Abstract

Near-infrared distributed feedback (DFB) laser actions of Oxazine 725 dye in zirconia thin films and in silica bulks were investigated. Intensity modulation and polarization modulation were used to generate the DFB lasing. Wideband tuning of the output wavelength was achieved by varying the period of the modulation generated by a nanosecond Nd:YAG laser at 532nm. Tuning ranges were 716–778 nm and 724813nm for the thin film lasers and the bulk lasers, respectively. The laser output showed different polarization characteristics and threshold energy variation when the feedback mechanism was changed from intensity modulation to polarization modulation.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
    [CrossRef] [PubMed]
  2. C. V. Shank, J. E. Bjorkhol, and H. Kogelnik, “Tunable distributed-feedback dye laser,” Appl. Phys. Lett. 18, 395–396(1971).
    [CrossRef]
  3. J. E. Carroll, J. Whiteaway, and D. Plumb, Distributed Feedback Semiconductor Lasers (SPIE, 1998).
    [CrossRef]
  4. I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. 107, 1272–1295 (2007).
    [CrossRef] [PubMed]
  5. P. Del Carro, A. Camposeo, R. Stabile, E. Mele, L. Persano, R. Cingolani, and D. Pisignano, “Near-infrared imprinted distributed feedback lasers,” Appl. Phys. Lett. 89, 201105(2006).
    [CrossRef]
  6. Y. Oki, S. Miyamoto, M. Maeda, and N. J. Vasa, “Multiwavelength distributed-feedback dye laser array and its application to spectroscopy,” Opt. Lett. 27, 1220–1222 (2002).
    [CrossRef]
  7. S. Prezioso, L. Ottaviano, F. Bisti, M. Donarelli, S. Santucci, L. Palladino, S. Penna, and A. Reale, “Infrared photoluminescence of erbium-tris (8-hydroxyquinoline) in a distributed feedback cavity,” J. Lumin. 131, 682–685 (2011).
    [CrossRef]
  8. L. T. Shi, F. Jin, M. L. Zheng, X. Z. Dong, W. Q. Chen, Z. S. Zhao, and X. M. Duan, “Threshold optimization of polymeric opal photonic crystal cavity as organic solid-state dye-doped laser,” Appl. Phys. Lett. 98, 093304 (2011).
    [CrossRef]
  9. G. A. Turnbull, T. F. Krauss, W. L. Barnes, and I. D. W. Samuel, “Tuneable distributed feedback lasing in MEH-PPV films,” Synth. Met. 121, 1757–1758 (2001).
    [CrossRef]
  10. Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics: a polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett. 92, 163306 (2008).
    [CrossRef]
  11. R. Ozaki, T. Shinpo, K. Yoshino, M. Ozaki, and H. Moritake, “Tunable liquid crystal laser using distributed feedback cavity fabricated by nanoimprint lithography,” Appl. Phys. Express 1, 012003 (2008).
    [CrossRef]
  12. S. Klinkhammer, N. Heussner, K. Huska, T. Bocksrocker, F. Geislhöringer, C. Vannahme, T. Mappes, and U. Lemmer, “Voltage-controlled tuning of an organic semiconductor distributed feedback laser using liquid crystals,” Appl. Phys. Lett. 99, 023307 (2011).
    [CrossRef]
  13. X. L. Zhu and D. Lo, “Sol-gel glass distributed feedback waveguide laser,” Appl. Phys. Lett. 80, 917–919 (2002).
    [CrossRef]
  14. F. Chen, J. Wang, C. Ye, W. H. Ni, J. L. Chan, Y. Yang, and D. Lo, “Near infrared distributed feedback lasers based on LDS dye-doped zirconia-organically modified silicate channel waveguides,” Opt. Express 13, 1643–1650 (2005).
    [CrossRef] [PubMed]
  15. H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43, 2327–2335(1972).
    [CrossRef]
  16. T. Kobayashi and R. Hogan, “Near-infrared polymer semiconductor laser,” Appl. Phys. Lett. 97, 143303 (2010).
    [CrossRef]
  17. T. Kobayashi, J. B. Savatier, G. Jordan, W. J. Blau, Y. Suzuki, and T. Kaino, “Near-infrared laser emission from luminescent plastic waveguides,” Appl. Phys. Lett. 85, 185–187(2004).
    [CrossRef]
  18. X. L. Zhu, S. K. Lam, and D. Lo, “Distributed-feedback dye-doped solgel silica lasers,” Appl. Opt. 39, 3104–3107(2000).
    [CrossRef]
  19. C. Ye, J. Wang, L. Shi, and D. Lo, “Polarization and threshold energy variation of distributed feedback lasing of oxazine dye in zirconia waveguides and in solutions,” Appl. Phys. B 78, 189–194 (2004).
    [CrossRef]
  20. D. Lo, C. Ye, and J. Wang, “Distributed feedback laser action by polarization modulation,” Appl. Phys. B 76, 649–653(2003).
    [CrossRef]
  21. Y. Sorek, M. Zevin, R. Reisfeld, T. Hurvits, and S. Ruschin, “Zirconia and zirconia-ORMOSIL planar waveguides prepared at room temperature,” Chem. Mater. 9, 670–676(1997).
    [CrossRef]
  22. D. Lo, L. Shi, J. Wang, G. X. Zhang, and X. L. Zhu, “Zirconia and zirconia-organically modified silicate distributed feedback waveguide lasers tunable in the visible,” Appl. Phys. Lett. 81, 2707–2709 (2002).
    [CrossRef]
  23. J. Wang, “Experimental and theoretical studies of distributed feedback waveguide lasers,” Ph.D. dissertation (The Chinese University of Hong Kong, 2006).

2011

S. Prezioso, L. Ottaviano, F. Bisti, M. Donarelli, S. Santucci, L. Palladino, S. Penna, and A. Reale, “Infrared photoluminescence of erbium-tris (8-hydroxyquinoline) in a distributed feedback cavity,” J. Lumin. 131, 682–685 (2011).
[CrossRef]

L. T. Shi, F. Jin, M. L. Zheng, X. Z. Dong, W. Q. Chen, Z. S. Zhao, and X. M. Duan, “Threshold optimization of polymeric opal photonic crystal cavity as organic solid-state dye-doped laser,” Appl. Phys. Lett. 98, 093304 (2011).
[CrossRef]

S. Klinkhammer, N. Heussner, K. Huska, T. Bocksrocker, F. Geislhöringer, C. Vannahme, T. Mappes, and U. Lemmer, “Voltage-controlled tuning of an organic semiconductor distributed feedback laser using liquid crystals,” Appl. Phys. Lett. 99, 023307 (2011).
[CrossRef]

2010

T. Kobayashi and R. Hogan, “Near-infrared polymer semiconductor laser,” Appl. Phys. Lett. 97, 143303 (2010).
[CrossRef]

2008

Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics: a polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett. 92, 163306 (2008).
[CrossRef]

R. Ozaki, T. Shinpo, K. Yoshino, M. Ozaki, and H. Moritake, “Tunable liquid crystal laser using distributed feedback cavity fabricated by nanoimprint lithography,” Appl. Phys. Express 1, 012003 (2008).
[CrossRef]

2007

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. 107, 1272–1295 (2007).
[CrossRef] [PubMed]

2006

P. Del Carro, A. Camposeo, R. Stabile, E. Mele, L. Persano, R. Cingolani, and D. Pisignano, “Near-infrared imprinted distributed feedback lasers,” Appl. Phys. Lett. 89, 201105(2006).
[CrossRef]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[CrossRef] [PubMed]

2005

2004

T. Kobayashi, J. B. Savatier, G. Jordan, W. J. Blau, Y. Suzuki, and T. Kaino, “Near-infrared laser emission from luminescent plastic waveguides,” Appl. Phys. Lett. 85, 185–187(2004).
[CrossRef]

C. Ye, J. Wang, L. Shi, and D. Lo, “Polarization and threshold energy variation of distributed feedback lasing of oxazine dye in zirconia waveguides and in solutions,” Appl. Phys. B 78, 189–194 (2004).
[CrossRef]

2003

D. Lo, C. Ye, and J. Wang, “Distributed feedback laser action by polarization modulation,” Appl. Phys. B 76, 649–653(2003).
[CrossRef]

2002

X. L. Zhu and D. Lo, “Sol-gel glass distributed feedback waveguide laser,” Appl. Phys. Lett. 80, 917–919 (2002).
[CrossRef]

Y. Oki, S. Miyamoto, M. Maeda, and N. J. Vasa, “Multiwavelength distributed-feedback dye laser array and its application to spectroscopy,” Opt. Lett. 27, 1220–1222 (2002).
[CrossRef]

D. Lo, L. Shi, J. Wang, G. X. Zhang, and X. L. Zhu, “Zirconia and zirconia-organically modified silicate distributed feedback waveguide lasers tunable in the visible,” Appl. Phys. Lett. 81, 2707–2709 (2002).
[CrossRef]

2001

G. A. Turnbull, T. F. Krauss, W. L. Barnes, and I. D. W. Samuel, “Tuneable distributed feedback lasing in MEH-PPV films,” Synth. Met. 121, 1757–1758 (2001).
[CrossRef]

2000

1997

Y. Sorek, M. Zevin, R. Reisfeld, T. Hurvits, and S. Ruschin, “Zirconia and zirconia-ORMOSIL planar waveguides prepared at room temperature,” Chem. Mater. 9, 670–676(1997).
[CrossRef]

1972

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43, 2327–2335(1972).
[CrossRef]

1971

C. V. Shank, J. E. Bjorkhol, and H. Kogelnik, “Tunable distributed-feedback dye laser,” Appl. Phys. Lett. 18, 395–396(1971).
[CrossRef]

Barnes, W. L.

G. A. Turnbull, T. F. Krauss, W. L. Barnes, and I. D. W. Samuel, “Tuneable distributed feedback lasing in MEH-PPV films,” Synth. Met. 121, 1757–1758 (2001).
[CrossRef]

Bisti, F.

S. Prezioso, L. Ottaviano, F. Bisti, M. Donarelli, S. Santucci, L. Palladino, S. Penna, and A. Reale, “Infrared photoluminescence of erbium-tris (8-hydroxyquinoline) in a distributed feedback cavity,” J. Lumin. 131, 682–685 (2011).
[CrossRef]

Bjorkhol, J. E.

C. V. Shank, J. E. Bjorkhol, and H. Kogelnik, “Tunable distributed-feedback dye laser,” Appl. Phys. Lett. 18, 395–396(1971).
[CrossRef]

Blau, W. J.

T. Kobayashi, J. B. Savatier, G. Jordan, W. J. Blau, Y. Suzuki, and T. Kaino, “Near-infrared laser emission from luminescent plastic waveguides,” Appl. Phys. Lett. 85, 185–187(2004).
[CrossRef]

Bocksrocker, T.

S. Klinkhammer, N. Heussner, K. Huska, T. Bocksrocker, F. Geislhöringer, C. Vannahme, T. Mappes, and U. Lemmer, “Voltage-controlled tuning of an organic semiconductor distributed feedback laser using liquid crystals,” Appl. Phys. Lett. 99, 023307 (2011).
[CrossRef]

Camposeo, A.

P. Del Carro, A. Camposeo, R. Stabile, E. Mele, L. Persano, R. Cingolani, and D. Pisignano, “Near-infrared imprinted distributed feedback lasers,” Appl. Phys. Lett. 89, 201105(2006).
[CrossRef]

Carroll, J. E.

J. E. Carroll, J. Whiteaway, and D. Plumb, Distributed Feedback Semiconductor Lasers (SPIE, 1998).
[CrossRef]

Chan, J. L.

Chen, F.

Chen, W. Q.

L. T. Shi, F. Jin, M. L. Zheng, X. Z. Dong, W. Q. Chen, Z. S. Zhao, and X. M. Duan, “Threshold optimization of polymeric opal photonic crystal cavity as organic solid-state dye-doped laser,” Appl. Phys. Lett. 98, 093304 (2011).
[CrossRef]

Cingolani, R.

P. Del Carro, A. Camposeo, R. Stabile, E. Mele, L. Persano, R. Cingolani, and D. Pisignano, “Near-infrared imprinted distributed feedback lasers,” Appl. Phys. Lett. 89, 201105(2006).
[CrossRef]

Del Carro, P.

P. Del Carro, A. Camposeo, R. Stabile, E. Mele, L. Persano, R. Cingolani, and D. Pisignano, “Near-infrared imprinted distributed feedback lasers,” Appl. Phys. Lett. 89, 201105(2006).
[CrossRef]

Donarelli, M.

S. Prezioso, L. Ottaviano, F. Bisti, M. Donarelli, S. Santucci, L. Palladino, S. Penna, and A. Reale, “Infrared photoluminescence of erbium-tris (8-hydroxyquinoline) in a distributed feedback cavity,” J. Lumin. 131, 682–685 (2011).
[CrossRef]

Dong, X. Z.

L. T. Shi, F. Jin, M. L. Zheng, X. Z. Dong, W. Q. Chen, Z. S. Zhao, and X. M. Duan, “Threshold optimization of polymeric opal photonic crystal cavity as organic solid-state dye-doped laser,” Appl. Phys. Lett. 98, 093304 (2011).
[CrossRef]

Duan, X. M.

L. T. Shi, F. Jin, M. L. Zheng, X. Z. Dong, W. Q. Chen, Z. S. Zhao, and X. M. Duan, “Threshold optimization of polymeric opal photonic crystal cavity as organic solid-state dye-doped laser,” Appl. Phys. Lett. 98, 093304 (2011).
[CrossRef]

Geislhöringer, F.

S. Klinkhammer, N. Heussner, K. Huska, T. Bocksrocker, F. Geislhöringer, C. Vannahme, T. Mappes, and U. Lemmer, “Voltage-controlled tuning of an organic semiconductor distributed feedback laser using liquid crystals,” Appl. Phys. Lett. 99, 023307 (2011).
[CrossRef]

Heussner, N.

S. Klinkhammer, N. Heussner, K. Huska, T. Bocksrocker, F. Geislhöringer, C. Vannahme, T. Mappes, and U. Lemmer, “Voltage-controlled tuning of an organic semiconductor distributed feedback laser using liquid crystals,” Appl. Phys. Lett. 99, 023307 (2011).
[CrossRef]

Hogan, R.

T. Kobayashi and R. Hogan, “Near-infrared polymer semiconductor laser,” Appl. Phys. Lett. 97, 143303 (2010).
[CrossRef]

Hurvits, T.

Y. Sorek, M. Zevin, R. Reisfeld, T. Hurvits, and S. Ruschin, “Zirconia and zirconia-ORMOSIL planar waveguides prepared at room temperature,” Chem. Mater. 9, 670–676(1997).
[CrossRef]

Huska, K.

S. Klinkhammer, N. Heussner, K. Huska, T. Bocksrocker, F. Geislhöringer, C. Vannahme, T. Mappes, and U. Lemmer, “Voltage-controlled tuning of an organic semiconductor distributed feedback laser using liquid crystals,” Appl. Phys. Lett. 99, 023307 (2011).
[CrossRef]

Jin, F.

L. T. Shi, F. Jin, M. L. Zheng, X. Z. Dong, W. Q. Chen, Z. S. Zhao, and X. M. Duan, “Threshold optimization of polymeric opal photonic crystal cavity as organic solid-state dye-doped laser,” Appl. Phys. Lett. 98, 093304 (2011).
[CrossRef]

Jordan, G.

T. Kobayashi, J. B. Savatier, G. Jordan, W. J. Blau, Y. Suzuki, and T. Kaino, “Near-infrared laser emission from luminescent plastic waveguides,” Appl. Phys. Lett. 85, 185–187(2004).
[CrossRef]

Kaino, T.

T. Kobayashi, J. B. Savatier, G. Jordan, W. J. Blau, Y. Suzuki, and T. Kaino, “Near-infrared laser emission from luminescent plastic waveguides,” Appl. Phys. Lett. 85, 185–187(2004).
[CrossRef]

Klinkhammer, S.

S. Klinkhammer, N. Heussner, K. Huska, T. Bocksrocker, F. Geislhöringer, C. Vannahme, T. Mappes, and U. Lemmer, “Voltage-controlled tuning of an organic semiconductor distributed feedback laser using liquid crystals,” Appl. Phys. Lett. 99, 023307 (2011).
[CrossRef]

Kobayashi, T.

T. Kobayashi and R. Hogan, “Near-infrared polymer semiconductor laser,” Appl. Phys. Lett. 97, 143303 (2010).
[CrossRef]

T. Kobayashi, J. B. Savatier, G. Jordan, W. J. Blau, Y. Suzuki, and T. Kaino, “Near-infrared laser emission from luminescent plastic waveguides,” Appl. Phys. Lett. 85, 185–187(2004).
[CrossRef]

Kogelnik, H.

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43, 2327–2335(1972).
[CrossRef]

C. V. Shank, J. E. Bjorkhol, and H. Kogelnik, “Tunable distributed-feedback dye laser,” Appl. Phys. Lett. 18, 395–396(1971).
[CrossRef]

Krauss, T. F.

G. A. Turnbull, T. F. Krauss, W. L. Barnes, and I. D. W. Samuel, “Tuneable distributed feedback lasing in MEH-PPV films,” Synth. Met. 121, 1757–1758 (2001).
[CrossRef]

Lam, S. K.

Lemmer, U.

S. Klinkhammer, N. Heussner, K. Huska, T. Bocksrocker, F. Geislhöringer, C. Vannahme, T. Mappes, and U. Lemmer, “Voltage-controlled tuning of an organic semiconductor distributed feedback laser using liquid crystals,” Appl. Phys. Lett. 99, 023307 (2011).
[CrossRef]

Lo, D.

F. Chen, J. Wang, C. Ye, W. H. Ni, J. L. Chan, Y. Yang, and D. Lo, “Near infrared distributed feedback lasers based on LDS dye-doped zirconia-organically modified silicate channel waveguides,” Opt. Express 13, 1643–1650 (2005).
[CrossRef] [PubMed]

C. Ye, J. Wang, L. Shi, and D. Lo, “Polarization and threshold energy variation of distributed feedback lasing of oxazine dye in zirconia waveguides and in solutions,” Appl. Phys. B 78, 189–194 (2004).
[CrossRef]

D. Lo, C. Ye, and J. Wang, “Distributed feedback laser action by polarization modulation,” Appl. Phys. B 76, 649–653(2003).
[CrossRef]

D. Lo, L. Shi, J. Wang, G. X. Zhang, and X. L. Zhu, “Zirconia and zirconia-organically modified silicate distributed feedback waveguide lasers tunable in the visible,” Appl. Phys. Lett. 81, 2707–2709 (2002).
[CrossRef]

X. L. Zhu and D. Lo, “Sol-gel glass distributed feedback waveguide laser,” Appl. Phys. Lett. 80, 917–919 (2002).
[CrossRef]

X. L. Zhu, S. K. Lam, and D. Lo, “Distributed-feedback dye-doped solgel silica lasers,” Appl. Opt. 39, 3104–3107(2000).
[CrossRef]

Maeda, M.

Mappes, T.

S. Klinkhammer, N. Heussner, K. Huska, T. Bocksrocker, F. Geislhöringer, C. Vannahme, T. Mappes, and U. Lemmer, “Voltage-controlled tuning of an organic semiconductor distributed feedback laser using liquid crystals,” Appl. Phys. Lett. 99, 023307 (2011).
[CrossRef]

Mele, E.

P. Del Carro, A. Camposeo, R. Stabile, E. Mele, L. Persano, R. Cingolani, and D. Pisignano, “Near-infrared imprinted distributed feedback lasers,” Appl. Phys. Lett. 89, 201105(2006).
[CrossRef]

Miyamoto, S.

Moritake, H.

R. Ozaki, T. Shinpo, K. Yoshino, M. Ozaki, and H. Moritake, “Tunable liquid crystal laser using distributed feedback cavity fabricated by nanoimprint lithography,” Appl. Phys. Express 1, 012003 (2008).
[CrossRef]

Ni, W. H.

Oki, Y.

Ottaviano, L.

S. Prezioso, L. Ottaviano, F. Bisti, M. Donarelli, S. Santucci, L. Palladino, S. Penna, and A. Reale, “Infrared photoluminescence of erbium-tris (8-hydroxyquinoline) in a distributed feedback cavity,” J. Lumin. 131, 682–685 (2011).
[CrossRef]

Ozaki, M.

R. Ozaki, T. Shinpo, K. Yoshino, M. Ozaki, and H. Moritake, “Tunable liquid crystal laser using distributed feedback cavity fabricated by nanoimprint lithography,” Appl. Phys. Express 1, 012003 (2008).
[CrossRef]

Ozaki, R.

R. Ozaki, T. Shinpo, K. Yoshino, M. Ozaki, and H. Moritake, “Tunable liquid crystal laser using distributed feedback cavity fabricated by nanoimprint lithography,” Appl. Phys. Express 1, 012003 (2008).
[CrossRef]

Palladino, L.

S. Prezioso, L. Ottaviano, F. Bisti, M. Donarelli, S. Santucci, L. Palladino, S. Penna, and A. Reale, “Infrared photoluminescence of erbium-tris (8-hydroxyquinoline) in a distributed feedback cavity,” J. Lumin. 131, 682–685 (2011).
[CrossRef]

Penna, S.

S. Prezioso, L. Ottaviano, F. Bisti, M. Donarelli, S. Santucci, L. Palladino, S. Penna, and A. Reale, “Infrared photoluminescence of erbium-tris (8-hydroxyquinoline) in a distributed feedback cavity,” J. Lumin. 131, 682–685 (2011).
[CrossRef]

Persano, L.

P. Del Carro, A. Camposeo, R. Stabile, E. Mele, L. Persano, R. Cingolani, and D. Pisignano, “Near-infrared imprinted distributed feedback lasers,” Appl. Phys. Lett. 89, 201105(2006).
[CrossRef]

Pisignano, D.

P. Del Carro, A. Camposeo, R. Stabile, E. Mele, L. Persano, R. Cingolani, and D. Pisignano, “Near-infrared imprinted distributed feedback lasers,” Appl. Phys. Lett. 89, 201105(2006).
[CrossRef]

Plumb, D.

J. E. Carroll, J. Whiteaway, and D. Plumb, Distributed Feedback Semiconductor Lasers (SPIE, 1998).
[CrossRef]

Prezioso, S.

S. Prezioso, L. Ottaviano, F. Bisti, M. Donarelli, S. Santucci, L. Palladino, S. Penna, and A. Reale, “Infrared photoluminescence of erbium-tris (8-hydroxyquinoline) in a distributed feedback cavity,” J. Lumin. 131, 682–685 (2011).
[CrossRef]

Psaltis, D.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[CrossRef] [PubMed]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[CrossRef] [PubMed]

Reale, A.

S. Prezioso, L. Ottaviano, F. Bisti, M. Donarelli, S. Santucci, L. Palladino, S. Penna, and A. Reale, “Infrared photoluminescence of erbium-tris (8-hydroxyquinoline) in a distributed feedback cavity,” J. Lumin. 131, 682–685 (2011).
[CrossRef]

Reisfeld, R.

Y. Sorek, M. Zevin, R. Reisfeld, T. Hurvits, and S. Ruschin, “Zirconia and zirconia-ORMOSIL planar waveguides prepared at room temperature,” Chem. Mater. 9, 670–676(1997).
[CrossRef]

Ruschin, S.

Y. Sorek, M. Zevin, R. Reisfeld, T. Hurvits, and S. Ruschin, “Zirconia and zirconia-ORMOSIL planar waveguides prepared at room temperature,” Chem. Mater. 9, 670–676(1997).
[CrossRef]

Samuel, I. D. W.

Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics: a polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett. 92, 163306 (2008).
[CrossRef]

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. 107, 1272–1295 (2007).
[CrossRef] [PubMed]

G. A. Turnbull, T. F. Krauss, W. L. Barnes, and I. D. W. Samuel, “Tuneable distributed feedback lasing in MEH-PPV films,” Synth. Met. 121, 1757–1758 (2001).
[CrossRef]

Santucci, S.

S. Prezioso, L. Ottaviano, F. Bisti, M. Donarelli, S. Santucci, L. Palladino, S. Penna, and A. Reale, “Infrared photoluminescence of erbium-tris (8-hydroxyquinoline) in a distributed feedback cavity,” J. Lumin. 131, 682–685 (2011).
[CrossRef]

Savatier, J. B.

T. Kobayashi, J. B. Savatier, G. Jordan, W. J. Blau, Y. Suzuki, and T. Kaino, “Near-infrared laser emission from luminescent plastic waveguides,” Appl. Phys. Lett. 85, 185–187(2004).
[CrossRef]

Shank, C. V.

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43, 2327–2335(1972).
[CrossRef]

C. V. Shank, J. E. Bjorkhol, and H. Kogelnik, “Tunable distributed-feedback dye laser,” Appl. Phys. Lett. 18, 395–396(1971).
[CrossRef]

Shi, L.

C. Ye, J. Wang, L. Shi, and D. Lo, “Polarization and threshold energy variation of distributed feedback lasing of oxazine dye in zirconia waveguides and in solutions,” Appl. Phys. B 78, 189–194 (2004).
[CrossRef]

D. Lo, L. Shi, J. Wang, G. X. Zhang, and X. L. Zhu, “Zirconia and zirconia-organically modified silicate distributed feedback waveguide lasers tunable in the visible,” Appl. Phys. Lett. 81, 2707–2709 (2002).
[CrossRef]

Shi, L. T.

L. T. Shi, F. Jin, M. L. Zheng, X. Z. Dong, W. Q. Chen, Z. S. Zhao, and X. M. Duan, “Threshold optimization of polymeric opal photonic crystal cavity as organic solid-state dye-doped laser,” Appl. Phys. Lett. 98, 093304 (2011).
[CrossRef]

Shinpo, T.

R. Ozaki, T. Shinpo, K. Yoshino, M. Ozaki, and H. Moritake, “Tunable liquid crystal laser using distributed feedback cavity fabricated by nanoimprint lithography,” Appl. Phys. Express 1, 012003 (2008).
[CrossRef]

Sorek, Y.

Y. Sorek, M. Zevin, R. Reisfeld, T. Hurvits, and S. Ruschin, “Zirconia and zirconia-ORMOSIL planar waveguides prepared at room temperature,” Chem. Mater. 9, 670–676(1997).
[CrossRef]

Stabile, R.

P. Del Carro, A. Camposeo, R. Stabile, E. Mele, L. Persano, R. Cingolani, and D. Pisignano, “Near-infrared imprinted distributed feedback lasers,” Appl. Phys. Lett. 89, 201105(2006).
[CrossRef]

Suzuki, Y.

T. Kobayashi, J. B. Savatier, G. Jordan, W. J. Blau, Y. Suzuki, and T. Kaino, “Near-infrared laser emission from luminescent plastic waveguides,” Appl. Phys. Lett. 85, 185–187(2004).
[CrossRef]

Turnbull, G. A.

Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics: a polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett. 92, 163306 (2008).
[CrossRef]

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. 107, 1272–1295 (2007).
[CrossRef] [PubMed]

G. A. Turnbull, T. F. Krauss, W. L. Barnes, and I. D. W. Samuel, “Tuneable distributed feedback lasing in MEH-PPV films,” Synth. Met. 121, 1757–1758 (2001).
[CrossRef]

Vannahme, C.

S. Klinkhammer, N. Heussner, K. Huska, T. Bocksrocker, F. Geislhöringer, C. Vannahme, T. Mappes, and U. Lemmer, “Voltage-controlled tuning of an organic semiconductor distributed feedback laser using liquid crystals,” Appl. Phys. Lett. 99, 023307 (2011).
[CrossRef]

Vasa, N. J.

Wang, J.

F. Chen, J. Wang, C. Ye, W. H. Ni, J. L. Chan, Y. Yang, and D. Lo, “Near infrared distributed feedback lasers based on LDS dye-doped zirconia-organically modified silicate channel waveguides,” Opt. Express 13, 1643–1650 (2005).
[CrossRef] [PubMed]

C. Ye, J. Wang, L. Shi, and D. Lo, “Polarization and threshold energy variation of distributed feedback lasing of oxazine dye in zirconia waveguides and in solutions,” Appl. Phys. B 78, 189–194 (2004).
[CrossRef]

D. Lo, C. Ye, and J. Wang, “Distributed feedback laser action by polarization modulation,” Appl. Phys. B 76, 649–653(2003).
[CrossRef]

D. Lo, L. Shi, J. Wang, G. X. Zhang, and X. L. Zhu, “Zirconia and zirconia-organically modified silicate distributed feedback waveguide lasers tunable in the visible,” Appl. Phys. Lett. 81, 2707–2709 (2002).
[CrossRef]

J. Wang, “Experimental and theoretical studies of distributed feedback waveguide lasers,” Ph.D. dissertation (The Chinese University of Hong Kong, 2006).

Whiteaway, J.

J. E. Carroll, J. Whiteaway, and D. Plumb, Distributed Feedback Semiconductor Lasers (SPIE, 1998).
[CrossRef]

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[CrossRef] [PubMed]

Yang, Y.

Ye, C.

F. Chen, J. Wang, C. Ye, W. H. Ni, J. L. Chan, Y. Yang, and D. Lo, “Near infrared distributed feedback lasers based on LDS dye-doped zirconia-organically modified silicate channel waveguides,” Opt. Express 13, 1643–1650 (2005).
[CrossRef] [PubMed]

C. Ye, J. Wang, L. Shi, and D. Lo, “Polarization and threshold energy variation of distributed feedback lasing of oxazine dye in zirconia waveguides and in solutions,” Appl. Phys. B 78, 189–194 (2004).
[CrossRef]

D. Lo, C. Ye, and J. Wang, “Distributed feedback laser action by polarization modulation,” Appl. Phys. B 76, 649–653(2003).
[CrossRef]

Yoshino, K.

R. Ozaki, T. Shinpo, K. Yoshino, M. Ozaki, and H. Moritake, “Tunable liquid crystal laser using distributed feedback cavity fabricated by nanoimprint lithography,” Appl. Phys. Express 1, 012003 (2008).
[CrossRef]

Zevin, M.

Y. Sorek, M. Zevin, R. Reisfeld, T. Hurvits, and S. Ruschin, “Zirconia and zirconia-ORMOSIL planar waveguides prepared at room temperature,” Chem. Mater. 9, 670–676(1997).
[CrossRef]

Zhang, G. X.

D. Lo, L. Shi, J. Wang, G. X. Zhang, and X. L. Zhu, “Zirconia and zirconia-organically modified silicate distributed feedback waveguide lasers tunable in the visible,” Appl. Phys. Lett. 81, 2707–2709 (2002).
[CrossRef]

Zhao, Z. S.

L. T. Shi, F. Jin, M. L. Zheng, X. Z. Dong, W. Q. Chen, Z. S. Zhao, and X. M. Duan, “Threshold optimization of polymeric opal photonic crystal cavity as organic solid-state dye-doped laser,” Appl. Phys. Lett. 98, 093304 (2011).
[CrossRef]

Zheng, M. L.

L. T. Shi, F. Jin, M. L. Zheng, X. Z. Dong, W. Q. Chen, Z. S. Zhao, and X. M. Duan, “Threshold optimization of polymeric opal photonic crystal cavity as organic solid-state dye-doped laser,” Appl. Phys. Lett. 98, 093304 (2011).
[CrossRef]

Zhu, X. L.

X. L. Zhu and D. Lo, “Sol-gel glass distributed feedback waveguide laser,” Appl. Phys. Lett. 80, 917–919 (2002).
[CrossRef]

D. Lo, L. Shi, J. Wang, G. X. Zhang, and X. L. Zhu, “Zirconia and zirconia-organically modified silicate distributed feedback waveguide lasers tunable in the visible,” Appl. Phys. Lett. 81, 2707–2709 (2002).
[CrossRef]

X. L. Zhu, S. K. Lam, and D. Lo, “Distributed-feedback dye-doped solgel silica lasers,” Appl. Opt. 39, 3104–3107(2000).
[CrossRef]

Appl. Opt.

Appl. Phys. B

C. Ye, J. Wang, L. Shi, and D. Lo, “Polarization and threshold energy variation of distributed feedback lasing of oxazine dye in zirconia waveguides and in solutions,” Appl. Phys. B 78, 189–194 (2004).
[CrossRef]

D. Lo, C. Ye, and J. Wang, “Distributed feedback laser action by polarization modulation,” Appl. Phys. B 76, 649–653(2003).
[CrossRef]

Appl. Phys. Express

R. Ozaki, T. Shinpo, K. Yoshino, M. Ozaki, and H. Moritake, “Tunable liquid crystal laser using distributed feedback cavity fabricated by nanoimprint lithography,” Appl. Phys. Express 1, 012003 (2008).
[CrossRef]

Appl. Phys. Lett.

S. Klinkhammer, N. Heussner, K. Huska, T. Bocksrocker, F. Geislhöringer, C. Vannahme, T. Mappes, and U. Lemmer, “Voltage-controlled tuning of an organic semiconductor distributed feedback laser using liquid crystals,” Appl. Phys. Lett. 99, 023307 (2011).
[CrossRef]

X. L. Zhu and D. Lo, “Sol-gel glass distributed feedback waveguide laser,” Appl. Phys. Lett. 80, 917–919 (2002).
[CrossRef]

Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics: a polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett. 92, 163306 (2008).
[CrossRef]

T. Kobayashi and R. Hogan, “Near-infrared polymer semiconductor laser,” Appl. Phys. Lett. 97, 143303 (2010).
[CrossRef]

T. Kobayashi, J. B. Savatier, G. Jordan, W. J. Blau, Y. Suzuki, and T. Kaino, “Near-infrared laser emission from luminescent plastic waveguides,” Appl. Phys. Lett. 85, 185–187(2004).
[CrossRef]

C. V. Shank, J. E. Bjorkhol, and H. Kogelnik, “Tunable distributed-feedback dye laser,” Appl. Phys. Lett. 18, 395–396(1971).
[CrossRef]

P. Del Carro, A. Camposeo, R. Stabile, E. Mele, L. Persano, R. Cingolani, and D. Pisignano, “Near-infrared imprinted distributed feedback lasers,” Appl. Phys. Lett. 89, 201105(2006).
[CrossRef]

L. T. Shi, F. Jin, M. L. Zheng, X. Z. Dong, W. Q. Chen, Z. S. Zhao, and X. M. Duan, “Threshold optimization of polymeric opal photonic crystal cavity as organic solid-state dye-doped laser,” Appl. Phys. Lett. 98, 093304 (2011).
[CrossRef]

D. Lo, L. Shi, J. Wang, G. X. Zhang, and X. L. Zhu, “Zirconia and zirconia-organically modified silicate distributed feedback waveguide lasers tunable in the visible,” Appl. Phys. Lett. 81, 2707–2709 (2002).
[CrossRef]

Chem. Mater.

Y. Sorek, M. Zevin, R. Reisfeld, T. Hurvits, and S. Ruschin, “Zirconia and zirconia-ORMOSIL planar waveguides prepared at room temperature,” Chem. Mater. 9, 670–676(1997).
[CrossRef]

Chem. Rev.

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. 107, 1272–1295 (2007).
[CrossRef] [PubMed]

J. Appl. Phys.

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43, 2327–2335(1972).
[CrossRef]

J. Lumin.

S. Prezioso, L. Ottaviano, F. Bisti, M. Donarelli, S. Santucci, L. Palladino, S. Penna, and A. Reale, “Infrared photoluminescence of erbium-tris (8-hydroxyquinoline) in a distributed feedback cavity,” J. Lumin. 131, 682–685 (2011).
[CrossRef]

Nature

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Synth. Met.

G. A. Turnbull, T. F. Krauss, W. L. Barnes, and I. D. W. Samuel, “Tuneable distributed feedback lasing in MEH-PPV films,” Synth. Met. 121, 1757–1758 (2001).
[CrossRef]

Other

J. E. Carroll, J. Whiteaway, and D. Plumb, Distributed Feedback Semiconductor Lasers (SPIE, 1998).
[CrossRef]

J. Wang, “Experimental and theoretical studies of distributed feedback waveguide lasers,” Ph.D. dissertation (The Chinese University of Hong Kong, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Preparation flow charts of dye-doped solgel (a) zirconia and (b) silica.

Fig. 2
Fig. 2

(a) Typical transmission spectrum for an undoped zirconia thin film and (b) the absorption spectra of Oxazine-725-doped thin films with different thicknesses.

Fig. 3
Fig. 3

Experimental setup of the DFB lasers by intensity modulation and polarization modulation.

Fig. 4
Fig. 4

One period of the polarized interference patterns projected onto the (a)  x y and (b)  x z planes at different intersection angles θ for s p pumping and (c)  s s pumping.

Fig. 5
Fig. 5

Emission spectra of Oxazine 725 in a 1.1 μm zirconia film. (a) DFB lasing by intensity modulation and (b) DFB lasing by polarization modulation. The ASE spectra of the Oxazine 725 films without modulation are given as well. (c)  TE 0 and TM 0 modal patterns of the 1.1 μm zirconia waveguide.

Fig. 6
Fig. 6

(a) Simultaneous tuning of the TE 0 mode by variation of intersection angle. Output wavelengths as a function of intersection angle for (b) intensity modulation and (c) polarization modulation. Solid curves, theoretical fits based on the Bragg condition. Effective refractive indices determined by the prism coupler were used.

Fig. 7
Fig. 7

Widely tunable laser emission spectra for the Oxazine-725-doped DFB silica lasers induced by (a) intensity modulation and (b) polarization modulation (blue curves, narrow peaks). The ASE spectrum is illustrated as well (red curves, broad peaks).

Fig. 8
Fig. 8

Wavelength tuning of DFB Oxazine- 725-doped silica lasers induced by (a) intensity modulation and (b) polarization modulation.

Metrics