Abstract

This study proposes a thermal sensor based on whispering gallery modes (WGMs) in a polymer core optical ring resonator (PCORR). The thermal sensitivity and detection limit (i.e., the temperature resolution) for WGMs of various orders and polarizations are theoretically studied as a function of the ring wall thickness. The results show that the temperature detection limits can be as low as 4×105 and 6×106K for laser linewidths of 2 and 0.3MHz, respectively. The ultrahigh temperature resolution makes the PCORR a very promising platform for temperature measurement. The analysis also shows that the WGM of a lower order has better thermal sensing performance and a thinner optimal thickness of the ring resonator.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering gallery mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
    [CrossRef] [PubMed]
  2. Y. F. Xiao, C. L. Zou, P. Xue, L. X. Xiao, Y. Li, C. H. Dong, Z. F. Han, and Q. H. Gong, “Quantum electrodynamics in a whispering-gallery microcavity coated with a polymer nanolayer,” Phys. Rev. A 81, 053807 (2010).
    [CrossRef]
  3. S. Schiller and R. L. Byer, “High-resolution spectroscopy of whispering gallery modes in large dielectric spheres,” Opt. Lett. 16, 1138–1140 (1991).
    [CrossRef] [PubMed]
  4. F. Vollmer and S. Arnord, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
    [CrossRef] [PubMed]
  5. N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
    [CrossRef]
  6. N. Lin, L. Jiang, S. M. Wang, L. Yuan, H. Xiao, Y. F. Lu, and H. L. Tsai, “Ultrasensitive chemical sensors based on whispering gallery modes in a microsphere coated with zeolite,” Appl. Opt. 49, 6463–6471 (2010).
    [CrossRef] [PubMed]
  7. N. Lin, L. Jiang, S. M. Wang, H. Xiao, Y. F. Lu, and H. L. Tsai, “Thermostable refractive index sensors based on whispering gallery modes in a microsphere coated with poly(methyl methacrylate),” Appl. Opt. 50, 992–998 (2011).
    [CrossRef] [PubMed]
  8. M. Han and A. Wang, “Temperature compensation of optical microresonators using a surface layer with negative thermo-optic coefficient,” Opt. Lett. 32, 1800–1802 (2007).
    [CrossRef] [PubMed]
  9. L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93, 201102 (2008).
    [CrossRef]
  10. Q. L. Ma, T. Rossmann, and Z. X. Guo, “Temperature sensitivity of silica micro-resonators,” J. Phys. D 41, 245111 (2008).
    [CrossRef]
  11. Q. L. Ma, T. Rossmann, and Z. X. Guo, “Whispering-gallery mode silica microresonators for cryogenic to room temperature measurement,” Meas. Sci. Technol. 21, 025310 (2010).
    [CrossRef]
  12. M. L. Corodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996).
    [CrossRef]
  13. B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. X. Xiao, and Q. H. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96, 251109 (2010).
    [CrossRef]
  14. C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009).
    [CrossRef]
  15. J. R. Schwesyg, T. Beckmann, A. S. Zimmermann, K. Buse, and D. Haertle, “Fabrication and characterization of whispering gallery mode resonators made of polymer,” Opt. Express 17, 2573–2578 (2009).
    [CrossRef] [PubMed]
  16. J. D. Suter, I. M. White, H. Zhu, and X. Fan, “Thermal characterization of liquid core optical ring resonator sensors,” Appl. Opt. 46, 389–396 (2007).
    [CrossRef] [PubMed]
  17. Y. Sun and X. Fan, “Analysis of ring resonators for chemical vapor sensor development,” Opt. Express 16, 10254–10267(2008).
    [CrossRef] [PubMed]
  18. Y. Sun, S. I. Shopova, G. F. Mason, and X. Fan, “Rapid chemical-vapor sensing using optofluidic ring resonators,” Opt. Lett. 33, 788–790 (2008).
    [CrossRef] [PubMed]
  19. C. H. Dong, F. W. Sun, C. L. Zou, X. F. Ren, G. C. Guo, and Z. F. Han, “High-Q silica microsphere by poly(methyl methacrylate) coating and modifying,” Appl. Phys. Lett. 96, 061106(2010).
    [CrossRef]
  20. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
    [CrossRef]
  21. T. Ling and L. J. Guo, “A unique resonance mode observed in a prism-coupled micro-tube resonator sensor with superior index sensitivity,” Opt. Express 15, 17424–17432 (2007).
    [CrossRef] [PubMed]
  22. T. Ling and L. J. Guo, “Analysis of the sensing properties of silica microtube resonator sensors,” J. Opt. Soc. Am. B 26, 471–477 (2009).
    [CrossRef]
  23. X. D. Fan, I. M. White, H. Y. Zhou, J. D. Suter, and H. Oveys, “Overview of novel integrated optical ring resonator bio/chemical sensors,” Proc. SPIE 6452, 64520M (2007).
    [CrossRef]
  24. B. Ozel, R. Nett, T. Weigel, G. Schweiger, and A. Ostendorf, “Temperature sensing by using whispering gallery modes with hollow core fibers,” Meas. Sci. Technol. 21, 094015(2010).
    [CrossRef]

2011 (1)

2010 (6)

N. Lin, L. Jiang, S. M. Wang, L. Yuan, H. Xiao, Y. F. Lu, and H. L. Tsai, “Ultrasensitive chemical sensors based on whispering gallery modes in a microsphere coated with zeolite,” Appl. Opt. 49, 6463–6471 (2010).
[CrossRef] [PubMed]

Y. F. Xiao, C. L. Zou, P. Xue, L. X. Xiao, Y. Li, C. H. Dong, Z. F. Han, and Q. H. Gong, “Quantum electrodynamics in a whispering-gallery microcavity coated with a polymer nanolayer,” Phys. Rev. A 81, 053807 (2010).
[CrossRef]

Q. L. Ma, T. Rossmann, and Z. X. Guo, “Whispering-gallery mode silica microresonators for cryogenic to room temperature measurement,” Meas. Sci. Technol. 21, 025310 (2010).
[CrossRef]

B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. X. Xiao, and Q. H. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96, 251109 (2010).
[CrossRef]

C. H. Dong, F. W. Sun, C. L. Zou, X. F. Ren, G. C. Guo, and Z. F. Han, “High-Q silica microsphere by poly(methyl methacrylate) coating and modifying,” Appl. Phys. Lett. 96, 061106(2010).
[CrossRef]

B. Ozel, R. Nett, T. Weigel, G. Schweiger, and A. Ostendorf, “Temperature sensing by using whispering gallery modes with hollow core fibers,” Meas. Sci. Technol. 21, 094015(2010).
[CrossRef]

2009 (3)

2008 (5)

L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93, 201102 (2008).
[CrossRef]

Q. L. Ma, T. Rossmann, and Z. X. Guo, “Temperature sensitivity of silica micro-resonators,” J. Phys. D 41, 245111 (2008).
[CrossRef]

F. Vollmer and S. Arnord, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[CrossRef] [PubMed]

Y. Sun and X. Fan, “Analysis of ring resonators for chemical vapor sensor development,” Opt. Express 16, 10254–10267(2008).
[CrossRef] [PubMed]

Y. Sun, S. I. Shopova, G. F. Mason, and X. Fan, “Rapid chemical-vapor sensing using optofluidic ring resonators,” Opt. Lett. 33, 788–790 (2008).
[CrossRef] [PubMed]

2007 (4)

2005 (1)

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

1996 (2)

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering gallery mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[CrossRef] [PubMed]

M. L. Corodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996).
[CrossRef]

1991 (1)

Arnord, S.

F. Vollmer and S. Arnord, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[CrossRef] [PubMed]

Beckmann, T.

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
[CrossRef]

Buse, K.

Byer, R. L.

Corodetsky, M. L.

Dong, C.

L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93, 201102 (2008).
[CrossRef]

Dong, C. H.

Y. F. Xiao, C. L. Zou, P. Xue, L. X. Xiao, Y. Li, C. H. Dong, Z. F. Han, and Q. H. Gong, “Quantum electrodynamics in a whispering-gallery microcavity coated with a polymer nanolayer,” Phys. Rev. A 81, 053807 (2010).
[CrossRef]

C. H. Dong, F. W. Sun, C. L. Zou, X. F. Ren, G. C. Guo, and Z. F. Han, “High-Q silica microsphere by poly(methyl methacrylate) coating and modifying,” Appl. Phys. Lett. 96, 061106(2010).
[CrossRef]

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009).
[CrossRef]

Fan, X.

Fan, X. D.

X. D. Fan, I. M. White, H. Y. Zhou, J. D. Suter, and H. Oveys, “Overview of novel integrated optical ring resonator bio/chemical sensors,” Proc. SPIE 6452, 64520M (2007).
[CrossRef]

Gaddam, V.

L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93, 201102 (2008).
[CrossRef]

Gaddam, V. R.

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009).
[CrossRef]

Gong, Q. H.

B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. X. Xiao, and Q. H. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96, 251109 (2010).
[CrossRef]

Y. F. Xiao, C. L. Zou, P. Xue, L. X. Xiao, Y. Li, C. H. Dong, Z. F. Han, and Q. H. Gong, “Quantum electrodynamics in a whispering-gallery microcavity coated with a polymer nanolayer,” Phys. Rev. A 81, 053807 (2010).
[CrossRef]

Guo, G. C.

C. H. Dong, F. W. Sun, C. L. Zou, X. F. Ren, G. C. Guo, and Z. F. Han, “High-Q silica microsphere by poly(methyl methacrylate) coating and modifying,” Appl. Phys. Lett. 96, 061106(2010).
[CrossRef]

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009).
[CrossRef]

Guo, L. J.

Guo, Z. X.

Q. L. Ma, T. Rossmann, and Z. X. Guo, “Whispering-gallery mode silica microresonators for cryogenic to room temperature measurement,” Meas. Sci. Technol. 21, 025310 (2010).
[CrossRef]

Q. L. Ma, T. Rossmann, and Z. X. Guo, “Temperature sensitivity of silica micro-resonators,” J. Phys. D 41, 245111 (2008).
[CrossRef]

Haertle, D.

Han, M.

Han, Z. F.

Y. F. Xiao, C. L. Zou, P. Xue, L. X. Xiao, Y. Li, C. H. Dong, Z. F. Han, and Q. H. Gong, “Quantum electrodynamics in a whispering-gallery microcavity coated with a polymer nanolayer,” Phys. Rev. A 81, 053807 (2010).
[CrossRef]

C. H. Dong, F. W. Sun, C. L. Zou, X. F. Ren, G. C. Guo, and Z. F. Han, “High-Q silica microsphere by poly(methyl methacrylate) coating and modifying,” Appl. Phys. Lett. 96, 061106(2010).
[CrossRef]

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009).
[CrossRef]

Hanumegowda, N. M.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Hare, J.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering gallery mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[CrossRef] [PubMed]

Haroche, S.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering gallery mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[CrossRef] [PubMed]

He, L.

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009).
[CrossRef]

L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93, 201102 (2008).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
[CrossRef]

Ilchenko, V. S.

Jiang, L.

Jiang, X. F.

B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. X. Xiao, and Q. H. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96, 251109 (2010).
[CrossRef]

Lefevre-Seguin, V.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering gallery mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[CrossRef] [PubMed]

Li, B. B.

B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. X. Xiao, and Q. H. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96, 251109 (2010).
[CrossRef]

Li, Y.

B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. X. Xiao, and Q. H. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96, 251109 (2010).
[CrossRef]

Y. F. Xiao, C. L. Zou, P. Xue, L. X. Xiao, Y. Li, C. H. Dong, Z. F. Han, and Q. H. Gong, “Quantum electrodynamics in a whispering-gallery microcavity coated with a polymer nanolayer,” Phys. Rev. A 81, 053807 (2010).
[CrossRef]

Lin, N.

Ling, T.

Lu, Y. F.

Ma, Q. L.

Q. L. Ma, T. Rossmann, and Z. X. Guo, “Whispering-gallery mode silica microresonators for cryogenic to room temperature measurement,” Meas. Sci. Technol. 21, 025310 (2010).
[CrossRef]

Q. L. Ma, T. Rossmann, and Z. X. Guo, “Temperature sensitivity of silica micro-resonators,” J. Phys. D 41, 245111 (2008).
[CrossRef]

Mason, G. F.

Nett, R.

B. Ozel, R. Nett, T. Weigel, G. Schweiger, and A. Ostendorf, “Temperature sensing by using whispering gallery modes with hollow core fibers,” Meas. Sci. Technol. 21, 094015(2010).
[CrossRef]

Ostendorf, A.

B. Ozel, R. Nett, T. Weigel, G. Schweiger, and A. Ostendorf, “Temperature sensing by using whispering gallery modes with hollow core fibers,” Meas. Sci. Technol. 21, 094015(2010).
[CrossRef]

Oveys, H.

X. D. Fan, I. M. White, H. Y. Zhou, J. D. Suter, and H. Oveys, “Overview of novel integrated optical ring resonator bio/chemical sensors,” Proc. SPIE 6452, 64520M (2007).
[CrossRef]

Ozdemir, S. K.

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009).
[CrossRef]

Ozel, B.

B. Ozel, R. Nett, T. Weigel, G. Schweiger, and A. Ostendorf, “Temperature sensing by using whispering gallery modes with hollow core fibers,” Meas. Sci. Technol. 21, 094015(2010).
[CrossRef]

Patel, B. C.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Raimond, J. M.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering gallery mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[CrossRef] [PubMed]

Ren, X. F.

C. H. Dong, F. W. Sun, C. L. Zou, X. F. Ren, G. C. Guo, and Z. F. Han, “High-Q silica microsphere by poly(methyl methacrylate) coating and modifying,” Appl. Phys. Lett. 96, 061106(2010).
[CrossRef]

Rossmann, T.

Q. L. Ma, T. Rossmann, and Z. X. Guo, “Whispering-gallery mode silica microresonators for cryogenic to room temperature measurement,” Meas. Sci. Technol. 21, 025310 (2010).
[CrossRef]

Q. L. Ma, T. Rossmann, and Z. X. Guo, “Temperature sensitivity of silica micro-resonators,” J. Phys. D 41, 245111 (2008).
[CrossRef]

Sandoghdar, V.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering gallery mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[CrossRef] [PubMed]

Savchenkov, A. A.

Schiller, S.

Schweiger, G.

B. Ozel, R. Nett, T. Weigel, G. Schweiger, and A. Ostendorf, “Temperature sensing by using whispering gallery modes with hollow core fibers,” Meas. Sci. Technol. 21, 094015(2010).
[CrossRef]

Schwesyg, J. R.

Shopova, S. I.

Stica, C. J.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Sun, F. W.

C. H. Dong, F. W. Sun, C. L. Zou, X. F. Ren, G. C. Guo, and Z. F. Han, “High-Q silica microsphere by poly(methyl methacrylate) coating and modifying,” Appl. Phys. Lett. 96, 061106(2010).
[CrossRef]

Sun, Y.

Suter, J. D.

X. D. Fan, I. M. White, H. Y. Zhou, J. D. Suter, and H. Oveys, “Overview of novel integrated optical ring resonator bio/chemical sensors,” Proc. SPIE 6452, 64520M (2007).
[CrossRef]

J. D. Suter, I. M. White, H. Zhu, and X. Fan, “Thermal characterization of liquid core optical ring resonator sensors,” Appl. Opt. 46, 389–396 (2007).
[CrossRef] [PubMed]

Treussart, F.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering gallery mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[CrossRef] [PubMed]

Tsai, H. L.

Vollmer, F.

F. Vollmer and S. Arnord, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[CrossRef] [PubMed]

Wang, A.

Wang, Q. Y.

B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. X. Xiao, and Q. H. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96, 251109 (2010).
[CrossRef]

Wang, S. M.

Weigel, T.

B. Ozel, R. Nett, T. Weigel, G. Schweiger, and A. Ostendorf, “Temperature sensing by using whispering gallery modes with hollow core fibers,” Meas. Sci. Technol. 21, 094015(2010).
[CrossRef]

White, I. M.

X. D. Fan, I. M. White, H. Y. Zhou, J. D. Suter, and H. Oveys, “Overview of novel integrated optical ring resonator bio/chemical sensors,” Proc. SPIE 6452, 64520M (2007).
[CrossRef]

J. D. Suter, I. M. White, H. Zhu, and X. Fan, “Thermal characterization of liquid core optical ring resonator sensors,” Appl. Opt. 46, 389–396 (2007).
[CrossRef] [PubMed]

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Xiao, H.

Xiao, L. X.

Y. F. Xiao, C. L. Zou, P. Xue, L. X. Xiao, Y. Li, C. H. Dong, Z. F. Han, and Q. H. Gong, “Quantum electrodynamics in a whispering-gallery microcavity coated with a polymer nanolayer,” Phys. Rev. A 81, 053807 (2010).
[CrossRef]

B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. X. Xiao, and Q. H. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96, 251109 (2010).
[CrossRef]

Xiao, Y. F.

B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. X. Xiao, and Q. H. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96, 251109 (2010).
[CrossRef]

Y. F. Xiao, C. L. Zou, P. Xue, L. X. Xiao, Y. Li, C. H. Dong, Z. F. Han, and Q. H. Gong, “Quantum electrodynamics in a whispering-gallery microcavity coated with a polymer nanolayer,” Phys. Rev. A 81, 053807 (2010).
[CrossRef]

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009).
[CrossRef]

L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93, 201102 (2008).
[CrossRef]

Xue, P.

Y. F. Xiao, C. L. Zou, P. Xue, L. X. Xiao, Y. Li, C. H. Dong, Z. F. Han, and Q. H. Gong, “Quantum electrodynamics in a whispering-gallery microcavity coated with a polymer nanolayer,” Phys. Rev. A 81, 053807 (2010).
[CrossRef]

Yang, L.

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009).
[CrossRef]

L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93, 201102 (2008).
[CrossRef]

Yuan, L.

Zhou, H. Y.

X. D. Fan, I. M. White, H. Y. Zhou, J. D. Suter, and H. Oveys, “Overview of novel integrated optical ring resonator bio/chemical sensors,” Proc. SPIE 6452, 64520M (2007).
[CrossRef]

Zhu, H.

Zhu, J.

L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93, 201102 (2008).
[CrossRef]

Zimmermann, A. S.

Zou, C. L.

C. H. Dong, F. W. Sun, C. L. Zou, X. F. Ren, G. C. Guo, and Z. F. Han, “High-Q silica microsphere by poly(methyl methacrylate) coating and modifying,” Appl. Phys. Lett. 96, 061106(2010).
[CrossRef]

Y. F. Xiao, C. L. Zou, P. Xue, L. X. Xiao, Y. Li, C. H. Dong, Z. F. Han, and Q. H. Gong, “Quantum electrodynamics in a whispering-gallery microcavity coated with a polymer nanolayer,” Phys. Rev. A 81, 053807 (2010).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (5)

C. H. Dong, F. W. Sun, C. L. Zou, X. F. Ren, G. C. Guo, and Z. F. Han, “High-Q silica microsphere by poly(methyl methacrylate) coating and modifying,” Appl. Phys. Lett. 96, 061106(2010).
[CrossRef]

B. B. Li, Q. Y. Wang, Y. F. Xiao, X. F. Jiang, Y. Li, L. X. Xiao, and Q. H. Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96, 251109 (2010).
[CrossRef]

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94, 231119 (2009).
[CrossRef]

L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93, 201102 (2008).
[CrossRef]

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

Q. L. Ma, T. Rossmann, and Z. X. Guo, “Temperature sensitivity of silica micro-resonators,” J. Phys. D 41, 245111 (2008).
[CrossRef]

Meas. Sci. Technol. (2)

Q. L. Ma, T. Rossmann, and Z. X. Guo, “Whispering-gallery mode silica microresonators for cryogenic to room temperature measurement,” Meas. Sci. Technol. 21, 025310 (2010).
[CrossRef]

B. Ozel, R. Nett, T. Weigel, G. Schweiger, and A. Ostendorf, “Temperature sensing by using whispering gallery modes with hollow core fibers,” Meas. Sci. Technol. 21, 094015(2010).
[CrossRef]

Nat. Methods (1)

F. Vollmer and S. Arnord, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (4)

Phys. Rev. A (2)

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering gallery mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[CrossRef] [PubMed]

Y. F. Xiao, C. L. Zou, P. Xue, L. X. Xiao, Y. Li, C. H. Dong, Z. F. Han, and Q. H. Gong, “Quantum electrodynamics in a whispering-gallery microcavity coated with a polymer nanolayer,” Phys. Rev. A 81, 053807 (2010).
[CrossRef]

Proc. SPIE (1)

X. D. Fan, I. M. White, H. Y. Zhou, J. D. Suter, and H. Oveys, “Overview of novel integrated optical ring resonator bio/chemical sensors,” Proc. SPIE 6452, 64520M (2007).
[CrossRef]

Other (1)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Polymer core ring resonator (PCORR)-based thermal sensor configuration. The PCORR is shown in cylindrical coordinates (r, θ, and z). n 1 , n 2 , and n 3 are the refractive indices of the polymer core, ring wall and surrounding medium, respectively. FSR is defined as the difference between two adjacent resonant wavelengths. δ λ R denotes the resonance shift induced by the temperature change.

Fig. 2
Fig. 2

Thermal sensitivity S for TM modes (solid curves) and TE modes (dashed curves) of the first three orders as a function of the ring wall thickness h. The symbols denote the highest thermal sensitivity S MAX for the TM l = 1 (solid circle), TE l = 1 (open circle), TM l = 2 (solid star), TE l = 2 (open star), TM l = 3 (solid diamond), and TE l = 3 (open diamond) modes, respectively.

Fig. 3
Fig. 3

Light energy intensity distribution along the radial direction for TM modes of the first three orders, at (a)  h = 1 and (b)  2 μm .

Fig. 4
Fig. 4

Resonant wavelength shift δ λ R for TM modes of different orders as a function of the temperature change δ T at h = 1 and 2 μm .

Fig. 5
Fig. 5

Q factors for TM modes (solid curves) and TE modes (dashed curves) of the first three orders as a function of the ring wall thickness h.

Fig. 6
Fig. 6

Temperature detection limit ( δ λ R ) min for TM modes (solid curves) and TE modes (dashed curves) of the first three orders as a function of the ring wall thickness h. The value of ( δ λ R ) min / Δ λ R limited by the detector noise is assumed to be 1 / 100 .

Fig. 7
Fig. 7

Temperature detection limit of the first-order TM mode restricted by laser linewidths of 15.5 and 2.4 fm , respectively, as a function of the ring wall thickness h.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

N 0 H m ( 1 ) ( k 0 n 3 R 2 ) H m ( 1 ) ( k 0 n 3 R 2 ) = B m J m ( k 0 n 2 R 2 ) + H m ( 1 ) ( k 0 n 2 R 2 ) B m J m ( k 0 n 2 R 2 ) + H m ( 1 ) ( k 0 n 2 R 2 ) , N 0 = { n 2 / n 3 , TE   modes n 3 / n 2 , TM   modes ,
B m = N 1 J m ( k 0 n 1 R 1 ) H m ( 1 ) ( k 0 n 2 R 1 ) J m ( k 0 n 1 R 1 ) H m ( 1 ) ( k 0 n 2 R 1 ) J m ( k 0 n 1 R 1 ) J m ( k 0 n 2 R 1 ) N 1 J m ( k 0 n 1 R 1 ) J m ( k 0 n 2 R 1 ) , N 0 = { n 1 / n 2 , TE   modes n 2 / n 1 , TM   modes .
R 1 = R 1 ( 1 + α 1 δ T ) , h = h ( 1 + α 2 δ T ) , n i = n i + ( d n i / d T ) δ T ,
S = δ λ R δ T = λ R ( 1 n eff d n eff d T + α ) ,
α = α 1 R 1 + α 2 h R 2 .
S λ R ( i = 1 3 η i ( d n i / d T ) i = 1 3 ( η i n i ) + α 1 R 1 + α 2 h R 2 ) .
η i = { I i I 1 + I 2 + I 3 , TE   Modes n i 2 I i n 1 2 I 1 + n 2 2 I 2 + n 3 2 I 3 , TM   Modes , i = 1 , 2 , 3 ,
I 1 = 0 R 1 | A m J m ( k 0 n 1 r ) | 2 d r , I 3 = R 2 | C m H m ( 1 ) ( k 0 n 3 r ) | 2 d r , I 2 = R 1 R 2 | B m J m ( k 0 n 2 r ) + H m ( 1 ) ( k 0 n 2 r ) | 2 d r .
A m = B m J m ( k 0 n 2 R 1 ) + H m ( 1 ) ( k 0 n 2 R 1 ) J m ( k 0 n 1 R 1 ) , C m = B m J m ( k 0 n 2 R 2 ) + H m ( 1 ) ( k 0 n 2 R 2 ) H m ( 1 ) ( k 0 n 3 R 2 ) .
S TE λ R ( i = 1 3 I i ( d n i / d T ) i = 1 3 ( I i n i ) + α 1 R 1 + α 2 h R 2 ) , S TM λ R ( i = 1 3 I i n i 2 ( d n i / d T ) i = 1 3 ( I i n i 3 ) + α 1 R 1 + α 2 h R 2 ) .
( δ T ) min = ( δ λ R ) min Δ λ R × λ R Q × S ,
1 Q 1 Q sca + 1 ( Q abs ) wall + 1 ( Q abs ) core ,
S ( 1 n 2 d n 2 d T + α 1 ) λ R λ R R 2 ( α 1 α 2 ) h ,

Metrics