Abstract

We present a novel embedded relay lens hyperspectral imaging system (ERL-HIS) with high spectral resolution (nominal spectral resolution of 2.8nm) and spatial resolution (30μm×8μm) that transfers the scanning plane to an additional imaging plane through the internal relay lens so as to alleviate all outside moving parts for the scanning mechanism used in the traditional HIS, where image scanning is achieved by the relative movement between the object and hyperspectrometer. The ERL-HIS also enables high-speed scanning and can attach to a variety of optical modules for versatile applications. Here, we also demonstrate an application of the proposed ERL-HIS attached to a microscopic system for observing autofluorescent images of sliced cancer tissue samples.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. T. Willoughby, M. A. Folkman, and M. A. Figueroa, “Application of hyperspectral imaging spectrometer systems to industrial inspection,” Proc. SPIE 2599, 264–272 (1996).
    [CrossRef]
  2. C. Balas, V. Papadakis, N. Papadakis, A. Papadakis, E. Vazgiouraki, and G. Themelis, “A novel hyper-spectral imaging apparatus for the non-destructive analysis of objects of artistic and historic value,” J. Cult. Herit. 4, 330–337(2003).
    [CrossRef]
  3. M. B. Sinclair, D. M. Haaland, J. A. Timlin, and H. D. T. Jones, “Hyperspectral confocal microscope,” Appl. Opt. 45, 6283–6291 (2006).
    [CrossRef] [PubMed]
  4. T. Pham, F. Bevilacqua, T. Spott, J. Dam, B. Tromberg, and S. Andersson-Engles, “Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact Fourier transform hyperspectral imaging,” Appl. Opt. 39, 6487–6497 (2000).
    [CrossRef]
  5. R. Schultz, T. Nielsen, J. Zavaleta, R. Ruch, R. Wyatt, and H. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry 43, 239–247 (2001).
    [CrossRef] [PubMed]
  6. M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. V. Dinh, “Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection,” Ann. Biomed. Eng. 34, 1061–1068(2006).
    [CrossRef] [PubMed]
  7. Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: principles and applications,” Cytom. A 69, 735–747(2006).
    [CrossRef]
  8. W. R. Johnson, D. W. Wilson, and G. Bearman, “All-reflective snapshot hyperspectral imager ultraviolet and infrared applications,” Opt. Lett. 30, 1464–1466 (2005).
    [CrossRef] [PubMed]
  9. Q. Li, Y. Xue, G. Xiao, and J. Zhang, “New microscopic pushbroom hyperspectral imaging system for application in diabetic retinopathy research,” J. Biomed. Opt. 12, 064011(2007).
    [CrossRef]
  10. C. F. Cull, K. Choi, D. J. Brady, and T. Oliver, “Identification of fluorescent beads using a coded aperture snapshot spectral imager,” Appl. Opt. 49, B59–B70 (2010).
    [CrossRef] [PubMed]
  11. B. Ford, M. Descuor, and R. Lynch, “Large-image-format computed tomography imaging spectrometer for fluorescence microscopy,” Opt. Express 9, 444–453 (2001).
    [CrossRef] [PubMed]
  12. L. Gao, R. T. Kester, N. Hagen, and T. S. Tkaczyk, “Snapshot image mapping spectrometer (IMS) with high sampling density for hyperspectral microscopy,” Opt. Express 18, 14330–14344 (2010).
    [CrossRef] [PubMed]
  13. R. T. Kester, L. Gao, and T. S. Tkacyzk, “Development of image mappers for hyperspectral biomedical imaging application,” Appl. Opt. 49, 1886–1899 (2010).
    [CrossRef] [PubMed]
  14. W. J. Smith, Modern Optical Engineering (McGraw-Hill, 2000).
  15. D. Malacara, Geometrical and Instrumental Optics(Academic, 1988).
  16. R. E. Fisher and B. T. Galeb, “Performance evaluation and optical testing,” in Optical System Design (SPIE, 2000), pp. 301–313.

2010 (3)

2007 (1)

Q. Li, Y. Xue, G. Xiao, and J. Zhang, “New microscopic pushbroom hyperspectral imaging system for application in diabetic retinopathy research,” J. Biomed. Opt. 12, 064011(2007).
[CrossRef]

2006 (3)

M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. V. Dinh, “Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection,” Ann. Biomed. Eng. 34, 1061–1068(2006).
[CrossRef] [PubMed]

Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: principles and applications,” Cytom. A 69, 735–747(2006).
[CrossRef]

M. B. Sinclair, D. M. Haaland, J. A. Timlin, and H. D. T. Jones, “Hyperspectral confocal microscope,” Appl. Opt. 45, 6283–6291 (2006).
[CrossRef] [PubMed]

2005 (1)

2003 (1)

C. Balas, V. Papadakis, N. Papadakis, A. Papadakis, E. Vazgiouraki, and G. Themelis, “A novel hyper-spectral imaging apparatus for the non-destructive analysis of objects of artistic and historic value,” J. Cult. Herit. 4, 330–337(2003).
[CrossRef]

2001 (2)

R. Schultz, T. Nielsen, J. Zavaleta, R. Ruch, R. Wyatt, and H. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry 43, 239–247 (2001).
[CrossRef] [PubMed]

B. Ford, M. Descuor, and R. Lynch, “Large-image-format computed tomography imaging spectrometer for fluorescence microscopy,” Opt. Express 9, 444–453 (2001).
[CrossRef] [PubMed]

2000 (1)

1996 (1)

C. T. Willoughby, M. A. Folkman, and M. A. Figueroa, “Application of hyperspectral imaging spectrometer systems to industrial inspection,” Proc. SPIE 2599, 264–272 (1996).
[CrossRef]

Andersson-Engles, S.

Balas, C.

C. Balas, V. Papadakis, N. Papadakis, A. Papadakis, E. Vazgiouraki, and G. Themelis, “A novel hyper-spectral imaging apparatus for the non-destructive analysis of objects of artistic and historic value,” J. Cult. Herit. 4, 330–337(2003).
[CrossRef]

Bearman, G.

Bevilacqua, F.

Brady, D. J.

Chen, K.

M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. V. Dinh, “Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection,” Ann. Biomed. Eng. 34, 1061–1068(2006).
[CrossRef] [PubMed]

Choi, K.

Cull, C. F.

Cunningham, G.

M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. V. Dinh, “Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection,” Ann. Biomed. Eng. 34, 1061–1068(2006).
[CrossRef] [PubMed]

Dam, J.

Denovo, R. C.

M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. V. Dinh, “Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection,” Ann. Biomed. Eng. 34, 1061–1068(2006).
[CrossRef] [PubMed]

Descuor, M.

Dinh, T. V.

M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. V. Dinh, “Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection,” Ann. Biomed. Eng. 34, 1061–1068(2006).
[CrossRef] [PubMed]

Figueroa, M. A.

C. T. Willoughby, M. A. Folkman, and M. A. Figueroa, “Application of hyperspectral imaging spectrometer systems to industrial inspection,” Proc. SPIE 2599, 264–272 (1996).
[CrossRef]

Fisher, R. E.

R. E. Fisher and B. T. Galeb, “Performance evaluation and optical testing,” in Optical System Design (SPIE, 2000), pp. 301–313.

Folkman, M. A.

C. T. Willoughby, M. A. Folkman, and M. A. Figueroa, “Application of hyperspectral imaging spectrometer systems to industrial inspection,” Proc. SPIE 2599, 264–272 (1996).
[CrossRef]

Ford, B.

Galeb, B. T.

R. E. Fisher and B. T. Galeb, “Performance evaluation and optical testing,” in Optical System Design (SPIE, 2000), pp. 301–313.

Gao, L.

Garini, Y.

Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: principles and applications,” Cytom. A 69, 735–747(2006).
[CrossRef]

Garner, H.

R. Schultz, T. Nielsen, J. Zavaleta, R. Ruch, R. Wyatt, and H. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry 43, 239–247 (2001).
[CrossRef] [PubMed]

Haaland, D. M.

Hagen, N.

Johnson, W. R.

Jones, H. D. T.

Kasili, P.

M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. V. Dinh, “Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection,” Ann. Biomed. Eng. 34, 1061–1068(2006).
[CrossRef] [PubMed]

Kester, R. T.

Li, Q.

Q. Li, Y. Xue, G. Xiao, and J. Zhang, “New microscopic pushbroom hyperspectral imaging system for application in diabetic retinopathy research,” J. Biomed. Opt. 12, 064011(2007).
[CrossRef]

Lynch, R.

Malacara, D.

D. Malacara, Geometrical and Instrumental Optics(Academic, 1988).

Martin, M. E.

M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. V. Dinh, “Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection,” Ann. Biomed. Eng. 34, 1061–1068(2006).
[CrossRef] [PubMed]

McNamara, G.

Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: principles and applications,” Cytom. A 69, 735–747(2006).
[CrossRef]

Nielsen, T.

R. Schultz, T. Nielsen, J. Zavaleta, R. Ruch, R. Wyatt, and H. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry 43, 239–247 (2001).
[CrossRef] [PubMed]

Oliver, T.

Overholt, B.

M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. V. Dinh, “Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection,” Ann. Biomed. Eng. 34, 1061–1068(2006).
[CrossRef] [PubMed]

Panjehpour, M.

M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. V. Dinh, “Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection,” Ann. Biomed. Eng. 34, 1061–1068(2006).
[CrossRef] [PubMed]

Papadakis, A.

C. Balas, V. Papadakis, N. Papadakis, A. Papadakis, E. Vazgiouraki, and G. Themelis, “A novel hyper-spectral imaging apparatus for the non-destructive analysis of objects of artistic and historic value,” J. Cult. Herit. 4, 330–337(2003).
[CrossRef]

Papadakis, N.

C. Balas, V. Papadakis, N. Papadakis, A. Papadakis, E. Vazgiouraki, and G. Themelis, “A novel hyper-spectral imaging apparatus for the non-destructive analysis of objects of artistic and historic value,” J. Cult. Herit. 4, 330–337(2003).
[CrossRef]

Papadakis, V.

C. Balas, V. Papadakis, N. Papadakis, A. Papadakis, E. Vazgiouraki, and G. Themelis, “A novel hyper-spectral imaging apparatus for the non-destructive analysis of objects of artistic and historic value,” J. Cult. Herit. 4, 330–337(2003).
[CrossRef]

Pham, T.

Phan, M.

M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. V. Dinh, “Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection,” Ann. Biomed. Eng. 34, 1061–1068(2006).
[CrossRef] [PubMed]

Ruch, R.

R. Schultz, T. Nielsen, J. Zavaleta, R. Ruch, R. Wyatt, and H. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry 43, 239–247 (2001).
[CrossRef] [PubMed]

Schultz, R.

R. Schultz, T. Nielsen, J. Zavaleta, R. Ruch, R. Wyatt, and H. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry 43, 239–247 (2001).
[CrossRef] [PubMed]

Sinclair, M. B.

Smith, W. J.

W. J. Smith, Modern Optical Engineering (McGraw-Hill, 2000).

Spott, T.

Themelis, G.

C. Balas, V. Papadakis, N. Papadakis, A. Papadakis, E. Vazgiouraki, and G. Themelis, “A novel hyper-spectral imaging apparatus for the non-destructive analysis of objects of artistic and historic value,” J. Cult. Herit. 4, 330–337(2003).
[CrossRef]

Timlin, J. A.

Tkacyzk, T. S.

Tkaczyk, T. S.

Tromberg, B.

Vazgiouraki, E.

C. Balas, V. Papadakis, N. Papadakis, A. Papadakis, E. Vazgiouraki, and G. Themelis, “A novel hyper-spectral imaging apparatus for the non-destructive analysis of objects of artistic and historic value,” J. Cult. Herit. 4, 330–337(2003).
[CrossRef]

Wabuyele, M. B.

M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. V. Dinh, “Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection,” Ann. Biomed. Eng. 34, 1061–1068(2006).
[CrossRef] [PubMed]

Willoughby, C. T.

C. T. Willoughby, M. A. Folkman, and M. A. Figueroa, “Application of hyperspectral imaging spectrometer systems to industrial inspection,” Proc. SPIE 2599, 264–272 (1996).
[CrossRef]

Wilson, D.

M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. V. Dinh, “Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection,” Ann. Biomed. Eng. 34, 1061–1068(2006).
[CrossRef] [PubMed]

Wilson, D. W.

Wyatt, R.

R. Schultz, T. Nielsen, J. Zavaleta, R. Ruch, R. Wyatt, and H. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry 43, 239–247 (2001).
[CrossRef] [PubMed]

Xiao, G.

Q. Li, Y. Xue, G. Xiao, and J. Zhang, “New microscopic pushbroom hyperspectral imaging system for application in diabetic retinopathy research,” J. Biomed. Opt. 12, 064011(2007).
[CrossRef]

Xue, Y.

Q. Li, Y. Xue, G. Xiao, and J. Zhang, “New microscopic pushbroom hyperspectral imaging system for application in diabetic retinopathy research,” J. Biomed. Opt. 12, 064011(2007).
[CrossRef]

Young, I. T.

Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: principles and applications,” Cytom. A 69, 735–747(2006).
[CrossRef]

Zavaleta, J.

R. Schultz, T. Nielsen, J. Zavaleta, R. Ruch, R. Wyatt, and H. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry 43, 239–247 (2001).
[CrossRef] [PubMed]

Zhang, J.

Q. Li, Y. Xue, G. Xiao, and J. Zhang, “New microscopic pushbroom hyperspectral imaging system for application in diabetic retinopathy research,” J. Biomed. Opt. 12, 064011(2007).
[CrossRef]

Ann. Biomed. Eng. (1)

M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. V. Dinh, “Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection,” Ann. Biomed. Eng. 34, 1061–1068(2006).
[CrossRef] [PubMed]

Appl. Opt. (4)

Cytom. A (1)

Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: principles and applications,” Cytom. A 69, 735–747(2006).
[CrossRef]

Cytometry (1)

R. Schultz, T. Nielsen, J. Zavaleta, R. Ruch, R. Wyatt, and H. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry 43, 239–247 (2001).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

Q. Li, Y. Xue, G. Xiao, and J. Zhang, “New microscopic pushbroom hyperspectral imaging system for application in diabetic retinopathy research,” J. Biomed. Opt. 12, 064011(2007).
[CrossRef]

J. Cult. Herit. (1)

C. Balas, V. Papadakis, N. Papadakis, A. Papadakis, E. Vazgiouraki, and G. Themelis, “A novel hyper-spectral imaging apparatus for the non-destructive analysis of objects of artistic and historic value,” J. Cult. Herit. 4, 330–337(2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Proc. SPIE (1)

C. T. Willoughby, M. A. Folkman, and M. A. Figueroa, “Application of hyperspectral imaging spectrometer systems to industrial inspection,” Proc. SPIE 2599, 264–272 (1996).
[CrossRef]

Other (3)

W. J. Smith, Modern Optical Engineering (McGraw-Hill, 2000).

D. Malacara, Geometrical and Instrumental Optics(Academic, 1988).

R. E. Fisher and B. T. Galeb, “Performance evaluation and optical testing,” in Optical System Design (SPIE, 2000), pp. 301–313.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Sketch of (a) a conventional system and (b) the proposed ERL-HIS.

Fig. 2
Fig. 2

2D layout of the RL.

Fig. 3
Fig. 3

MTF of the RL.

Fig. 4
Fig. 4

Spot size of the RL.

Fig. 5
Fig. 5

Field curvature and distortion of the RL.

Fig. 6
Fig. 6

Lateral color of the RL.

Fig. 7
Fig. 7

Setup of MTF measurement.

Fig. 8
Fig. 8

Tangential MTF of the RL.

Fig. 9
Fig. 9

Sagittal MTF of the RL.

Fig. 10
Fig. 10

Operation principle of the ERL-HIS.

Fig. 11
Fig. 11

Finished product of the ERL-HIS.

Fig. 12
Fig. 12

Image aspect ratio in different number of steps: (a) image aspect ratio of 0.67 with the number of steps being 3, (b) image aspect ratio of 1 with the number of steps as 4, and (c) image aspect ratio of 1.33 with the number of steps as 5.

Fig. 13
Fig. 13

Result of spectral calibration from 400 to 1000 nm . The longitudinal coordinate has been taken as a logarithm.

Fig. 14
Fig. 14

The solid line is the k value curve of the calibrated irradiance of the ERL-HIS from 400 to 1000 nm . The left longitudinal coordinate is the coordinates of k curve. The right longitudinal coordinate has been taken as a logarithm and is the coordinate of the square dot and circle dot. The square dot is the response of the standard light source. The circle dot is the response of the ERL-HIS.

Fig. 15
Fig. 15

MTF of the ERL-HIS.

Fig. 16
Fig. 16

ERL-HIS attaches on the microscope.

Fig. 17
Fig. 17

Picture of the oral cell, which is captured by the ERL-HIS.

Tables (1)

Tables Icon

Table 1 Comparisons of ERL-HIS and Pushbroom System for Microscope Application

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

k = S ( λ ) H ( λ ) .

Metrics