement by two-wave pyrometer based on optical fibers,” Proc. SPIE 2869, 894–899 (1997).
[CrossRef]

Tolshmyakov, A. I.

M. D. Tarasov, A. I. Tolshmyakov, F. O. Kuznetsov, O. N. Petrushin, V. S. Petushkov, Yu. A. Savel'Ev, M. Y. Tarakanov, and V. A. Til'Kunov, “Detonation and shock wave front temperature measurement by two-wave pyrometer based on optical fibers,” Proc. SPIE 2869, 894–899 (1997).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. (1)

C. Meola and G. M. Carlomagno, “Infrared thermography of impact-drive thermal effects,” Appl. Phys. 96, 759–762(2009).
[CrossRef]

Appl. Phys. B (1)

F. Goulay, P. E. Schrader, and H. A. Michelsen, “Effect of the wavelength dependence of the emissivity on inferred soot temperatures measured by spectrally resolved laser-induced incandescence,” Appl. Phys. B 100, 655–663(2010).
[CrossRef]

Combust. Flame (1)

M. Katsuki, Y. Mizutani, and Y. Matsumoto, “An improved thermocouple technique for measurement of fluctuating temperatures in flames,” Combust. Flame 67, 27–36 (1987).
[CrossRef]

Combust. Sci. Technol. (1)

A. Ballantyne and J. B. Moss, “Fine wire thermocouple measurements of fluctuating temperature (in turbulent diffusion flames),” Combust. Sci. Technol. 17, 63–72 (1977).
[CrossRef]

J. Therm. Spray Technol. (1)

S. P. Mates, D. Basak, F. S. Biancaniello, S. D. Ridder, and J. Geist, “Calibration of a two-color imaging pyrometer and its use for practical measurements in controlled air plasma spray experiments,” J. Therm. Spray Technol. 11, 195–205 (2002).
[CrossRef]

Opt. Eng. (1)

M. B. Kaplinsky, J. Li, N. J. McCaffrey, V. Patel, E. S. H. Hou, N. M. Ravindra, C. N. Manikopoulos, and W. F. Kosonocky, “Recent advances in the development of a multiwavelength imaging pyrometer,” Opt. Eng. 36, 3176–3187 (1997).
[CrossRef]

Proc. SPIE (3)

M. F. Hopkins, “Multi spectral measurement using a novel high speed imaging pyrometer,” Proc. SPIE 3173, 91–98 (1997).
[CrossRef]

R. Parker and R. Allor, “Imaging pyrometer for monitoring the surface temperature of a spray formed steel billet,” Proc. SPIE 4360, 80–89 (2001).
[CrossRef]

M. D. Tarasov, A. I. Tolshmyakov, F. O. Kuznetsov, O. N. Petrushin, V. S. Petushkov, Yu. A. Savel'Ev, M. Y. Tarakanov, and V. A. Til'Kunov, “Detonation and shock wave front temperature measurement by two-wave pyrometer based on optical fibers,” Proc. SPIE 2869, 894–899 (1997).
[CrossRef]

Rev. Sci. Instrum. (3)

J. W. Ahn, R. Maingi, D. Mastrovito, and A. L. Roquemore, “High speed infrared camera diagnostics for heat flux measurement in NSTX,” Rev. Sci. Instrum. 81, 023501 (2010).
[CrossRef] [PubMed]

D. F. Simmons, C. M. Fortang, and D. B. Holtkamp, “Using multispectral imaging to measure temperature profiles and emissivity of large thermionic dispenser cathodes,” Rev. Sci. Instrum. 76, 044901 (2005).
[CrossRef]

D. Ng and G. Fralick, “Use of a multiwavelength pyrometer in several elevated temperature aerospace applications,” Rev. Sci. Instrum. 72, 1522–1530 (2001).
[CrossRef]

Other (7)

J. E. Craig, D. Lee, R. A. Parker, F. S. Biancaniello, and S. D. Ridder, “Temperature imaging measurements with a two wavelength imaging pyrometer,” in Proceedings of the 18th ASM Heat Treating Society Conference, H.W.Walton and R.A.Wallis, eds. (ASM International, 1999), pp. 84–92.

Vision Research, “v7.3 spectral response,” http://www.visionresearch.com/uploads/Docs/SpectralResponse/V7.3 SensorSpectral Response.pdf.

A.Hornberg, ed., Handbook of Machine Vision (Wiley-VCH, 2006).
[CrossRef]

K. L. McNesby and B. E. Homan, “Real-time optical measurements for improved understanding of enhanced blast materials,” ARL-TR-3483 (U.S. Army Research Laboratory, 2005).

P. A. Kinze, Thermocouple Temperature Measurement (Wiley, 1973).

T. R. Harrison, Radiation Pyrometry and its Underlying Principles of Radiant Heat Transfer (Wiley, 1960).

H. J. Kostkowski and R. D. Lee, “Theory and methods of optical pyrometry,” NBS Monograph 41 (U.S. Department of Commerce, National Bureau of Standards, 1962).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Simulated temperature distribution imaged by the integrating pyrometer (blue curve). The integrating pyrometer’s calculated temperature is 15% higher than the mean temperature.

Fig. 2
Fig. 2

Calculated temperature and mean error as a function of width of the temperature distribution σ. The mean temperature remains constant at 1500 K .

Fig. 3
Fig. 3

Spectral intensity of a blackbody at 700 nm (blue curve) and 900 nm (red curve) and the ratio of the intensities (green curve) as a function of temperature.

Fig. 4
Fig. 4

Schematic of the two-camera pyrometer.

Fig. 5
Fig. 5

Photograph of the two-camera pyrometer. A, camera 1; B, camera 2; C, interference filters; D, beam splitter; E, off-the-shelf commercial SLR lens; F, negative lens.

Fig. 6
Fig. 6

Data analysis software flow chart. Data analysis is broken down into three parts: temperature calibration, image calibration, and movie analysis.

Fig. 7
Fig. 7

Spatial temperature map of an exploded TNT charge. A frame rate of 10,000 fps was used record the images. The white area inside the perimeter of the fireball at t = 0.1 and 0.2 ms is due to the saturated camera signal. This area is excluded from the temperature calculation.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I ( λ , ϵ , T ) = C 1 λ 5 ϵ ( λ ) e C 2 / λ T 1 ,
R i , j = σ i I ( λ i , ϵ ( λ i ) , T ) σ j I ( λ j , ϵ ( λ j ) , T ) = σ i λ i ϵ ( λ i ) σ j λ j ϵ ( λ j ) e C 1 T ( 1 λ j 1 λ i ) ,

Metrics