Abstract

In the present study we determine the optical parameters of thin metal–dielectric films using two different characterization techniques based on nonparametric and multiple oscillator models. We consider four series of thin metal–dielectric films produced under various deposition conditions with different optical properties. We compare characterization results obtained by nonparametric and multiple oscillator techniques and demonstrate that the results are consistent. The consistency of the results proves their reliability.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Leitner, Z. Zhao, H. Brunner, F. Aussenegg, and A. Wokaun, “Optical properties of a metal island film close to a smooth metal surface,” Appl. Opt. 32, 102–110 (1993).
    [CrossRef] [PubMed]
  2. O. Stenzel, A. Stendal, M. R. Röder, S. Wilbrandt, D. Drews, T. Werninghaus, C. von Borczyskowski, and D. R. T. Zahn, “Localized plasmon excitation in metal nanoclusters as a tool to study thickness-dependent optical properties of copper phthalocyanine ultrathin films,” Nanotechnology 9, 6–19(1998).
    [CrossRef]
  3. O. Stenzel, A. Stendal, M. Röder, and C. von Borczyskowski, “Tuning of the plasmon absorption frequency of silver and indium nanoclusters via thin amorphous silicon films,” Pure Appl. Opt. 6, 577–588 (1997).
    [CrossRef]
  4. A. Stepanov, “Optical transmission of dielectric layers with metallic nanoparticles inhomogeneously distributed over the sample thickness,” Opt. Spectrosc. 91, 815–819 (2001).
    [CrossRef]
  5. N. Kaiser, “Review of the fundamentals of thin-film growth,” Appl. Opt. 41, 3053–3060 (2002).
    [CrossRef] [PubMed]
  6. P. Heger, O. Stenzel, and N. Kaiser, “Design and fabrication of selective thin film absorbers on the basis of silver island films,” Vacuum’s Best VIP 18, 53–56 (2006).
    [CrossRef]
  7. A. de Vries, E. Kooij, H. Wormeester, A. Mewe, and B. Poelsema, “Ellipsometric study of percolation in electroless deposited silver films,” J. Appl. Phys. 101, 053703 (2007).
    [CrossRef]
  8. A. Lehmuskero, M. Kuittinen, and P. Vahimaa, “Refractive index and extinction coefficient dependence of thin Al and Ir films on deposition technique and thickness,” Opt. Express 15, 10744–10752 (2007).
    [CrossRef] [PubMed]
  9. T. Iwata and G. Komoda, “Measurement of complex refractive indices of metals at several wavelengths by frustrated total internal reflection due to surface plasmon resonance,” Appl. Opt. 47, 2386–2391 (2008).
    [CrossRef] [PubMed]
  10. I. Hooper and J. Sambles, “Some considerations on the transmissivity of thin metal films,” Opt. Express 16, 17249–17257(2008).
    [CrossRef] [PubMed]
  11. Y. Jourlin, S. Tonchev, T. Tishchenko, C. Pedri, C. Veillas, O. Parriaux, A. Last, and Y. Lacroute, “Spatially and polarization resolved plasmon mediated transmission through continuous metal films,” Opt. Express 17, 12155–12160 (2009).
    [CrossRef] [PubMed]
  12. M. Hövel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B 81, 035402 (2010).
    [CrossRef]
  13. A. Nabok and S. A. Tsargorodskaya, “Ellipsometry study of ultra thin layers of evaporated gold,” Phys. Status Solidi C 5, 1150–1155 (2008).
    [CrossRef]
  14. W. Chen, M. Thoreson, S. Ishii, A. Kildishev, and V. Shalaev, “Ultra-thin ultra-smooth and low-loss silver films on a germanium wetting layer,” Opt. Express 18, 5124–5134 (2010).
    [CrossRef] [PubMed]
  15. H. Zorc, M. Lončarić, J. Sancho-Parramon, and V. Janicki, “Use of gold island films in design of reflectors with luminosity,” in Optical Interference Coatings on CD-ROM (Optical Society of America, 2010), paper TuD8.
  16. T. Amotchkina, V. Janicki, J. Sancho-Parramon, A. Tikhonravov, M. Trubetskov, and H. Zorc, “General approach to reliable characterization of thin metal films,” Appl. Opt. 50, 1453–1464(2011).
    [CrossRef] [PubMed]
  17. J. Dobrowolski, S. Browning, M. Jacobson, and M. Nadal, “2007 OSA Topical Meeting on Optical Interference Coatings: manufacturing problem,” Appl. Opt. 47, C231–C245(2008).
    [CrossRef] [PubMed]
  18. J. Dobrowolski, S. Browning, M. Jacobson, and M. Nadal, “2004 Optical Society of America’s Topical Meeting on Optical Interference Coatings: manufacturing problem,” Appl. Opt. 45, 1303–1311 (2006).
    [CrossRef] [PubMed]
  19. J. Dobrowolski, L. Li, and R. Kemp, “Metal/dielectric transmission interference filters with low reflectance. 1. design,” Appl. Opt. 34, 5673–5683 (1995).
    [CrossRef] [PubMed]
  20. N. Kaiser, “Some fundamentals of optical thin film growth,” in Optical Interference Coatings, N.Kaiser and H.K.Pulker, eds. (Springer-Verlag, 2003), pp. 59–80.
  21. P. Ma, F. Lin, and J. Dobrowolski, “Design and manufacture of metal–dielectric long wavelength cut-off filters,” in Optical Interference Coatings on CD-ROM, OSA Technical Digest Series (Optical Society of America, 2010), paper MA9.
  22. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  23. O. Stenzel, S. Wilbrandt, A. Stendal, U. Beckers, K. Voigtsberger, and C. von Borczyskowski, “The incorporation of metal clusters into thin organic dye layers as a method for producing strongly absorbing composite layers: an oscillator model approach to resonant metal cluster absorption,” J. Phys. D 28, 2154–2162(1995).
    [CrossRef]
  24. A. B. Djurisic, T. Fritz, and K. Leo, “Modelling the optical constants of organic thin films: impact of the choice of objective function,” J. Opt. A 2, 458–464 (2000).
    [CrossRef]
  25. J. Sancho-Parramon, V. Janicki, and H. Zorc, “Tuning the effective dielectric function of thin film metal–dielectric composites by controlling the deposition temperature,” J. Nanophoton. 5, 051805 (2011).
    [CrossRef]
  26. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).
  27. O. Stenzel, The Physics of Thin Film Optical Spectra(Springer-Verlag, 2005).
  28. P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  29. J. Bulir, M. Novotny, A. Lynnykova, and J. Lancok, “Preparation of nanostructured ultrathin silver layer,” J. Nanophoton. 5, 051511 (2011).
    [CrossRef]
  30. O. Stenzel and R. Petrich, “Flexible construction of error functions and their minimization: application to the calculation of optical constants of absorbing or scattering thin-film materials from spectrophotometric data,” J. Phys. D 28, 978–989 (1995).
    [CrossRef]
  31. A. V. Tikhonravov, M. K. Trubetskov, J. Hrdina, and J. Sobota, “Characterization of quasi-rugate filters using ellipsometric measurements,” Thin Solid Films 277, 83–89 (1996).
    [CrossRef]
  32. A. V. Tikhonravov, M. K. Trubetskov, O. F. Prosovskiy, and M. A. Kokarev, “Optical characterization of thin metal films,” in Optical Interference Coatings (Optical Society of America, 2007), paper WDPDP2.
  33. A. Tikhonravov, M. Trubetskov, T. Amotchkina, M. Kokarev, I. Kozlov, V. Zhupanov, E. Kluev, and O. Prosovskiy, “Optical coatings containing well-controlled few nanometer thick metal layers,” in Nanofair 2008. New Ideas for Industry (WDI Wissensforum GmbH, 2008), pp. 171–174.
  34. H. Fujuwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, 2007).
  35. A. V. Tikhonravov and M. K. Trubetskov, OptiLayer thin film software, http://www.optilayer.com.
  36. M. Lončarić, J. Sancho-Parramon, and H. Zorc, “Optical properties of gold islands films—a spectroscopic ellipsometry study,” Thin Solid Films 519, 2946–2950 (2011).
    [CrossRef]
  37. A. Franke, A. Stendal, O. Stenzel, and C. von Borczyskowski, “Gaussian quadrature approach to the calculation of the optical constants in the vicinity of inhomogeneously broadened absorption lines,” Pure Appl. Opt. 5, 845–853 (1996).
    [CrossRef]
  38. J. Woollam, WVASE Manual: Guide to Using WVASE32(WexTech Systems, Inc., 1996).
  39. J. Sancho-Parramon, V. Janicki, and H. Zorc, “On the dielectric function tuning of random metal–dielectric nanocomposites for metamaterial applications,” Opt. Express 18, 26915–26928(2010).
    [CrossRef]

2011

T. Amotchkina, V. Janicki, J. Sancho-Parramon, A. Tikhonravov, M. Trubetskov, and H. Zorc, “General approach to reliable characterization of thin metal films,” Appl. Opt. 50, 1453–1464(2011).
[CrossRef] [PubMed]

J. Sancho-Parramon, V. Janicki, and H. Zorc, “Tuning the effective dielectric function of thin film metal–dielectric composites by controlling the deposition temperature,” J. Nanophoton. 5, 051805 (2011).
[CrossRef]

J. Bulir, M. Novotny, A. Lynnykova, and J. Lancok, “Preparation of nanostructured ultrathin silver layer,” J. Nanophoton. 5, 051511 (2011).
[CrossRef]

M. Lončarić, J. Sancho-Parramon, and H. Zorc, “Optical properties of gold islands films—a spectroscopic ellipsometry study,” Thin Solid Films 519, 2946–2950 (2011).
[CrossRef]

2010

2009

2008

2007

A. de Vries, E. Kooij, H. Wormeester, A. Mewe, and B. Poelsema, “Ellipsometric study of percolation in electroless deposited silver films,” J. Appl. Phys. 101, 053703 (2007).
[CrossRef]

A. Lehmuskero, M. Kuittinen, and P. Vahimaa, “Refractive index and extinction coefficient dependence of thin Al and Ir films on deposition technique and thickness,” Opt. Express 15, 10744–10752 (2007).
[CrossRef] [PubMed]

2006

P. Heger, O. Stenzel, and N. Kaiser, “Design and fabrication of selective thin film absorbers on the basis of silver island films,” Vacuum’s Best VIP 18, 53–56 (2006).
[CrossRef]

J. Dobrowolski, S. Browning, M. Jacobson, and M. Nadal, “2004 Optical Society of America’s Topical Meeting on Optical Interference Coatings: manufacturing problem,” Appl. Opt. 45, 1303–1311 (2006).
[CrossRef] [PubMed]

2002

2001

A. Stepanov, “Optical transmission of dielectric layers with metallic nanoparticles inhomogeneously distributed over the sample thickness,” Opt. Spectrosc. 91, 815–819 (2001).
[CrossRef]

2000

A. B. Djurisic, T. Fritz, and K. Leo, “Modelling the optical constants of organic thin films: impact of the choice of objective function,” J. Opt. A 2, 458–464 (2000).
[CrossRef]

1998

O. Stenzel, A. Stendal, M. R. Röder, S. Wilbrandt, D. Drews, T. Werninghaus, C. von Borczyskowski, and D. R. T. Zahn, “Localized plasmon excitation in metal nanoclusters as a tool to study thickness-dependent optical properties of copper phthalocyanine ultrathin films,” Nanotechnology 9, 6–19(1998).
[CrossRef]

1997

O. Stenzel, A. Stendal, M. Röder, and C. von Borczyskowski, “Tuning of the plasmon absorption frequency of silver and indium nanoclusters via thin amorphous silicon films,” Pure Appl. Opt. 6, 577–588 (1997).
[CrossRef]

1996

A. V. Tikhonravov, M. K. Trubetskov, J. Hrdina, and J. Sobota, “Characterization of quasi-rugate filters using ellipsometric measurements,” Thin Solid Films 277, 83–89 (1996).
[CrossRef]

A. Franke, A. Stendal, O. Stenzel, and C. von Borczyskowski, “Gaussian quadrature approach to the calculation of the optical constants in the vicinity of inhomogeneously broadened absorption lines,” Pure Appl. Opt. 5, 845–853 (1996).
[CrossRef]

1995

O. Stenzel and R. Petrich, “Flexible construction of error functions and their minimization: application to the calculation of optical constants of absorbing or scattering thin-film materials from spectrophotometric data,” J. Phys. D 28, 978–989 (1995).
[CrossRef]

J. Dobrowolski, L. Li, and R. Kemp, “Metal/dielectric transmission interference filters with low reflectance. 1. design,” Appl. Opt. 34, 5673–5683 (1995).
[CrossRef] [PubMed]

O. Stenzel, S. Wilbrandt, A. Stendal, U. Beckers, K. Voigtsberger, and C. von Borczyskowski, “The incorporation of metal clusters into thin organic dye layers as a method for producing strongly absorbing composite layers: an oscillator model approach to resonant metal cluster absorption,” J. Phys. D 28, 2154–2162(1995).
[CrossRef]

1993

1972

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Amotchkina, T.

T. Amotchkina, V. Janicki, J. Sancho-Parramon, A. Tikhonravov, M. Trubetskov, and H. Zorc, “General approach to reliable characterization of thin metal films,” Appl. Opt. 50, 1453–1464(2011).
[CrossRef] [PubMed]

A. Tikhonravov, M. Trubetskov, T. Amotchkina, M. Kokarev, I. Kozlov, V. Zhupanov, E. Kluev, and O. Prosovskiy, “Optical coatings containing well-controlled few nanometer thick metal layers,” in Nanofair 2008. New Ideas for Industry (WDI Wissensforum GmbH, 2008), pp. 171–174.

Aussenegg, F.

Beckers, U.

O. Stenzel, S. Wilbrandt, A. Stendal, U. Beckers, K. Voigtsberger, and C. von Borczyskowski, “The incorporation of metal clusters into thin organic dye layers as a method for producing strongly absorbing composite layers: an oscillator model approach to resonant metal cluster absorption,” J. Phys. D 28, 2154–2162(1995).
[CrossRef]

Browning, S.

Brunner, H.

Bulir, J.

J. Bulir, M. Novotny, A. Lynnykova, and J. Lancok, “Preparation of nanostructured ultrathin silver layer,” J. Nanophoton. 5, 051511 (2011).
[CrossRef]

Chen, W.

Christy, R.

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

de Vries, A.

A. de Vries, E. Kooij, H. Wormeester, A. Mewe, and B. Poelsema, “Ellipsometric study of percolation in electroless deposited silver films,” J. Appl. Phys. 101, 053703 (2007).
[CrossRef]

Djurisic, A. B.

A. B. Djurisic, T. Fritz, and K. Leo, “Modelling the optical constants of organic thin films: impact of the choice of objective function,” J. Opt. A 2, 458–464 (2000).
[CrossRef]

Dobrowolski, J.

Dressel, M.

M. Hövel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B 81, 035402 (2010).
[CrossRef]

Drews, D.

O. Stenzel, A. Stendal, M. R. Röder, S. Wilbrandt, D. Drews, T. Werninghaus, C. von Borczyskowski, and D. R. T. Zahn, “Localized plasmon excitation in metal nanoclusters as a tool to study thickness-dependent optical properties of copper phthalocyanine ultrathin films,” Nanotechnology 9, 6–19(1998).
[CrossRef]

Franke, A.

A. Franke, A. Stendal, O. Stenzel, and C. von Borczyskowski, “Gaussian quadrature approach to the calculation of the optical constants in the vicinity of inhomogeneously broadened absorption lines,” Pure Appl. Opt. 5, 845–853 (1996).
[CrossRef]

Fritz, T.

A. B. Djurisic, T. Fritz, and K. Leo, “Modelling the optical constants of organic thin films: impact of the choice of objective function,” J. Opt. A 2, 458–464 (2000).
[CrossRef]

Fujuwara, H.

H. Fujuwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, 2007).

Gompf, B.

M. Hövel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B 81, 035402 (2010).
[CrossRef]

Heger, P.

P. Heger, O. Stenzel, and N. Kaiser, “Design and fabrication of selective thin film absorbers on the basis of silver island films,” Vacuum’s Best VIP 18, 53–56 (2006).
[CrossRef]

Hooper, I.

Hövel, M.

M. Hövel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B 81, 035402 (2010).
[CrossRef]

Hrdina, J.

A. V. Tikhonravov, M. K. Trubetskov, J. Hrdina, and J. Sobota, “Characterization of quasi-rugate filters using ellipsometric measurements,” Thin Solid Films 277, 83–89 (1996).
[CrossRef]

Ishii, S.

Iwata, T.

Jacobson, M.

Janicki, V.

J. Sancho-Parramon, V. Janicki, and H. Zorc, “Tuning the effective dielectric function of thin film metal–dielectric composites by controlling the deposition temperature,” J. Nanophoton. 5, 051805 (2011).
[CrossRef]

T. Amotchkina, V. Janicki, J. Sancho-Parramon, A. Tikhonravov, M. Trubetskov, and H. Zorc, “General approach to reliable characterization of thin metal films,” Appl. Opt. 50, 1453–1464(2011).
[CrossRef] [PubMed]

J. Sancho-Parramon, V. Janicki, and H. Zorc, “On the dielectric function tuning of random metal–dielectric nanocomposites for metamaterial applications,” Opt. Express 18, 26915–26928(2010).
[CrossRef]

H. Zorc, M. Lončarić, J. Sancho-Parramon, and V. Janicki, “Use of gold island films in design of reflectors with luminosity,” in Optical Interference Coatings on CD-ROM (Optical Society of America, 2010), paper TuD8.

Johnson, P.

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Jourlin, Y.

Kaiser, N.

P. Heger, O. Stenzel, and N. Kaiser, “Design and fabrication of selective thin film absorbers on the basis of silver island films,” Vacuum’s Best VIP 18, 53–56 (2006).
[CrossRef]

N. Kaiser, “Review of the fundamentals of thin-film growth,” Appl. Opt. 41, 3053–3060 (2002).
[CrossRef] [PubMed]

N. Kaiser, “Some fundamentals of optical thin film growth,” in Optical Interference Coatings, N.Kaiser and H.K.Pulker, eds. (Springer-Verlag, 2003), pp. 59–80.

Kemp, R.

Kildishev, A.

Kluev, E.

A. Tikhonravov, M. Trubetskov, T. Amotchkina, M. Kokarev, I. Kozlov, V. Zhupanov, E. Kluev, and O. Prosovskiy, “Optical coatings containing well-controlled few nanometer thick metal layers,” in Nanofair 2008. New Ideas for Industry (WDI Wissensforum GmbH, 2008), pp. 171–174.

Kokarev, M.

A. Tikhonravov, M. Trubetskov, T. Amotchkina, M. Kokarev, I. Kozlov, V. Zhupanov, E. Kluev, and O. Prosovskiy, “Optical coatings containing well-controlled few nanometer thick metal layers,” in Nanofair 2008. New Ideas for Industry (WDI Wissensforum GmbH, 2008), pp. 171–174.

Kokarev, M. A.

A. V. Tikhonravov, M. K. Trubetskov, O. F. Prosovskiy, and M. A. Kokarev, “Optical characterization of thin metal films,” in Optical Interference Coatings (Optical Society of America, 2007), paper WDPDP2.

Komoda, G.

Kooij, E.

A. de Vries, E. Kooij, H. Wormeester, A. Mewe, and B. Poelsema, “Ellipsometric study of percolation in electroless deposited silver films,” J. Appl. Phys. 101, 053703 (2007).
[CrossRef]

Kozlov, I.

A. Tikhonravov, M. Trubetskov, T. Amotchkina, M. Kokarev, I. Kozlov, V. Zhupanov, E. Kluev, and O. Prosovskiy, “Optical coatings containing well-controlled few nanometer thick metal layers,” in Nanofair 2008. New Ideas for Industry (WDI Wissensforum GmbH, 2008), pp. 171–174.

Kreibig, U.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

Kuittinen, M.

Lacroute, Y.

Lancok, J.

J. Bulir, M. Novotny, A. Lynnykova, and J. Lancok, “Preparation of nanostructured ultrathin silver layer,” J. Nanophoton. 5, 051511 (2011).
[CrossRef]

Last, A.

Lehmuskero, A.

Leitner, A.

Leo, K.

A. B. Djurisic, T. Fritz, and K. Leo, “Modelling the optical constants of organic thin films: impact of the choice of objective function,” J. Opt. A 2, 458–464 (2000).
[CrossRef]

Li, L.

Lin, F.

P. Ma, F. Lin, and J. Dobrowolski, “Design and manufacture of metal–dielectric long wavelength cut-off filters,” in Optical Interference Coatings on CD-ROM, OSA Technical Digest Series (Optical Society of America, 2010), paper MA9.

Loncaric, M.

M. Lončarić, J. Sancho-Parramon, and H. Zorc, “Optical properties of gold islands films—a spectroscopic ellipsometry study,” Thin Solid Films 519, 2946–2950 (2011).
[CrossRef]

H. Zorc, M. Lončarić, J. Sancho-Parramon, and V. Janicki, “Use of gold island films in design of reflectors with luminosity,” in Optical Interference Coatings on CD-ROM (Optical Society of America, 2010), paper TuD8.

Lynnykova, A.

J. Bulir, M. Novotny, A. Lynnykova, and J. Lancok, “Preparation of nanostructured ultrathin silver layer,” J. Nanophoton. 5, 051511 (2011).
[CrossRef]

Ma, P.

P. Ma, F. Lin, and J. Dobrowolski, “Design and manufacture of metal–dielectric long wavelength cut-off filters,” in Optical Interference Coatings on CD-ROM, OSA Technical Digest Series (Optical Society of America, 2010), paper MA9.

Mewe, A.

A. de Vries, E. Kooij, H. Wormeester, A. Mewe, and B. Poelsema, “Ellipsometric study of percolation in electroless deposited silver films,” J. Appl. Phys. 101, 053703 (2007).
[CrossRef]

Nabok, A.

A. Nabok and S. A. Tsargorodskaya, “Ellipsometry study of ultra thin layers of evaporated gold,” Phys. Status Solidi C 5, 1150–1155 (2008).
[CrossRef]

Nadal, M.

Novotny, M.

J. Bulir, M. Novotny, A. Lynnykova, and J. Lancok, “Preparation of nanostructured ultrathin silver layer,” J. Nanophoton. 5, 051511 (2011).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).

Parriaux, O.

Pedri, C.

Petrich, R.

O. Stenzel and R. Petrich, “Flexible construction of error functions and their minimization: application to the calculation of optical constants of absorbing or scattering thin-film materials from spectrophotometric data,” J. Phys. D 28, 978–989 (1995).
[CrossRef]

Poelsema, B.

A. de Vries, E. Kooij, H. Wormeester, A. Mewe, and B. Poelsema, “Ellipsometric study of percolation in electroless deposited silver films,” J. Appl. Phys. 101, 053703 (2007).
[CrossRef]

Prosovskiy, O.

A. Tikhonravov, M. Trubetskov, T. Amotchkina, M. Kokarev, I. Kozlov, V. Zhupanov, E. Kluev, and O. Prosovskiy, “Optical coatings containing well-controlled few nanometer thick metal layers,” in Nanofair 2008. New Ideas for Industry (WDI Wissensforum GmbH, 2008), pp. 171–174.

Prosovskiy, O. F.

A. V. Tikhonravov, M. K. Trubetskov, O. F. Prosovskiy, and M. A. Kokarev, “Optical characterization of thin metal films,” in Optical Interference Coatings (Optical Society of America, 2007), paper WDPDP2.

Röder, M.

O. Stenzel, A. Stendal, M. Röder, and C. von Borczyskowski, “Tuning of the plasmon absorption frequency of silver and indium nanoclusters via thin amorphous silicon films,” Pure Appl. Opt. 6, 577–588 (1997).
[CrossRef]

Röder, M. R.

O. Stenzel, A. Stendal, M. R. Röder, S. Wilbrandt, D. Drews, T. Werninghaus, C. von Borczyskowski, and D. R. T. Zahn, “Localized plasmon excitation in metal nanoclusters as a tool to study thickness-dependent optical properties of copper phthalocyanine ultrathin films,” Nanotechnology 9, 6–19(1998).
[CrossRef]

Sambles, J.

Sancho-Parramon, J.

J. Sancho-Parramon, V. Janicki, and H. Zorc, “Tuning the effective dielectric function of thin film metal–dielectric composites by controlling the deposition temperature,” J. Nanophoton. 5, 051805 (2011).
[CrossRef]

M. Lončarić, J. Sancho-Parramon, and H. Zorc, “Optical properties of gold islands films—a spectroscopic ellipsometry study,” Thin Solid Films 519, 2946–2950 (2011).
[CrossRef]

T. Amotchkina, V. Janicki, J. Sancho-Parramon, A. Tikhonravov, M. Trubetskov, and H. Zorc, “General approach to reliable characterization of thin metal films,” Appl. Opt. 50, 1453–1464(2011).
[CrossRef] [PubMed]

J. Sancho-Parramon, V. Janicki, and H. Zorc, “On the dielectric function tuning of random metal–dielectric nanocomposites for metamaterial applications,” Opt. Express 18, 26915–26928(2010).
[CrossRef]

H. Zorc, M. Lončarić, J. Sancho-Parramon, and V. Janicki, “Use of gold island films in design of reflectors with luminosity,” in Optical Interference Coatings on CD-ROM (Optical Society of America, 2010), paper TuD8.

Shalaev, V.

Sobota, J.

A. V. Tikhonravov, M. K. Trubetskov, J. Hrdina, and J. Sobota, “Characterization of quasi-rugate filters using ellipsometric measurements,” Thin Solid Films 277, 83–89 (1996).
[CrossRef]

Stendal, A.

O. Stenzel, A. Stendal, M. R. Röder, S. Wilbrandt, D. Drews, T. Werninghaus, C. von Borczyskowski, and D. R. T. Zahn, “Localized plasmon excitation in metal nanoclusters as a tool to study thickness-dependent optical properties of copper phthalocyanine ultrathin films,” Nanotechnology 9, 6–19(1998).
[CrossRef]

O. Stenzel, A. Stendal, M. Röder, and C. von Borczyskowski, “Tuning of the plasmon absorption frequency of silver and indium nanoclusters via thin amorphous silicon films,” Pure Appl. Opt. 6, 577–588 (1997).
[CrossRef]

A. Franke, A. Stendal, O. Stenzel, and C. von Borczyskowski, “Gaussian quadrature approach to the calculation of the optical constants in the vicinity of inhomogeneously broadened absorption lines,” Pure Appl. Opt. 5, 845–853 (1996).
[CrossRef]

O. Stenzel, S. Wilbrandt, A. Stendal, U. Beckers, K. Voigtsberger, and C. von Borczyskowski, “The incorporation of metal clusters into thin organic dye layers as a method for producing strongly absorbing composite layers: an oscillator model approach to resonant metal cluster absorption,” J. Phys. D 28, 2154–2162(1995).
[CrossRef]

Stenzel, O.

P. Heger, O. Stenzel, and N. Kaiser, “Design and fabrication of selective thin film absorbers on the basis of silver island films,” Vacuum’s Best VIP 18, 53–56 (2006).
[CrossRef]

O. Stenzel, A. Stendal, M. R. Röder, S. Wilbrandt, D. Drews, T. Werninghaus, C. von Borczyskowski, and D. R. T. Zahn, “Localized plasmon excitation in metal nanoclusters as a tool to study thickness-dependent optical properties of copper phthalocyanine ultrathin films,” Nanotechnology 9, 6–19(1998).
[CrossRef]

O. Stenzel, A. Stendal, M. Röder, and C. von Borczyskowski, “Tuning of the plasmon absorption frequency of silver and indium nanoclusters via thin amorphous silicon films,” Pure Appl. Opt. 6, 577–588 (1997).
[CrossRef]

A. Franke, A. Stendal, O. Stenzel, and C. von Borczyskowski, “Gaussian quadrature approach to the calculation of the optical constants in the vicinity of inhomogeneously broadened absorption lines,” Pure Appl. Opt. 5, 845–853 (1996).
[CrossRef]

O. Stenzel and R. Petrich, “Flexible construction of error functions and their minimization: application to the calculation of optical constants of absorbing or scattering thin-film materials from spectrophotometric data,” J. Phys. D 28, 978–989 (1995).
[CrossRef]

O. Stenzel, S. Wilbrandt, A. Stendal, U. Beckers, K. Voigtsberger, and C. von Borczyskowski, “The incorporation of metal clusters into thin organic dye layers as a method for producing strongly absorbing composite layers: an oscillator model approach to resonant metal cluster absorption,” J. Phys. D 28, 2154–2162(1995).
[CrossRef]

O. Stenzel, The Physics of Thin Film Optical Spectra(Springer-Verlag, 2005).

Stepanov, A.

A. Stepanov, “Optical transmission of dielectric layers with metallic nanoparticles inhomogeneously distributed over the sample thickness,” Opt. Spectrosc. 91, 815–819 (2001).
[CrossRef]

Thoreson, M.

Tikhonravov, A.

T. Amotchkina, V. Janicki, J. Sancho-Parramon, A. Tikhonravov, M. Trubetskov, and H. Zorc, “General approach to reliable characterization of thin metal films,” Appl. Opt. 50, 1453–1464(2011).
[CrossRef] [PubMed]

A. Tikhonravov, M. Trubetskov, T. Amotchkina, M. Kokarev, I. Kozlov, V. Zhupanov, E. Kluev, and O. Prosovskiy, “Optical coatings containing well-controlled few nanometer thick metal layers,” in Nanofair 2008. New Ideas for Industry (WDI Wissensforum GmbH, 2008), pp. 171–174.

Tikhonravov, A. V.

A. V. Tikhonravov, M. K. Trubetskov, J. Hrdina, and J. Sobota, “Characterization of quasi-rugate filters using ellipsometric measurements,” Thin Solid Films 277, 83–89 (1996).
[CrossRef]

A. V. Tikhonravov and M. K. Trubetskov, OptiLayer thin film software, http://www.optilayer.com.

A. V. Tikhonravov, M. K. Trubetskov, O. F. Prosovskiy, and M. A. Kokarev, “Optical characterization of thin metal films,” in Optical Interference Coatings (Optical Society of America, 2007), paper WDPDP2.

Tishchenko, T.

Tonchev, S.

Trubetskov, M.

T. Amotchkina, V. Janicki, J. Sancho-Parramon, A. Tikhonravov, M. Trubetskov, and H. Zorc, “General approach to reliable characterization of thin metal films,” Appl. Opt. 50, 1453–1464(2011).
[CrossRef] [PubMed]

A. Tikhonravov, M. Trubetskov, T. Amotchkina, M. Kokarev, I. Kozlov, V. Zhupanov, E. Kluev, and O. Prosovskiy, “Optical coatings containing well-controlled few nanometer thick metal layers,” in Nanofair 2008. New Ideas for Industry (WDI Wissensforum GmbH, 2008), pp. 171–174.

Trubetskov, M. K.

A. V. Tikhonravov, M. K. Trubetskov, J. Hrdina, and J. Sobota, “Characterization of quasi-rugate filters using ellipsometric measurements,” Thin Solid Films 277, 83–89 (1996).
[CrossRef]

A. V. Tikhonravov and M. K. Trubetskov, OptiLayer thin film software, http://www.optilayer.com.

A. V. Tikhonravov, M. K. Trubetskov, O. F. Prosovskiy, and M. A. Kokarev, “Optical characterization of thin metal films,” in Optical Interference Coatings (Optical Society of America, 2007), paper WDPDP2.

Tsargorodskaya, S. A.

A. Nabok and S. A. Tsargorodskaya, “Ellipsometry study of ultra thin layers of evaporated gold,” Phys. Status Solidi C 5, 1150–1155 (2008).
[CrossRef]

Vahimaa, P.

Veillas, C.

Voigtsberger, K.

O. Stenzel, S. Wilbrandt, A. Stendal, U. Beckers, K. Voigtsberger, and C. von Borczyskowski, “The incorporation of metal clusters into thin organic dye layers as a method for producing strongly absorbing composite layers: an oscillator model approach to resonant metal cluster absorption,” J. Phys. D 28, 2154–2162(1995).
[CrossRef]

Vollmer, M.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

von Borczyskowski, C.

O. Stenzel, A. Stendal, M. R. Röder, S. Wilbrandt, D. Drews, T. Werninghaus, C. von Borczyskowski, and D. R. T. Zahn, “Localized plasmon excitation in metal nanoclusters as a tool to study thickness-dependent optical properties of copper phthalocyanine ultrathin films,” Nanotechnology 9, 6–19(1998).
[CrossRef]

O. Stenzel, A. Stendal, M. Röder, and C. von Borczyskowski, “Tuning of the plasmon absorption frequency of silver and indium nanoclusters via thin amorphous silicon films,” Pure Appl. Opt. 6, 577–588 (1997).
[CrossRef]

A. Franke, A. Stendal, O. Stenzel, and C. von Borczyskowski, “Gaussian quadrature approach to the calculation of the optical constants in the vicinity of inhomogeneously broadened absorption lines,” Pure Appl. Opt. 5, 845–853 (1996).
[CrossRef]

O. Stenzel, S. Wilbrandt, A. Stendal, U. Beckers, K. Voigtsberger, and C. von Borczyskowski, “The incorporation of metal clusters into thin organic dye layers as a method for producing strongly absorbing composite layers: an oscillator model approach to resonant metal cluster absorption,” J. Phys. D 28, 2154–2162(1995).
[CrossRef]

Werninghaus, T.

O. Stenzel, A. Stendal, M. R. Röder, S. Wilbrandt, D. Drews, T. Werninghaus, C. von Borczyskowski, and D. R. T. Zahn, “Localized plasmon excitation in metal nanoclusters as a tool to study thickness-dependent optical properties of copper phthalocyanine ultrathin films,” Nanotechnology 9, 6–19(1998).
[CrossRef]

Wilbrandt, S.

O. Stenzel, A. Stendal, M. R. Röder, S. Wilbrandt, D. Drews, T. Werninghaus, C. von Borczyskowski, and D. R. T. Zahn, “Localized plasmon excitation in metal nanoclusters as a tool to study thickness-dependent optical properties of copper phthalocyanine ultrathin films,” Nanotechnology 9, 6–19(1998).
[CrossRef]

O. Stenzel, S. Wilbrandt, A. Stendal, U. Beckers, K. Voigtsberger, and C. von Borczyskowski, “The incorporation of metal clusters into thin organic dye layers as a method for producing strongly absorbing composite layers: an oscillator model approach to resonant metal cluster absorption,” J. Phys. D 28, 2154–2162(1995).
[CrossRef]

Wokaun, A.

Woollam, J.

J. Woollam, WVASE Manual: Guide to Using WVASE32(WexTech Systems, Inc., 1996).

Wormeester, H.

A. de Vries, E. Kooij, H. Wormeester, A. Mewe, and B. Poelsema, “Ellipsometric study of percolation in electroless deposited silver films,” J. Appl. Phys. 101, 053703 (2007).
[CrossRef]

Zahn, D. R. T.

O. Stenzel, A. Stendal, M. R. Röder, S. Wilbrandt, D. Drews, T. Werninghaus, C. von Borczyskowski, and D. R. T. Zahn, “Localized plasmon excitation in metal nanoclusters as a tool to study thickness-dependent optical properties of copper phthalocyanine ultrathin films,” Nanotechnology 9, 6–19(1998).
[CrossRef]

Zhao, Z.

Zhupanov, V.

A. Tikhonravov, M. Trubetskov, T. Amotchkina, M. Kokarev, I. Kozlov, V. Zhupanov, E. Kluev, and O. Prosovskiy, “Optical coatings containing well-controlled few nanometer thick metal layers,” in Nanofair 2008. New Ideas for Industry (WDI Wissensforum GmbH, 2008), pp. 171–174.

Zorc, H.

M. Lončarić, J. Sancho-Parramon, and H. Zorc, “Optical properties of gold islands films—a spectroscopic ellipsometry study,” Thin Solid Films 519, 2946–2950 (2011).
[CrossRef]

J. Sancho-Parramon, V. Janicki, and H. Zorc, “Tuning the effective dielectric function of thin film metal–dielectric composites by controlling the deposition temperature,” J. Nanophoton. 5, 051805 (2011).
[CrossRef]

T. Amotchkina, V. Janicki, J. Sancho-Parramon, A. Tikhonravov, M. Trubetskov, and H. Zorc, “General approach to reliable characterization of thin metal films,” Appl. Opt. 50, 1453–1464(2011).
[CrossRef] [PubMed]

J. Sancho-Parramon, V. Janicki, and H. Zorc, “On the dielectric function tuning of random metal–dielectric nanocomposites for metamaterial applications,” Opt. Express 18, 26915–26928(2010).
[CrossRef]

H. Zorc, M. Lončarić, J. Sancho-Parramon, and V. Janicki, “Use of gold island films in design of reflectors with luminosity,” in Optical Interference Coatings on CD-ROM (Optical Society of America, 2010), paper TuD8.

Appl. Opt.

J. Appl. Phys.

A. de Vries, E. Kooij, H. Wormeester, A. Mewe, and B. Poelsema, “Ellipsometric study of percolation in electroless deposited silver films,” J. Appl. Phys. 101, 053703 (2007).
[CrossRef]

J. Nanophoton.

J. Sancho-Parramon, V. Janicki, and H. Zorc, “Tuning the effective dielectric function of thin film metal–dielectric composites by controlling the deposition temperature,” J. Nanophoton. 5, 051805 (2011).
[CrossRef]

J. Bulir, M. Novotny, A. Lynnykova, and J. Lancok, “Preparation of nanostructured ultrathin silver layer,” J. Nanophoton. 5, 051511 (2011).
[CrossRef]

J. Opt. A

A. B. Djurisic, T. Fritz, and K. Leo, “Modelling the optical constants of organic thin films: impact of the choice of objective function,” J. Opt. A 2, 458–464 (2000).
[CrossRef]

J. Phys. D

O. Stenzel, S. Wilbrandt, A. Stendal, U. Beckers, K. Voigtsberger, and C. von Borczyskowski, “The incorporation of metal clusters into thin organic dye layers as a method for producing strongly absorbing composite layers: an oscillator model approach to resonant metal cluster absorption,” J. Phys. D 28, 2154–2162(1995).
[CrossRef]

O. Stenzel and R. Petrich, “Flexible construction of error functions and their minimization: application to the calculation of optical constants of absorbing or scattering thin-film materials from spectrophotometric data,” J. Phys. D 28, 978–989 (1995).
[CrossRef]

Nanotechnology

O. Stenzel, A. Stendal, M. R. Röder, S. Wilbrandt, D. Drews, T. Werninghaus, C. von Borczyskowski, and D. R. T. Zahn, “Localized plasmon excitation in metal nanoclusters as a tool to study thickness-dependent optical properties of copper phthalocyanine ultrathin films,” Nanotechnology 9, 6–19(1998).
[CrossRef]

Opt. Express

Opt. Spectrosc.

A. Stepanov, “Optical transmission of dielectric layers with metallic nanoparticles inhomogeneously distributed over the sample thickness,” Opt. Spectrosc. 91, 815–819 (2001).
[CrossRef]

Phys. Rev. B

M. Hövel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B 81, 035402 (2010).
[CrossRef]

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Phys. Status Solidi C

A. Nabok and S. A. Tsargorodskaya, “Ellipsometry study of ultra thin layers of evaporated gold,” Phys. Status Solidi C 5, 1150–1155 (2008).
[CrossRef]

Pure Appl. Opt.

O. Stenzel, A. Stendal, M. Röder, and C. von Borczyskowski, “Tuning of the plasmon absorption frequency of silver and indium nanoclusters via thin amorphous silicon films,” Pure Appl. Opt. 6, 577–588 (1997).
[CrossRef]

A. Franke, A. Stendal, O. Stenzel, and C. von Borczyskowski, “Gaussian quadrature approach to the calculation of the optical constants in the vicinity of inhomogeneously broadened absorption lines,” Pure Appl. Opt. 5, 845–853 (1996).
[CrossRef]

Thin Solid Films

M. Lončarić, J. Sancho-Parramon, and H. Zorc, “Optical properties of gold islands films—a spectroscopic ellipsometry study,” Thin Solid Films 519, 2946–2950 (2011).
[CrossRef]

A. V. Tikhonravov, M. K. Trubetskov, J. Hrdina, and J. Sobota, “Characterization of quasi-rugate filters using ellipsometric measurements,” Thin Solid Films 277, 83–89 (1996).
[CrossRef]

Vacuum’s Best VIP

P. Heger, O. Stenzel, and N. Kaiser, “Design and fabrication of selective thin film absorbers on the basis of silver island films,” Vacuum’s Best VIP 18, 53–56 (2006).
[CrossRef]

Other

H. Zorc, M. Lončarić, J. Sancho-Parramon, and V. Janicki, “Use of gold island films in design of reflectors with luminosity,” in Optical Interference Coatings on CD-ROM (Optical Society of America, 2010), paper TuD8.

N. Kaiser, “Some fundamentals of optical thin film growth,” in Optical Interference Coatings, N.Kaiser and H.K.Pulker, eds. (Springer-Verlag, 2003), pp. 59–80.

P. Ma, F. Lin, and J. Dobrowolski, “Design and manufacture of metal–dielectric long wavelength cut-off filters,” in Optical Interference Coatings on CD-ROM, OSA Technical Digest Series (Optical Society of America, 2010), paper MA9.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

A. V. Tikhonravov, M. K. Trubetskov, O. F. Prosovskiy, and M. A. Kokarev, “Optical characterization of thin metal films,” in Optical Interference Coatings (Optical Society of America, 2007), paper WDPDP2.

A. Tikhonravov, M. Trubetskov, T. Amotchkina, M. Kokarev, I. Kozlov, V. Zhupanov, E. Kluev, and O. Prosovskiy, “Optical coatings containing well-controlled few nanometer thick metal layers,” in Nanofair 2008. New Ideas for Industry (WDI Wissensforum GmbH, 2008), pp. 171–174.

H. Fujuwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, 2007).

A. V. Tikhonravov and M. K. Trubetskov, OptiLayer thin film software, http://www.optilayer.com.

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).

O. Stenzel, The Physics of Thin Film Optical Spectra(Springer-Verlag, 2005).

J. Woollam, WVASE Manual: Guide to Using WVASE32(WexTech Systems, Inc., 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Comparison of total losses in samples of series S1. The labels S 1 - 1 , , S 1 - 5 indicate the corresponding samples.

Fig. 2
Fig. 2

Wavelength dependencies of refractive indices and extinction coefficients of Au Si O 2 composite films deposited on preheated substrates (series S1). The labels S 1 - 1 , , S 1 - 5 indicate the corresponding samples.

Fig. 3
Fig. 3

Comparison of total losses in samples of series S2. The labels S 2 - 1 , , S 2 - 5 indicate the corresponding samples.

Fig. 4
Fig. 4

Wavelength dependencies of refractive indices and extinction coefficients of Ag Si O 2 composite films deposited on preheated substrates (series S2). The labels S 2 - 1 , , S 2 - 5 indicate the corresponding samples.

Fig. 5
Fig. 5

Comparison of measured reflectance data of samples of series S3. The labels S 3 - 1 , , S 3 - 5 indicate the corresponding samples.

Fig. 6
Fig. 6

Wavelength dependencies of refractive indices and extinction coefficients of Ag Si O 2 composite films deposited on unheated substrates (series S3). The labels S 3 - 1 , , S 3 - 5 indicate the corresponding samples.

Fig. 7
Fig. 7

Comparison of total losses in samples of series S4. The labels S 4 - 1 , , S 4 - 5 indicate the corresponding samples.

Fig. 8
Fig. 8

Wavelength dependencies of refractive indices and extinction coefficients of Ag Si O 2 composite films (series S4). The labels S 4 - 1 , , S 4 - 5 indicate the corresponding samples.

Tables (4)

Tables Icon

Table 1 Comparison of Characterization Results for Samples of Series S1

Tables Icon

Table 2 Comparison of Characterization Results for Samples of Series S2

Tables Icon

Table 3 Comparison of Characterization Results for Samples of Series S3

Tables Icon

Table 4 Comparison of Characterization Results for Samples of Series S4

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

D F 2 = 1 190 M { k = 1 3 j = 1 190 [ Ψ ( n ( λ j ) , k ( λ j ) , δ , λ j , d ( 1 ) , d ( 2 ) , θ k ) Ψ ^ ( λ j , θ k ) Δ Ψ j ] 2 + k = 1 3 j = 1 190 [ Δ ( n ( λ j ) , k ( λ j ) , δ , λ j , d ( 1 ) , d ( 2 ) , θ k ) Δ ^ ( λ j , θ k ) Δ Δ j ] 2 + k = 1 3 j = 1 190 [ q ( n ( λ j ) , k ( λ j ) , δ , λ j , d ( 1 ) , d ( 2 ) , θ k ) q ^ ( λ j , θ k ) Δ q j ] 2 + j = 1 190 [ t ( n ( λ j ) , k ( λ j ) , δ , λ j , d ( 1 ) , d ( 2 ) ) t ^ ( λ j ) Δ t j ] 2 + α 1 j = 1 190 [ n ( λ j ) ] 2 + α 2 j = 1 190 [ k ( λ j ) ] 2 } ,
ε ( E ) = ε + i = 1 N ε Gauss , i ( E ) , Im ε Gauss , i ( E ) = A i exp [ ( E E c , i B i ) 2 ] A i exp [ ( E + E c , i B i ) 2 ] , Re ε Gauss , i ( E ) = 2 π P 0 + ξ Im ε Gauss , i ( E ) ξ 2 E 2 d ξ ,
DF 2 = 1 190 · M p ( k = 1 3 j = 1 190 [ Ψ ( A , B , E c , E j , δ , d ( 1 ) , d ( 2 ) , θ k ) Ψ ^ ( E j , θ k ) Δ Ψ j ] 2 + k = 1 3 j = 1 190 [ Δ ( A , B , E c , E j , δ , d ( 1 ) , d ( 2 ) , θ k ) Δ ^ ( E j , θ k ) Δ Δ j ] 2 + k = 1 3 j = 1 190 [ q ( A , B , E c , E j , δ , d ( 1 ) , d ( 2 ) , θ k ) q ^ ( E j , θ k ) Δ q j ] 2 + j = 1 190 [ t ( A , B , E c , E j , δ , d ( 1 ) , d ( 2 ) ) t ^ ( E j ) Δ t j ] 2 ) ,

Metrics