Abstract

Three-dimensional (3D) digital image correlation (DIC) is one of the most popular techniques used in engineering for strain and deformation measurement. However, the error analysis of 3D DIC, especially which kind of parameters dominates the error of 3D coordinate reconstruction in any kind of configuration, is still under study. In this paper, a technique that can be used for error determination of reconstruction is presented. The influence from the system calibration and image correlation to the error is theoretically analyzed. From numerical experiments of one-dimensional line and two-dimensional plane, the evaluation procedure is validated to be flexible. A typical test with standard objects is also conducted. With this technique, once a 3D DIC system is set up and images of objects with speckles and calibration boards are recorded, the error of the configuration can be immediately evaluated. The standard deviation of every point in the world coordinate can be determined by statistical analysis.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. D. Ke, H. Schreier, M. Sutton, and Y. Wang, “Error assessment in stereo-based deformation measurements,” Exp. Mech. 51, 423–441 (2011).
    [CrossRef]
  2. Y. Q. Wang, M. Sutton, X. D. Ke, H. Schreier, P. Reu, and T. Miller, “On error assessment in stereo-based deformation measurements,” Exp. Mech. 51, 405–422 (2011).
    [CrossRef]
  3. J.-J. Orteu, “3-D computer vision in experimental mechanics,” Opt. Lasers Eng. 47, 282–291 (2009).
    [CrossRef]
  4. Y. B. Guo, Y. Yao, X. G. Di, and IEEE, “Research on structural parameter optimization of binocular vision measuring system for parallel mechanism,” in Proceedings of the IEEE International Conference on Mechatronics and Automation (IEEE, 2006), pp. 1131–1135.
  5. K. Zhang, B. Xu, L. X. Tang, and H. M. Shi, “Modeling of binocular vision system for 3D reconstruction with improved genetic algorithms,” Int. J. Adv. Manuf. Technol. 29, 722–728(2006).
    [CrossRef]
  6. L. Robert, F. Nazaret, T. Cutard, and J. J. Orteu, “Use of 3-D digital image correlation to characterize the mechanical behavior of a fiber reinforced refractory castable,” Exp. Mech. 47, 761–773 (2007).
    [CrossRef]
  7. M. J. McGinnis, S. Pessiki, and H. Turker, “Application of three-dimensional digital image correlation to the core-drilling method,” Exp. Mech. 45, 359–367 (2005).
    [CrossRef]
  8. M. A. Sutton, X. Ke, S. M. Lessner, M. Goldbach, M. Yost, F. Zhao, and H. W. Schreier, “Strain field measurements on mouse carotid arteries using microscopic three-dimensional digital image correlation,” J. Biomed. Mater. Res. A 84, 178–190 (2008).
    [CrossRef]
  9. P. Compston, M. Styles, and S. Kalyanasundaram, “Low energy impact damage modes in aluminum foam and polymer foam sandwich structures,” J. Sandw. Struct. Mater. 8, 365–379 (2006).
    [CrossRef]
  10. F. Barthelat, Z. Wu, B. C. Prorok, and H. D. Espinosa, “Dynamic torsion testing of nanocrystalline coatings using high-speed photography and digital image correlation,” Exp. Mech. 43, 331–340 (2003).
    [CrossRef]
  11. V. Tiwari, M. Sutton, and S. McNeill, “Assessment of high speed imaging systems for 2D and 3D deformation measurements: methodology development and validation,” Exp. Mech. 47, 561–579 (2007).
    [CrossRef]
  12. M. A. Sutton, J. Yan, X. Deng, C.-S. Cheng, and P. Zavattieri, “Three-dimensional digital image correlation to quantify deformation and crack-opening displacement in ductile aluminum under mixed-mode I/III loading,” Opt. Eng. 46, 051003(2007).
    [CrossRef]
  13. B. Pan, H. Xie, L. Yang, and Z. Wang, “Accurate measurement of satellite antenna surface using 3D digital image correlation technique,” Strain 45, 194–200 (2009).
    [CrossRef]
  14. Y. Wang, “Error assessment in 3D computer vision,” in Theses and Dissertations (University of South Carolina, 2010).
  15. T. Siebert, T. Becker, K. Spiltthof, I. Neumann, and R. Krupka, “Error estimations in digital image correlation technique,” Appl. Mech. Mater. 7–8, 265–270 (2007).
    [CrossRef]
  16. T. Becker, K. Splitthof, T. Siebert, and P. Kletting, “Error estimations of 3D digital image correlation measurements,” Proc. SPIE 6341, 63410F (2006).
    [CrossRef]
  17. M. Whelan, E. Hack, T. Siebert, R. Burguete, E. A. Patterson, and Q. Saleem, “On the calibration of optical full-field strain measurement systems,” Appl. Mech. Mater. 3–4, 397–402(2005).
    [CrossRef]
  18. R. Y. Tsai, “A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses,” IEEE J. Robot. Autom. 3, 323–344(1987).
    [CrossRef]
  19. J. Heikkila and O. Silven, “A four-step camera calibration procedure with implicit image correction,” in Proceedings of the 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, 1997), pp. 1106–1112.
    [CrossRef]
  20. Z. Y. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330–1334(2000).
    [CrossRef]
  21. Y. Q. Wang, M. A. Sutton, H. A. Bruck, and H. W. Schreier, “Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurements,” Strain 45, 160–178 (2009).
    [CrossRef]
  22. B. Pan, H. M. Xie, Z. Y. Wang, and K. M. Qian, “Study on subset size selection in digital image correlation for speckle patterns,” Opt. Express 16, 7037–7048 (2008).
    [CrossRef] [PubMed]
  23. P. Luo, Y. Chao, M. Sutton, and W. Peters, “Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision,” Exp. Mech. 33, 123–132(1993).
    [CrossRef]
  24. M. Sutton, J. Orteu, and H. Schreier, Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications (Springer Verlag, 2009).
    [PubMed]
  25. F. Remondino and C. Fraser, “Digital camera calibration methods considerations and comparisons,” in International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS, 2006), Vol.  36, pp. 266–272.
  26. B. Pan, K. M. Qian, H. M. Xie, and A. Asundi, “Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review,” Meas. Sci. Technol. 20, 062001 (2009).
    [CrossRef]
  27. C. Bräer-Burchardt, “A simple new method for precise lens distortion correction of low cost camera systems,” in Pattern Recognition, C.Rasmussen, H.Bülthoff, B.Schölkopf, and M.Giese, eds. (Springer, 2004), pp. 570–577.
    [CrossRef]
  28. C. S. Fraser and S. Al-Ajlouni, “Zoom-dependent camera calibration in digital close-range photogrammetry,” Photogramm. Eng. Remote Sensing 72, 1017–1026 (2006).
  29. Y. L. Lay and C. S. Lin, “Lens distortion correction by adjusting image of calibration target,” Indian J. Pure Appl. Phys. 40, 770–774 (2002).
  30. S. Yoneyama, H. Kikuta, A. Kitagawa, and K. Kitamura, “Lens distortion correction for digital image correlation by measuring rigid body displacement,” Opt. Eng. 45, 023602 (2006).
    [CrossRef]
  31. S. Yoneyama, A. Kitagawa, K. Kitamura, and H. Kikuta, “In-plane displacement measurement using digital image correlation with lens distortion correction,” JSME Int. J. A 49, 458–467 (2006).
    [CrossRef]
  32. D. Nelson, A. Makino, and T. Schmidt, “Residual stress determination using hole drilling and 3D image correlation,” Exp. Mech. 46, 31–38 (2006).
    [CrossRef]
  33. W. Tong, “Subpixel image registration with reduced bias,” Opt. Lett. 36, 763–765 (2011).
    [CrossRef] [PubMed]
  34. Z. Hu, H. Xie, J. Lu, T. Hua, and J. Zhu, “Study of the performance of different subpixel image correlation methods in 3D digital image correlation,” Appl. Opt. 49, 4044–4051(2010).
    [CrossRef] [PubMed]

2011 (3)

X. D. Ke, H. Schreier, M. Sutton, and Y. Wang, “Error assessment in stereo-based deformation measurements,” Exp. Mech. 51, 423–441 (2011).
[CrossRef]

Y. Q. Wang, M. Sutton, X. D. Ke, H. Schreier, P. Reu, and T. Miller, “On error assessment in stereo-based deformation measurements,” Exp. Mech. 51, 405–422 (2011).
[CrossRef]

W. Tong, “Subpixel image registration with reduced bias,” Opt. Lett. 36, 763–765 (2011).
[CrossRef] [PubMed]

2010 (1)

2009 (4)

B. Pan, K. M. Qian, H. M. Xie, and A. Asundi, “Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review,” Meas. Sci. Technol. 20, 062001 (2009).
[CrossRef]

J.-J. Orteu, “3-D computer vision in experimental mechanics,” Opt. Lasers Eng. 47, 282–291 (2009).
[CrossRef]

B. Pan, H. Xie, L. Yang, and Z. Wang, “Accurate measurement of satellite antenna surface using 3D digital image correlation technique,” Strain 45, 194–200 (2009).
[CrossRef]

Y. Q. Wang, M. A. Sutton, H. A. Bruck, and H. W. Schreier, “Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurements,” Strain 45, 160–178 (2009).
[CrossRef]

2008 (2)

B. Pan, H. M. Xie, Z. Y. Wang, and K. M. Qian, “Study on subset size selection in digital image correlation for speckle patterns,” Opt. Express 16, 7037–7048 (2008).
[CrossRef] [PubMed]

M. A. Sutton, X. Ke, S. M. Lessner, M. Goldbach, M. Yost, F. Zhao, and H. W. Schreier, “Strain field measurements on mouse carotid arteries using microscopic three-dimensional digital image correlation,” J. Biomed. Mater. Res. A 84, 178–190 (2008).
[CrossRef]

2007 (4)

L. Robert, F. Nazaret, T. Cutard, and J. J. Orteu, “Use of 3-D digital image correlation to characterize the mechanical behavior of a fiber reinforced refractory castable,” Exp. Mech. 47, 761–773 (2007).
[CrossRef]

V. Tiwari, M. Sutton, and S. McNeill, “Assessment of high speed imaging systems for 2D and 3D deformation measurements: methodology development and validation,” Exp. Mech. 47, 561–579 (2007).
[CrossRef]

M. A. Sutton, J. Yan, X. Deng, C.-S. Cheng, and P. Zavattieri, “Three-dimensional digital image correlation to quantify deformation and crack-opening displacement in ductile aluminum under mixed-mode I/III loading,” Opt. Eng. 46, 051003(2007).
[CrossRef]

T. Siebert, T. Becker, K. Spiltthof, I. Neumann, and R. Krupka, “Error estimations in digital image correlation technique,” Appl. Mech. Mater. 7–8, 265–270 (2007).
[CrossRef]

2006 (7)

T. Becker, K. Splitthof, T. Siebert, and P. Kletting, “Error estimations of 3D digital image correlation measurements,” Proc. SPIE 6341, 63410F (2006).
[CrossRef]

P. Compston, M. Styles, and S. Kalyanasundaram, “Low energy impact damage modes in aluminum foam and polymer foam sandwich structures,” J. Sandw. Struct. Mater. 8, 365–379 (2006).
[CrossRef]

K. Zhang, B. Xu, L. X. Tang, and H. M. Shi, “Modeling of binocular vision system for 3D reconstruction with improved genetic algorithms,” Int. J. Adv. Manuf. Technol. 29, 722–728(2006).
[CrossRef]

C. S. Fraser and S. Al-Ajlouni, “Zoom-dependent camera calibration in digital close-range photogrammetry,” Photogramm. Eng. Remote Sensing 72, 1017–1026 (2006).

S. Yoneyama, H. Kikuta, A. Kitagawa, and K. Kitamura, “Lens distortion correction for digital image correlation by measuring rigid body displacement,” Opt. Eng. 45, 023602 (2006).
[CrossRef]

S. Yoneyama, A. Kitagawa, K. Kitamura, and H. Kikuta, “In-plane displacement measurement using digital image correlation with lens distortion correction,” JSME Int. J. A 49, 458–467 (2006).
[CrossRef]

D. Nelson, A. Makino, and T. Schmidt, “Residual stress determination using hole drilling and 3D image correlation,” Exp. Mech. 46, 31–38 (2006).
[CrossRef]

2005 (2)

M. J. McGinnis, S. Pessiki, and H. Turker, “Application of three-dimensional digital image correlation to the core-drilling method,” Exp. Mech. 45, 359–367 (2005).
[CrossRef]

M. Whelan, E. Hack, T. Siebert, R. Burguete, E. A. Patterson, and Q. Saleem, “On the calibration of optical full-field strain measurement systems,” Appl. Mech. Mater. 3–4, 397–402(2005).
[CrossRef]

2003 (1)

F. Barthelat, Z. Wu, B. C. Prorok, and H. D. Espinosa, “Dynamic torsion testing of nanocrystalline coatings using high-speed photography and digital image correlation,” Exp. Mech. 43, 331–340 (2003).
[CrossRef]

2002 (1)

Y. L. Lay and C. S. Lin, “Lens distortion correction by adjusting image of calibration target,” Indian J. Pure Appl. Phys. 40, 770–774 (2002).

2000 (1)

Z. Y. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330–1334(2000).
[CrossRef]

1993 (1)

P. Luo, Y. Chao, M. Sutton, and W. Peters, “Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision,” Exp. Mech. 33, 123–132(1993).
[CrossRef]

1987 (1)

R. Y. Tsai, “A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses,” IEEE J. Robot. Autom. 3, 323–344(1987).
[CrossRef]

Al-Ajlouni, S.

C. S. Fraser and S. Al-Ajlouni, “Zoom-dependent camera calibration in digital close-range photogrammetry,” Photogramm. Eng. Remote Sensing 72, 1017–1026 (2006).

Asundi, A.

B. Pan, K. M. Qian, H. M. Xie, and A. Asundi, “Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review,” Meas. Sci. Technol. 20, 062001 (2009).
[CrossRef]

Barthelat, F.

F. Barthelat, Z. Wu, B. C. Prorok, and H. D. Espinosa, “Dynamic torsion testing of nanocrystalline coatings using high-speed photography and digital image correlation,” Exp. Mech. 43, 331–340 (2003).
[CrossRef]

Becker, T.

T. Siebert, T. Becker, K. Spiltthof, I. Neumann, and R. Krupka, “Error estimations in digital image correlation technique,” Appl. Mech. Mater. 7–8, 265–270 (2007).
[CrossRef]

T. Becker, K. Splitthof, T. Siebert, and P. Kletting, “Error estimations of 3D digital image correlation measurements,” Proc. SPIE 6341, 63410F (2006).
[CrossRef]

Bräer-Burchardt, C.

C. Bräer-Burchardt, “A simple new method for precise lens distortion correction of low cost camera systems,” in Pattern Recognition, C.Rasmussen, H.Bülthoff, B.Schölkopf, and M.Giese, eds. (Springer, 2004), pp. 570–577.
[CrossRef]

Bruck, H. A.

Y. Q. Wang, M. A. Sutton, H. A. Bruck, and H. W. Schreier, “Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurements,” Strain 45, 160–178 (2009).
[CrossRef]

Burguete, R.

M. Whelan, E. Hack, T. Siebert, R. Burguete, E. A. Patterson, and Q. Saleem, “On the calibration of optical full-field strain measurement systems,” Appl. Mech. Mater. 3–4, 397–402(2005).
[CrossRef]

Chao, Y.

P. Luo, Y. Chao, M. Sutton, and W. Peters, “Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision,” Exp. Mech. 33, 123–132(1993).
[CrossRef]

Cheng, C.-S.

M. A. Sutton, J. Yan, X. Deng, C.-S. Cheng, and P. Zavattieri, “Three-dimensional digital image correlation to quantify deformation and crack-opening displacement in ductile aluminum under mixed-mode I/III loading,” Opt. Eng. 46, 051003(2007).
[CrossRef]

Compston, P.

P. Compston, M. Styles, and S. Kalyanasundaram, “Low energy impact damage modes in aluminum foam and polymer foam sandwich structures,” J. Sandw. Struct. Mater. 8, 365–379 (2006).
[CrossRef]

Cutard, T.

L. Robert, F. Nazaret, T. Cutard, and J. J. Orteu, “Use of 3-D digital image correlation to characterize the mechanical behavior of a fiber reinforced refractory castable,” Exp. Mech. 47, 761–773 (2007).
[CrossRef]

Deng, X.

M. A. Sutton, J. Yan, X. Deng, C.-S. Cheng, and P. Zavattieri, “Three-dimensional digital image correlation to quantify deformation and crack-opening displacement in ductile aluminum under mixed-mode I/III loading,” Opt. Eng. 46, 051003(2007).
[CrossRef]

Di, X. G.

Y. B. Guo, Y. Yao, X. G. Di, and IEEE, “Research on structural parameter optimization of binocular vision measuring system for parallel mechanism,” in Proceedings of the IEEE International Conference on Mechatronics and Automation (IEEE, 2006), pp. 1131–1135.

Espinosa, H. D.

F. Barthelat, Z. Wu, B. C. Prorok, and H. D. Espinosa, “Dynamic torsion testing of nanocrystalline coatings using high-speed photography and digital image correlation,” Exp. Mech. 43, 331–340 (2003).
[CrossRef]

Fraser, C.

F. Remondino and C. Fraser, “Digital camera calibration methods considerations and comparisons,” in International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS, 2006), Vol.  36, pp. 266–272.

Fraser, C. S.

C. S. Fraser and S. Al-Ajlouni, “Zoom-dependent camera calibration in digital close-range photogrammetry,” Photogramm. Eng. Remote Sensing 72, 1017–1026 (2006).

Goldbach, M.

M. A. Sutton, X. Ke, S. M. Lessner, M. Goldbach, M. Yost, F. Zhao, and H. W. Schreier, “Strain field measurements on mouse carotid arteries using microscopic three-dimensional digital image correlation,” J. Biomed. Mater. Res. A 84, 178–190 (2008).
[CrossRef]

Guo, Y. B.

Y. B. Guo, Y. Yao, X. G. Di, and IEEE, “Research on structural parameter optimization of binocular vision measuring system for parallel mechanism,” in Proceedings of the IEEE International Conference on Mechatronics and Automation (IEEE, 2006), pp. 1131–1135.

Hack, E.

M. Whelan, E. Hack, T. Siebert, R. Burguete, E. A. Patterson, and Q. Saleem, “On the calibration of optical full-field strain measurement systems,” Appl. Mech. Mater. 3–4, 397–402(2005).
[CrossRef]

Heikkila, J.

J. Heikkila and O. Silven, “A four-step camera calibration procedure with implicit image correction,” in Proceedings of the 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, 1997), pp. 1106–1112.
[CrossRef]

Hu, Z.

Hua, T.

Kalyanasundaram, S.

P. Compston, M. Styles, and S. Kalyanasundaram, “Low energy impact damage modes in aluminum foam and polymer foam sandwich structures,” J. Sandw. Struct. Mater. 8, 365–379 (2006).
[CrossRef]

Ke, X.

M. A. Sutton, X. Ke, S. M. Lessner, M. Goldbach, M. Yost, F. Zhao, and H. W. Schreier, “Strain field measurements on mouse carotid arteries using microscopic three-dimensional digital image correlation,” J. Biomed. Mater. Res. A 84, 178–190 (2008).
[CrossRef]

Ke, X. D.

X. D. Ke, H. Schreier, M. Sutton, and Y. Wang, “Error assessment in stereo-based deformation measurements,” Exp. Mech. 51, 423–441 (2011).
[CrossRef]

Y. Q. Wang, M. Sutton, X. D. Ke, H. Schreier, P. Reu, and T. Miller, “On error assessment in stereo-based deformation measurements,” Exp. Mech. 51, 405–422 (2011).
[CrossRef]

Kikuta, H.

S. Yoneyama, A. Kitagawa, K. Kitamura, and H. Kikuta, “In-plane displacement measurement using digital image correlation with lens distortion correction,” JSME Int. J. A 49, 458–467 (2006).
[CrossRef]

S. Yoneyama, H. Kikuta, A. Kitagawa, and K. Kitamura, “Lens distortion correction for digital image correlation by measuring rigid body displacement,” Opt. Eng. 45, 023602 (2006).
[CrossRef]

Kitagawa, A.

S. Yoneyama, H. Kikuta, A. Kitagawa, and K. Kitamura, “Lens distortion correction for digital image correlation by measuring rigid body displacement,” Opt. Eng. 45, 023602 (2006).
[CrossRef]

S. Yoneyama, A. Kitagawa, K. Kitamura, and H. Kikuta, “In-plane displacement measurement using digital image correlation with lens distortion correction,” JSME Int. J. A 49, 458–467 (2006).
[CrossRef]

Kitamura, K.

S. Yoneyama, A. Kitagawa, K. Kitamura, and H. Kikuta, “In-plane displacement measurement using digital image correlation with lens distortion correction,” JSME Int. J. A 49, 458–467 (2006).
[CrossRef]

S. Yoneyama, H. Kikuta, A. Kitagawa, and K. Kitamura, “Lens distortion correction for digital image correlation by measuring rigid body displacement,” Opt. Eng. 45, 023602 (2006).
[CrossRef]

Kletting, P.

T. Becker, K. Splitthof, T. Siebert, and P. Kletting, “Error estimations of 3D digital image correlation measurements,” Proc. SPIE 6341, 63410F (2006).
[CrossRef]

Krupka, R.

T. Siebert, T. Becker, K. Spiltthof, I. Neumann, and R. Krupka, “Error estimations in digital image correlation technique,” Appl. Mech. Mater. 7–8, 265–270 (2007).
[CrossRef]

Lay, Y. L.

Y. L. Lay and C. S. Lin, “Lens distortion correction by adjusting image of calibration target,” Indian J. Pure Appl. Phys. 40, 770–774 (2002).

Lessner, S. M.

M. A. Sutton, X. Ke, S. M. Lessner, M. Goldbach, M. Yost, F. Zhao, and H. W. Schreier, “Strain field measurements on mouse carotid arteries using microscopic three-dimensional digital image correlation,” J. Biomed. Mater. Res. A 84, 178–190 (2008).
[CrossRef]

Lin, C. S.

Y. L. Lay and C. S. Lin, “Lens distortion correction by adjusting image of calibration target,” Indian J. Pure Appl. Phys. 40, 770–774 (2002).

Lu, J.

Luo, P.

P. Luo, Y. Chao, M. Sutton, and W. Peters, “Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision,” Exp. Mech. 33, 123–132(1993).
[CrossRef]

Makino, A.

D. Nelson, A. Makino, and T. Schmidt, “Residual stress determination using hole drilling and 3D image correlation,” Exp. Mech. 46, 31–38 (2006).
[CrossRef]

McGinnis, M. J.

M. J. McGinnis, S. Pessiki, and H. Turker, “Application of three-dimensional digital image correlation to the core-drilling method,” Exp. Mech. 45, 359–367 (2005).
[CrossRef]

McNeill, S.

V. Tiwari, M. Sutton, and S. McNeill, “Assessment of high speed imaging systems for 2D and 3D deformation measurements: methodology development and validation,” Exp. Mech. 47, 561–579 (2007).
[CrossRef]

Miller, T.

Y. Q. Wang, M. Sutton, X. D. Ke, H. Schreier, P. Reu, and T. Miller, “On error assessment in stereo-based deformation measurements,” Exp. Mech. 51, 405–422 (2011).
[CrossRef]

Nazaret, F.

L. Robert, F. Nazaret, T. Cutard, and J. J. Orteu, “Use of 3-D digital image correlation to characterize the mechanical behavior of a fiber reinforced refractory castable,” Exp. Mech. 47, 761–773 (2007).
[CrossRef]

Nelson, D.

D. Nelson, A. Makino, and T. Schmidt, “Residual stress determination using hole drilling and 3D image correlation,” Exp. Mech. 46, 31–38 (2006).
[CrossRef]

Neumann, I.

T. Siebert, T. Becker, K. Spiltthof, I. Neumann, and R. Krupka, “Error estimations in digital image correlation technique,” Appl. Mech. Mater. 7–8, 265–270 (2007).
[CrossRef]

Orteu, J.

M. Sutton, J. Orteu, and H. Schreier, Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications (Springer Verlag, 2009).
[PubMed]

Orteu, J. J.

L. Robert, F. Nazaret, T. Cutard, and J. J. Orteu, “Use of 3-D digital image correlation to characterize the mechanical behavior of a fiber reinforced refractory castable,” Exp. Mech. 47, 761–773 (2007).
[CrossRef]

Orteu, J.-J.

J.-J. Orteu, “3-D computer vision in experimental mechanics,” Opt. Lasers Eng. 47, 282–291 (2009).
[CrossRef]

Pan, B.

B. Pan, H. Xie, L. Yang, and Z. Wang, “Accurate measurement of satellite antenna surface using 3D digital image correlation technique,” Strain 45, 194–200 (2009).
[CrossRef]

B. Pan, K. M. Qian, H. M. Xie, and A. Asundi, “Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review,” Meas. Sci. Technol. 20, 062001 (2009).
[CrossRef]

B. Pan, H. M. Xie, Z. Y. Wang, and K. M. Qian, “Study on subset size selection in digital image correlation for speckle patterns,” Opt. Express 16, 7037–7048 (2008).
[CrossRef] [PubMed]

Patterson, E. A.

M. Whelan, E. Hack, T. Siebert, R. Burguete, E. A. Patterson, and Q. Saleem, “On the calibration of optical full-field strain measurement systems,” Appl. Mech. Mater. 3–4, 397–402(2005).
[CrossRef]

Pessiki, S.

M. J. McGinnis, S. Pessiki, and H. Turker, “Application of three-dimensional digital image correlation to the core-drilling method,” Exp. Mech. 45, 359–367 (2005).
[CrossRef]

Peters, W.

P. Luo, Y. Chao, M. Sutton, and W. Peters, “Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision,” Exp. Mech. 33, 123–132(1993).
[CrossRef]

Prorok, B. C.

F. Barthelat, Z. Wu, B. C. Prorok, and H. D. Espinosa, “Dynamic torsion testing of nanocrystalline coatings using high-speed photography and digital image correlation,” Exp. Mech. 43, 331–340 (2003).
[CrossRef]

Qian, K. M.

B. Pan, K. M. Qian, H. M. Xie, and A. Asundi, “Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review,” Meas. Sci. Technol. 20, 062001 (2009).
[CrossRef]

B. Pan, H. M. Xie, Z. Y. Wang, and K. M. Qian, “Study on subset size selection in digital image correlation for speckle patterns,” Opt. Express 16, 7037–7048 (2008).
[CrossRef] [PubMed]

Remondino, F.

F. Remondino and C. Fraser, “Digital camera calibration methods considerations and comparisons,” in International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS, 2006), Vol.  36, pp. 266–272.

Reu, P.

Y. Q. Wang, M. Sutton, X. D. Ke, H. Schreier, P. Reu, and T. Miller, “On error assessment in stereo-based deformation measurements,” Exp. Mech. 51, 405–422 (2011).
[CrossRef]

Robert, L.

L. Robert, F. Nazaret, T. Cutard, and J. J. Orteu, “Use of 3-D digital image correlation to characterize the mechanical behavior of a fiber reinforced refractory castable,” Exp. Mech. 47, 761–773 (2007).
[CrossRef]

Saleem, Q.

M. Whelan, E. Hack, T. Siebert, R. Burguete, E. A. Patterson, and Q. Saleem, “On the calibration of optical full-field strain measurement systems,” Appl. Mech. Mater. 3–4, 397–402(2005).
[CrossRef]

Schmidt, T.

D. Nelson, A. Makino, and T. Schmidt, “Residual stress determination using hole drilling and 3D image correlation,” Exp. Mech. 46, 31–38 (2006).
[CrossRef]

Schreier, H.

Y. Q. Wang, M. Sutton, X. D. Ke, H. Schreier, P. Reu, and T. Miller, “On error assessment in stereo-based deformation measurements,” Exp. Mech. 51, 405–422 (2011).
[CrossRef]

X. D. Ke, H. Schreier, M. Sutton, and Y. Wang, “Error assessment in stereo-based deformation measurements,” Exp. Mech. 51, 423–441 (2011).
[CrossRef]

M. Sutton, J. Orteu, and H. Schreier, Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications (Springer Verlag, 2009).
[PubMed]

Schreier, H. W.

Y. Q. Wang, M. A. Sutton, H. A. Bruck, and H. W. Schreier, “Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurements,” Strain 45, 160–178 (2009).
[CrossRef]

M. A. Sutton, X. Ke, S. M. Lessner, M. Goldbach, M. Yost, F. Zhao, and H. W. Schreier, “Strain field measurements on mouse carotid arteries using microscopic three-dimensional digital image correlation,” J. Biomed. Mater. Res. A 84, 178–190 (2008).
[CrossRef]

Shi, H. M.

K. Zhang, B. Xu, L. X. Tang, and H. M. Shi, “Modeling of binocular vision system for 3D reconstruction with improved genetic algorithms,” Int. J. Adv. Manuf. Technol. 29, 722–728(2006).
[CrossRef]

Siebert, T.

T. Siebert, T. Becker, K. Spiltthof, I. Neumann, and R. Krupka, “Error estimations in digital image correlation technique,” Appl. Mech. Mater. 7–8, 265–270 (2007).
[CrossRef]

T. Becker, K. Splitthof, T. Siebert, and P. Kletting, “Error estimations of 3D digital image correlation measurements,” Proc. SPIE 6341, 63410F (2006).
[CrossRef]

M. Whelan, E. Hack, T. Siebert, R. Burguete, E. A. Patterson, and Q. Saleem, “On the calibration of optical full-field strain measurement systems,” Appl. Mech. Mater. 3–4, 397–402(2005).
[CrossRef]

Silven, O.

J. Heikkila and O. Silven, “A four-step camera calibration procedure with implicit image correction,” in Proceedings of the 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, 1997), pp. 1106–1112.
[CrossRef]

Spiltthof, K.

T. Siebert, T. Becker, K. Spiltthof, I. Neumann, and R. Krupka, “Error estimations in digital image correlation technique,” Appl. Mech. Mater. 7–8, 265–270 (2007).
[CrossRef]

Splitthof, K.

T. Becker, K. Splitthof, T. Siebert, and P. Kletting, “Error estimations of 3D digital image correlation measurements,” Proc. SPIE 6341, 63410F (2006).
[CrossRef]

Styles, M.

P. Compston, M. Styles, and S. Kalyanasundaram, “Low energy impact damage modes in aluminum foam and polymer foam sandwich structures,” J. Sandw. Struct. Mater. 8, 365–379 (2006).
[CrossRef]

Sutton, M.

X. D. Ke, H. Schreier, M. Sutton, and Y. Wang, “Error assessment in stereo-based deformation measurements,” Exp. Mech. 51, 423–441 (2011).
[CrossRef]

Y. Q. Wang, M. Sutton, X. D. Ke, H. Schreier, P. Reu, and T. Miller, “On error assessment in stereo-based deformation measurements,” Exp. Mech. 51, 405–422 (2011).
[CrossRef]

V. Tiwari, M. Sutton, and S. McNeill, “Assessment of high speed imaging systems for 2D and 3D deformation measurements: methodology development and validation,” Exp. Mech. 47, 561–579 (2007).
[CrossRef]

P. Luo, Y. Chao, M. Sutton, and W. Peters, “Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision,” Exp. Mech. 33, 123–132(1993).
[CrossRef]

M. Sutton, J. Orteu, and H. Schreier, Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications (Springer Verlag, 2009).
[PubMed]

Sutton, M. A.

Y. Q. Wang, M. A. Sutton, H. A. Bruck, and H. W. Schreier, “Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurements,” Strain 45, 160–178 (2009).
[CrossRef]

M. A. Sutton, X. Ke, S. M. Lessner, M. Goldbach, M. Yost, F. Zhao, and H. W. Schreier, “Strain field measurements on mouse carotid arteries using microscopic three-dimensional digital image correlation,” J. Biomed. Mater. Res. A 84, 178–190 (2008).
[CrossRef]

M. A. Sutton, J. Yan, X. Deng, C.-S. Cheng, and P. Zavattieri, “Three-dimensional digital image correlation to quantify deformation and crack-opening displacement in ductile aluminum under mixed-mode I/III loading,” Opt. Eng. 46, 051003(2007).
[CrossRef]

Tang, L. X.

K. Zhang, B. Xu, L. X. Tang, and H. M. Shi, “Modeling of binocular vision system for 3D reconstruction with improved genetic algorithms,” Int. J. Adv. Manuf. Technol. 29, 722–728(2006).
[CrossRef]

Tiwari, V.

V. Tiwari, M. Sutton, and S. McNeill, “Assessment of high speed imaging systems for 2D and 3D deformation measurements: methodology development and validation,” Exp. Mech. 47, 561–579 (2007).
[CrossRef]

Tong, W.

Tsai, R. Y.

R. Y. Tsai, “A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses,” IEEE J. Robot. Autom. 3, 323–344(1987).
[CrossRef]

Turker, H.

M. J. McGinnis, S. Pessiki, and H. Turker, “Application of three-dimensional digital image correlation to the core-drilling method,” Exp. Mech. 45, 359–367 (2005).
[CrossRef]

Wang, Y.

X. D. Ke, H. Schreier, M. Sutton, and Y. Wang, “Error assessment in stereo-based deformation measurements,” Exp. Mech. 51, 423–441 (2011).
[CrossRef]

Y. Wang, “Error assessment in 3D computer vision,” in Theses and Dissertations (University of South Carolina, 2010).

Wang, Y. Q.

Y. Q. Wang, M. Sutton, X. D. Ke, H. Schreier, P. Reu, and T. Miller, “On error assessment in stereo-based deformation measurements,” Exp. Mech. 51, 405–422 (2011).
[CrossRef]

Y. Q. Wang, M. A. Sutton, H. A. Bruck, and H. W. Schreier, “Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurements,” Strain 45, 160–178 (2009).
[CrossRef]

Wang, Z.

B. Pan, H. Xie, L. Yang, and Z. Wang, “Accurate measurement of satellite antenna surface using 3D digital image correlation technique,” Strain 45, 194–200 (2009).
[CrossRef]

Wang, Z. Y.

Whelan, M.

M. Whelan, E. Hack, T. Siebert, R. Burguete, E. A. Patterson, and Q. Saleem, “On the calibration of optical full-field strain measurement systems,” Appl. Mech. Mater. 3–4, 397–402(2005).
[CrossRef]

Wu, Z.

F. Barthelat, Z. Wu, B. C. Prorok, and H. D. Espinosa, “Dynamic torsion testing of nanocrystalline coatings using high-speed photography and digital image correlation,” Exp. Mech. 43, 331–340 (2003).
[CrossRef]

Xie, H.

Z. Hu, H. Xie, J. Lu, T. Hua, and J. Zhu, “Study of the performance of different subpixel image correlation methods in 3D digital image correlation,” Appl. Opt. 49, 4044–4051(2010).
[CrossRef] [PubMed]

B. Pan, H. Xie, L. Yang, and Z. Wang, “Accurate measurement of satellite antenna surface using 3D digital image correlation technique,” Strain 45, 194–200 (2009).
[CrossRef]

Xie, H. M.

B. Pan, K. M. Qian, H. M. Xie, and A. Asundi, “Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review,” Meas. Sci. Technol. 20, 062001 (2009).
[CrossRef]

B. Pan, H. M. Xie, Z. Y. Wang, and K. M. Qian, “Study on subset size selection in digital image correlation for speckle patterns,” Opt. Express 16, 7037–7048 (2008).
[CrossRef] [PubMed]

Xu, B.

K. Zhang, B. Xu, L. X. Tang, and H. M. Shi, “Modeling of binocular vision system for 3D reconstruction with improved genetic algorithms,” Int. J. Adv. Manuf. Technol. 29, 722–728(2006).
[CrossRef]

Yan, J.

M. A. Sutton, J. Yan, X. Deng, C.-S. Cheng, and P. Zavattieri, “Three-dimensional digital image correlation to quantify deformation and crack-opening displacement in ductile aluminum under mixed-mode I/III loading,” Opt. Eng. 46, 051003(2007).
[CrossRef]

Yang, L.

B. Pan, H. Xie, L. Yang, and Z. Wang, “Accurate measurement of satellite antenna surface using 3D digital image correlation technique,” Strain 45, 194–200 (2009).
[CrossRef]

Yao, Y.

Y. B. Guo, Y. Yao, X. G. Di, and IEEE, “Research on structural parameter optimization of binocular vision measuring system for parallel mechanism,” in Proceedings of the IEEE International Conference on Mechatronics and Automation (IEEE, 2006), pp. 1131–1135.

Yoneyama, S.

S. Yoneyama, H. Kikuta, A. Kitagawa, and K. Kitamura, “Lens distortion correction for digital image correlation by measuring rigid body displacement,” Opt. Eng. 45, 023602 (2006).
[CrossRef]

S. Yoneyama, A. Kitagawa, K. Kitamura, and H. Kikuta, “In-plane displacement measurement using digital image correlation with lens distortion correction,” JSME Int. J. A 49, 458–467 (2006).
[CrossRef]

Yost, M.

M. A. Sutton, X. Ke, S. M. Lessner, M. Goldbach, M. Yost, F. Zhao, and H. W. Schreier, “Strain field measurements on mouse carotid arteries using microscopic three-dimensional digital image correlation,” J. Biomed. Mater. Res. A 84, 178–190 (2008).
[CrossRef]

Zavattieri, P.

M. A. Sutton, J. Yan, X. Deng, C.-S. Cheng, and P. Zavattieri, “Three-dimensional digital image correlation to quantify deformation and crack-opening displacement in ductile aluminum under mixed-mode I/III loading,” Opt. Eng. 46, 051003(2007).
[CrossRef]

Zhang, K.

K. Zhang, B. Xu, L. X. Tang, and H. M. Shi, “Modeling of binocular vision system for 3D reconstruction with improved genetic algorithms,” Int. J. Adv. Manuf. Technol. 29, 722–728(2006).
[CrossRef]

Zhang, Z. Y.

Z. Y. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330–1334(2000).
[CrossRef]

Zhao, F.

M. A. Sutton, X. Ke, S. M. Lessner, M. Goldbach, M. Yost, F. Zhao, and H. W. Schreier, “Strain field measurements on mouse carotid arteries using microscopic three-dimensional digital image correlation,” J. Biomed. Mater. Res. A 84, 178–190 (2008).
[CrossRef]

Zhu, J.

Appl. Mech. Mater. (2)

T. Siebert, T. Becker, K. Spiltthof, I. Neumann, and R. Krupka, “Error estimations in digital image correlation technique,” Appl. Mech. Mater. 7–8, 265–270 (2007).
[CrossRef]

M. Whelan, E. Hack, T. Siebert, R. Burguete, E. A. Patterson, and Q. Saleem, “On the calibration of optical full-field strain measurement systems,” Appl. Mech. Mater. 3–4, 397–402(2005).
[CrossRef]

Appl. Opt. (1)

Exp. Mech. (8)

D. Nelson, A. Makino, and T. Schmidt, “Residual stress determination using hole drilling and 3D image correlation,” Exp. Mech. 46, 31–38 (2006).
[CrossRef]

P. Luo, Y. Chao, M. Sutton, and W. Peters, “Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision,” Exp. Mech. 33, 123–132(1993).
[CrossRef]

F. Barthelat, Z. Wu, B. C. Prorok, and H. D. Espinosa, “Dynamic torsion testing of nanocrystalline coatings using high-speed photography and digital image correlation,” Exp. Mech. 43, 331–340 (2003).
[CrossRef]

V. Tiwari, M. Sutton, and S. McNeill, “Assessment of high speed imaging systems for 2D and 3D deformation measurements: methodology development and validation,” Exp. Mech. 47, 561–579 (2007).
[CrossRef]

X. D. Ke, H. Schreier, M. Sutton, and Y. Wang, “Error assessment in stereo-based deformation measurements,” Exp. Mech. 51, 423–441 (2011).
[CrossRef]

Y. Q. Wang, M. Sutton, X. D. Ke, H. Schreier, P. Reu, and T. Miller, “On error assessment in stereo-based deformation measurements,” Exp. Mech. 51, 405–422 (2011).
[CrossRef]

L. Robert, F. Nazaret, T. Cutard, and J. J. Orteu, “Use of 3-D digital image correlation to characterize the mechanical behavior of a fiber reinforced refractory castable,” Exp. Mech. 47, 761–773 (2007).
[CrossRef]

M. J. McGinnis, S. Pessiki, and H. Turker, “Application of three-dimensional digital image correlation to the core-drilling method,” Exp. Mech. 45, 359–367 (2005).
[CrossRef]

IEEE J. Robot. Autom. (1)

R. Y. Tsai, “A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses,” IEEE J. Robot. Autom. 3, 323–344(1987).
[CrossRef]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

Z. Y. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330–1334(2000).
[CrossRef]

Indian J. Pure Appl. Phys. (1)

Y. L. Lay and C. S. Lin, “Lens distortion correction by adjusting image of calibration target,” Indian J. Pure Appl. Phys. 40, 770–774 (2002).

Int. J. Adv. Manuf. Technol. (1)

K. Zhang, B. Xu, L. X. Tang, and H. M. Shi, “Modeling of binocular vision system for 3D reconstruction with improved genetic algorithms,” Int. J. Adv. Manuf. Technol. 29, 722–728(2006).
[CrossRef]

J. Biomed. Mater. Res. A (1)

M. A. Sutton, X. Ke, S. M. Lessner, M. Goldbach, M. Yost, F. Zhao, and H. W. Schreier, “Strain field measurements on mouse carotid arteries using microscopic three-dimensional digital image correlation,” J. Biomed. Mater. Res. A 84, 178–190 (2008).
[CrossRef]

J. Sandw. Struct. Mater. (1)

P. Compston, M. Styles, and S. Kalyanasundaram, “Low energy impact damage modes in aluminum foam and polymer foam sandwich structures,” J. Sandw. Struct. Mater. 8, 365–379 (2006).
[CrossRef]

JSME Int. J. A (1)

S. Yoneyama, A. Kitagawa, K. Kitamura, and H. Kikuta, “In-plane displacement measurement using digital image correlation with lens distortion correction,” JSME Int. J. A 49, 458–467 (2006).
[CrossRef]

Meas. Sci. Technol. (1)

B. Pan, K. M. Qian, H. M. Xie, and A. Asundi, “Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review,” Meas. Sci. Technol. 20, 062001 (2009).
[CrossRef]

Opt. Eng. (2)

S. Yoneyama, H. Kikuta, A. Kitagawa, and K. Kitamura, “Lens distortion correction for digital image correlation by measuring rigid body displacement,” Opt. Eng. 45, 023602 (2006).
[CrossRef]

M. A. Sutton, J. Yan, X. Deng, C.-S. Cheng, and P. Zavattieri, “Three-dimensional digital image correlation to quantify deformation and crack-opening displacement in ductile aluminum under mixed-mode I/III loading,” Opt. Eng. 46, 051003(2007).
[CrossRef]

Opt. Express (1)

Opt. Lasers Eng. (1)

J.-J. Orteu, “3-D computer vision in experimental mechanics,” Opt. Lasers Eng. 47, 282–291 (2009).
[CrossRef]

Opt. Lett. (1)

Photogramm. Eng. Remote Sensing (1)

C. S. Fraser and S. Al-Ajlouni, “Zoom-dependent camera calibration in digital close-range photogrammetry,” Photogramm. Eng. Remote Sensing 72, 1017–1026 (2006).

Proc. SPIE (1)

T. Becker, K. Splitthof, T. Siebert, and P. Kletting, “Error estimations of 3D digital image correlation measurements,” Proc. SPIE 6341, 63410F (2006).
[CrossRef]

Strain (2)

B. Pan, H. Xie, L. Yang, and Z. Wang, “Accurate measurement of satellite antenna surface using 3D digital image correlation technique,” Strain 45, 194–200 (2009).
[CrossRef]

Y. Q. Wang, M. A. Sutton, H. A. Bruck, and H. W. Schreier, “Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurements,” Strain 45, 160–178 (2009).
[CrossRef]

Other (6)

C. Bräer-Burchardt, “A simple new method for precise lens distortion correction of low cost camera systems,” in Pattern Recognition, C.Rasmussen, H.Bülthoff, B.Schölkopf, and M.Giese, eds. (Springer, 2004), pp. 570–577.
[CrossRef]

M. Sutton, J. Orteu, and H. Schreier, Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications (Springer Verlag, 2009).
[PubMed]

F. Remondino and C. Fraser, “Digital camera calibration methods considerations and comparisons,” in International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS, 2006), Vol.  36, pp. 266–272.

Y. Wang, “Error assessment in 3D computer vision,” in Theses and Dissertations (University of South Carolina, 2010).

J. Heikkila and O. Silven, “A four-step camera calibration procedure with implicit image correction,” in Proceedings of the 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, 1997), pp. 1106–1112.
[CrossRef]

Y. B. Guo, Y. Yao, X. G. Di, and IEEE, “Research on structural parameter optimization of binocular vision measuring system for parallel mechanism,” in Proceedings of the IEEE International Conference on Mechatronics and Automation (IEEE, 2006), pp. 1131–1135.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

The schematic diagram of simplified stereo configuration and the rotation and translation vector from the world coordinate to camera 2 is calculated from the transform matrix of the world coordinate to camera 1 and camera 1 to camera 2.

Fig. 2
Fig. 2

Procedure of comparison simulation and theoretical results.

Fig. 3
Fig. 3

SD of X W and Z W only by image matching error in simulation and theory.

Fig. 4
Fig. 4

SD of X W and Z W caused by accuracy of all parameters and only by pan angle and image matching.

Fig. 5
Fig. 5

SD results of simulation (top) and theory prediction (bottom) of X W (left), Y W (middle), and Z W (right).

Fig. 6
Fig. 6

Pair of 3D speckle images of a cylinder: (a) view from camera 1, (b) view from camera 2.

Fig. 7
Fig. 7

SD in (a) horizontal and (b) vertical field obtained by using one left image correlated to 100 right images.

Fig. 8
Fig. 8

SD of world coordinates by numerical (top) and theoretical (bottom): (a) SD of X W , (b) SD of Y W , (c) SD of Z W .

Fig. 9
Fig. 9

(a) Left view and (b) right view of cylinders.

Fig. 10
Fig. 10

Shape of the three cylinders (one of the results in 60 reconstructions).

Fig. 11
Fig. 11

SD value (units in millimeters) of three cylinders: (a) left, (b) middle, and (c) right in this configuration.

Tables (4)

Tables Icon

Table 1 Intrinsic Parameters of 3D DIC System

Tables Icon

Table 2 Camera Parameters Used for Numerical Simulation

Tables Icon

Table 3 Mean Value and SD of Each Parameter

Tables Icon

Table 4 Optimal Extrinsic Camera Parameter Estimates

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

z c 1 p 1 = K 1 [ R 1 T 1 0 1 ] P , K 1 = [ f x 1 γ 1 u 01 0 f y 1 v 01 0 0 1 ] ,
z c 2 p 2 = K 2 [ R 0 T 0 0 1 ] [ R 1 T 1 0 1 ] P = K 2 [ R 2 T 2 0 1 ] P ,
z c 1 [ X s 1 Y s 1 1 ] = [ m 11 ( 1 ) m 12 ( 1 ) m 13 ( 1 ) m 14 ( 1 ) m 21 ( 1 ) m 22 ( 1 ) m 23 ( 1 ) m 24 ( 1 ) m 31 ( 1 ) m 32 ( 1 ) m 33 ( 1 ) m 34 ( 1 ) ] [ X W Y W Z W 1 ] ,
z c 2 [ X s 2 Y s 2 1 ] = [ m 11 ( 2 ) m 12 ( 2 ) m 13 ( 2 ) m 14 ( 2 ) m 21 ( 2 ) m 22 ( 2 ) m 23 ( 2 ) m 24 ( 2 ) m 31 ( 2 ) m 32 ( 2 ) m 33 ( 2 ) m 34 ( 2 ) ] [ X W Y W Z W 1 ] ,
( X s 1 m 31 ( 1 ) m 11 ( 1 ) ) X W + ( X s 1 m 32 ( 1 ) m 12 ( 1 ) ) Y W + ( X s 1 m 33 ( 1 ) m 13 ( 1 ) ) Z W = m 14 ( 1 ) X s 1 m 34 ( 1 ) , ( Y s 1 m 31 ( 1 ) m 21 ( 1 ) ) X W + ( Y s 1 m 32 ( 1 ) m 22 ( 1 ) ) Y W + ( Y s 1 m 33 ( 1 ) m 23 ( 1 ) ) Z W = m 14 ( 1 ) Y s 1 m 34 ( 1 ) , ( X s 2 m 31 ( 2 ) m 11 ( 2 ) ) X W + ( X s 2 m 32 ( 2 ) m 12 ( 2 ) ) Y W + ( X s 2 m 33 ( 2 ) m 13 ( 2 ) ) Z W = m 14 ( 2 ) X s 2 m 34 ( 2 ) , ( Y s 2 m 31 ( 2 ) m 21 ( 2 ) ) X W + ( Y s 2 m 32 ( 2 ) m 22 ( 2 ) ) Y W + ( Y s 2 m 33 ( 2 ) m 23 ( 2 ) ) Z W = m 14 ( 2 ) Y s 2 m 34 ( 2 ) .
X W = X W ( X s 1 , Y s 1 , X s 2 , Y s 2 , f x 1 , f y 1 , s 1 , c x 1 , c y 1 , κ 1 , κ 2 , α x 1 , α y 1 , α z 1 , t x 1 , t y 1 , t z 1 , f x 2 , f y 2 , s 2 , c x 2 , c y 2 , κ 3 , κ 4 , α x 2 , α y 2 , α z 2 , t x 2 , t y 2 , t z 2 ) , Y W = Y W ( X s 1 , Y s 1 , X s 2 , Y s 2 , f x 1 , f y 1 , s 1 , c x 1 , c y 1 , κ 1 , κ 2 , α x 1 , α y 1 , α z 1 , t x 1 , t y 1 , t z 1 , f x 2 , f y 2 , s 2 , c x 2 , c y 2 , κ 3 , κ 4 , α x 2 , α y 2 , α z 2 , t x 2 , t y 2 , t z 2 ) , Z W = Z W ( X s 1 , Y s 1 , X s 2 , Y s 2 , f x 1 , f y 1 , s 1 , c x 1 , c y 1 , κ 1 , κ 2 , α x 1 , α y 1 , α z 1 , t x 1 , t y 1 , t z 1 , f x 2 , f y 2 , s 2 , c x 2 , c y 2 , κ 3 , κ 4 , α x 2 , α y 2 , α z 2 , t x 2 , t y 2 , t z 2 ) ,
X W = X W ( X s 1 , Y s 1 , X s 2 , Y s 2 , f x 1 , f y 1 , s 1 , c x 1 , c y 1 , κ 1 , κ 2 , f x 2 , f y 2 , s 2 , c x 2 , c y 2 , κ 3 , κ 4 , α x 0 , α y 0 , α z 0 , t x 0 , t y 0 , t z 0 ) , Y W = Y W ( X s 1 , Y s 1 , X s 2 , Y s 2 , f x 1 , f y 1 , s 1 , c x 1 , c y 1 , κ 1 , κ 2 , f x 2 , f y 2 , s 2 , c x 2 , c y 2 , κ 3 , κ 4 , α x 0 , α y 0 , α z 0 , t x 0 , t y 0 , t z 0 ) , Z W = Z W ( X s 1 , Y s 1 , X s 2 , Y s 2 , f x 1 , f y 1 , s 1 , c x 1 , c y 1 , κ 1 , κ 2 , f x 2 , f y 2 , s 2 , c x 2 , c y 2 , κ 3 , κ 4 , α x 0 , α y 0 , α z 0 , t x 0 , t y 0 , t z 0 ) .
V ( u ) J · V ( θ ) · J T , J i j = u i θ j ,

Metrics