Abstract

An efficient approach is presented to restore a motion-blurred image in real time by optoelectronic hybrid processing, by which an image motion vector can be effectively detected and an accurate point spread function is constructed rapidly. A simple Wiener filter algorithm is employed to restore the blurred image. It greatly alleviates the complexity of the restoration algorithm. The proposed approach can apply to arbitrary motion-blurred image restoration. An optoelectronic hybrid joint transform correlation is constructed to verify the efficiency. The experimental results show that the proposed method has distinct advantages of preferable effect and good real time.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Hochman, Y. Yitzhaky, and N. S. Kopeika, “Restoration of images captured by a staggered time delay and integration camera in the presence of mechanical vibrations,” Appl. Opt. 43, 4345–4354 (2004).
    [CrossRef] [PubMed]
  2. H. Choi, J. Kim, and M. Song, “Effects of motion of an imaging system and optical image stabilizer on the modulation transfer function,” Opt. Express 16, 21132–21141 (2008).
    [CrossRef] [PubMed]
  3. B. Golik and D. Wueller, “Measurement method for image stabilizing systems,” SPIE Rev. 6502, 65020O1 (2007).
  4. Y. Yitzhaky, I. Mor, and N. S. Kopeika, “Direct method for restoration of motion-blurred images,” J. Opt. Soc. Am. A 15, 1512–1519 (1998).
    [CrossRef]
  5. Y. Tian, C. Rao, and L. Zhu, “Modified self-deconvolution restoration algorithm for adaptive-optics solar images,” Opt. Lett. 35, 2541–2543 (2010).
    [CrossRef] [PubMed]
  6. B. Likhterov and N. S. Kopeika, “Motion-blurred image restoration using modified inverse all-pole filters,” J. Electron. Imaging 13, 257–263 (2004).
    [CrossRef]
  7. S. Prasad, “Statistical-information-based performance criteria for Richardson-Lucy image deblurring,” J. Opt. Soc. Am. A 19, 1286–1297 (2002).
    [CrossRef]
  8. V. Loyev and Y. Yitzhaky, “Initialization of iterative parametric algorithms for blind deconvolution of motion-blurred images,” Appl. Opt. 45, 2444–2452 (2006).
    [CrossRef] [PubMed]
  9. H. Takeda, P. Milanfar, M. Protter, and M. Elad, “Super-resolution without explicit subpixel motion estimation,” IEEE Trans. Image Process. 18, 1958–1975 (2009).
    [CrossRef] [PubMed]
  10. J. Zhang, Q. Zhang, and G. He, “Blind deconvolution of a noisy degraded image,” Appl. Opt. 48, 2350–2355 (2009).
    [CrossRef] [PubMed]
  11. J. Widjaja, “Wavelet filter for improving detection performance of compression-based joint transform correlator,” Appl. Opt. 49, 5768–5777 (2010).
    [CrossRef] [PubMed]
  12. J. F. Barrera, C. Vargas, and M. Tebaldi, “Known-plaintext attack on a joint transform correlator encrypting system,” Opt. Lett. 35, 3553–3555 (2010).
    [CrossRef] [PubMed]
  13. N. K. Nishchal, S. Goyal, A. Aran, V. K. Beri, and A. K. Gupta, “Binary differential joint transform correlator based on a ferroelectric liquid crystal electrically addressed spatial light modulator,” Opt. Eng. 45, 026401 (2006).
    [CrossRef]
  14. J. A. Butt and T. D. Wilkinson, “Binary phase only filters for rotation and scale invariant pattern recognition with the joint transform correlator,” Opt. Commun. 262, 17–26(2006).
    [CrossRef]
  15. H. T. Chang and C. T. T. Chen, “Enhanced optical image verification based on joint transform correlator adopting Fourier hologram,” Opt. Rev. 11, 165–169 (2004).
    [CrossRef]
  16. A. Stern, I. Kruchakov, E. Yoavi, and N. S. Kopeika, “Recognition of motion-blurred images by use of the method of moments,” Appl. Opt. 41, 2164–2171 (2002).
    [CrossRef] [PubMed]
  17. A. Bal, A. M. El-Saba, and M. S. Alam, “Improved fingerprint identification with supervised filtering enhancement,” Appl. Opt. 44, 647–654 (2005).
    [CrossRef] [PubMed]

2010 (3)

2009 (2)

H. Takeda, P. Milanfar, M. Protter, and M. Elad, “Super-resolution without explicit subpixel motion estimation,” IEEE Trans. Image Process. 18, 1958–1975 (2009).
[CrossRef] [PubMed]

J. Zhang, Q. Zhang, and G. He, “Blind deconvolution of a noisy degraded image,” Appl. Opt. 48, 2350–2355 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (1)

B. Golik and D. Wueller, “Measurement method for image stabilizing systems,” SPIE Rev. 6502, 65020O1 (2007).

2006 (3)

V. Loyev and Y. Yitzhaky, “Initialization of iterative parametric algorithms for blind deconvolution of motion-blurred images,” Appl. Opt. 45, 2444–2452 (2006).
[CrossRef] [PubMed]

N. K. Nishchal, S. Goyal, A. Aran, V. K. Beri, and A. K. Gupta, “Binary differential joint transform correlator based on a ferroelectric liquid crystal electrically addressed spatial light modulator,” Opt. Eng. 45, 026401 (2006).
[CrossRef]

J. A. Butt and T. D. Wilkinson, “Binary phase only filters for rotation and scale invariant pattern recognition with the joint transform correlator,” Opt. Commun. 262, 17–26(2006).
[CrossRef]

2005 (1)

2004 (3)

H. T. Chang and C. T. T. Chen, “Enhanced optical image verification based on joint transform correlator adopting Fourier hologram,” Opt. Rev. 11, 165–169 (2004).
[CrossRef]

G. Hochman, Y. Yitzhaky, and N. S. Kopeika, “Restoration of images captured by a staggered time delay and integration camera in the presence of mechanical vibrations,” Appl. Opt. 43, 4345–4354 (2004).
[CrossRef] [PubMed]

B. Likhterov and N. S. Kopeika, “Motion-blurred image restoration using modified inverse all-pole filters,” J. Electron. Imaging 13, 257–263 (2004).
[CrossRef]

2002 (2)

1998 (1)

Alam, M. S.

Aran, A.

N. K. Nishchal, S. Goyal, A. Aran, V. K. Beri, and A. K. Gupta, “Binary differential joint transform correlator based on a ferroelectric liquid crystal electrically addressed spatial light modulator,” Opt. Eng. 45, 026401 (2006).
[CrossRef]

Bal, A.

Barrera, J. F.

Beri, V. K.

N. K. Nishchal, S. Goyal, A. Aran, V. K. Beri, and A. K. Gupta, “Binary differential joint transform correlator based on a ferroelectric liquid crystal electrically addressed spatial light modulator,” Opt. Eng. 45, 026401 (2006).
[CrossRef]

Butt, J. A.

J. A. Butt and T. D. Wilkinson, “Binary phase only filters for rotation and scale invariant pattern recognition with the joint transform correlator,” Opt. Commun. 262, 17–26(2006).
[CrossRef]

Chang, H. T.

H. T. Chang and C. T. T. Chen, “Enhanced optical image verification based on joint transform correlator adopting Fourier hologram,” Opt. Rev. 11, 165–169 (2004).
[CrossRef]

Chen, C. T. T.

H. T. Chang and C. T. T. Chen, “Enhanced optical image verification based on joint transform correlator adopting Fourier hologram,” Opt. Rev. 11, 165–169 (2004).
[CrossRef]

Choi, H.

Elad, M.

H. Takeda, P. Milanfar, M. Protter, and M. Elad, “Super-resolution without explicit subpixel motion estimation,” IEEE Trans. Image Process. 18, 1958–1975 (2009).
[CrossRef] [PubMed]

El-Saba, A. M.

Golik, B.

B. Golik and D. Wueller, “Measurement method for image stabilizing systems,” SPIE Rev. 6502, 65020O1 (2007).

Goyal, S.

N. K. Nishchal, S. Goyal, A. Aran, V. K. Beri, and A. K. Gupta, “Binary differential joint transform correlator based on a ferroelectric liquid crystal electrically addressed spatial light modulator,” Opt. Eng. 45, 026401 (2006).
[CrossRef]

Gupta, A. K.

N. K. Nishchal, S. Goyal, A. Aran, V. K. Beri, and A. K. Gupta, “Binary differential joint transform correlator based on a ferroelectric liquid crystal electrically addressed spatial light modulator,” Opt. Eng. 45, 026401 (2006).
[CrossRef]

He, G.

Hochman, G.

Kim, J.

Kopeika, N. S.

Kruchakov, I.

Likhterov, B.

B. Likhterov and N. S. Kopeika, “Motion-blurred image restoration using modified inverse all-pole filters,” J. Electron. Imaging 13, 257–263 (2004).
[CrossRef]

Loyev, V.

Milanfar, P.

H. Takeda, P. Milanfar, M. Protter, and M. Elad, “Super-resolution without explicit subpixel motion estimation,” IEEE Trans. Image Process. 18, 1958–1975 (2009).
[CrossRef] [PubMed]

Mor, I.

Nishchal, N. K.

N. K. Nishchal, S. Goyal, A. Aran, V. K. Beri, and A. K. Gupta, “Binary differential joint transform correlator based on a ferroelectric liquid crystal electrically addressed spatial light modulator,” Opt. Eng. 45, 026401 (2006).
[CrossRef]

Prasad, S.

Protter, M.

H. Takeda, P. Milanfar, M. Protter, and M. Elad, “Super-resolution without explicit subpixel motion estimation,” IEEE Trans. Image Process. 18, 1958–1975 (2009).
[CrossRef] [PubMed]

Rao, C.

Song, M.

Stern, A.

Takeda, H.

H. Takeda, P. Milanfar, M. Protter, and M. Elad, “Super-resolution without explicit subpixel motion estimation,” IEEE Trans. Image Process. 18, 1958–1975 (2009).
[CrossRef] [PubMed]

Tebaldi, M.

Tian, Y.

Vargas, C.

Widjaja, J.

Wilkinson, T. D.

J. A. Butt and T. D. Wilkinson, “Binary phase only filters for rotation and scale invariant pattern recognition with the joint transform correlator,” Opt. Commun. 262, 17–26(2006).
[CrossRef]

Wueller, D.

B. Golik and D. Wueller, “Measurement method for image stabilizing systems,” SPIE Rev. 6502, 65020O1 (2007).

Yitzhaky, Y.

Yoavi, E.

Zhang, J.

Zhang, Q.

Zhu, L.

Appl. Opt. (6)

IEEE Trans. Image Process. (1)

H. Takeda, P. Milanfar, M. Protter, and M. Elad, “Super-resolution without explicit subpixel motion estimation,” IEEE Trans. Image Process. 18, 1958–1975 (2009).
[CrossRef] [PubMed]

J. Electron. Imaging (1)

B. Likhterov and N. S. Kopeika, “Motion-blurred image restoration using modified inverse all-pole filters,” J. Electron. Imaging 13, 257–263 (2004).
[CrossRef]

J. Opt. Soc. Am. A (2)

Opt. Commun. (1)

J. A. Butt and T. D. Wilkinson, “Binary phase only filters for rotation and scale invariant pattern recognition with the joint transform correlator,” Opt. Commun. 262, 17–26(2006).
[CrossRef]

Opt. Eng. (1)

N. K. Nishchal, S. Goyal, A. Aran, V. K. Beri, and A. K. Gupta, “Binary differential joint transform correlator based on a ferroelectric liquid crystal electrically addressed spatial light modulator,” Opt. Eng. 45, 026401 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Opt. Rev. (1)

H. T. Chang and C. T. T. Chen, “Enhanced optical image verification based on joint transform correlator adopting Fourier hologram,” Opt. Rev. 11, 165–169 (2004).
[CrossRef]

SPIE Rev. (1)

B. Golik and D. Wueller, “Measurement method for image stabilizing systems,” SPIE Rev. 6502, 65020O1 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of real-time image restoration.

Fig. 2
Fig. 2

Joint image.

Fig. 3
Fig. 3

Comparison of correlation output (a) unprocessed and (b) processed.

Fig. 4
Fig. 4

Experiment: (a) experiment setup (part) and (b) experimental system.

Fig. 5
Fig. 5

Comparison between original and restored images: (a) Original image at v = 12.5 um / ms and (b) restored image at v = 12.5 um / ms . (c) Original image at v = 25 um / ms and (d) restored image at v = 25 um / ms .

Tables (1)

Tables Icon

Table 1 Comparison of Gray Mean Grads

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

g ( x , y ) = h ( x , y ) * f ( x , y ) + n ( x , y ) ,
h ( x , y ) = 1 T 0 T δ [ x Δ x ( t ) , y Δ y ( t ) ] d t ,
| S ( u , v ) | 2 = | R ( u , v ) | 2 + | T ( u , v ) | 2 + R ( u , v ) T * ( u , v ) exp [ 2 i π u Δ x 2 i π v ( 2 a + Δ y ) ] + T ( u , v ) R * ( u , v ) exp [ 2 i π u Δ x + 2 i π v ( 2 a + Δ y ) ] ,
c ( x , y ) = r ( x , y ) r ( x , y ) + t ( x , y ) t ( x , y ) + r ( x , y ) t ( x , y ) × δ ( x + Δ x , y + 2 a + Δ y ) + t ( x , y ) r ( x , y ) × δ ( x Δ x , y 2 a Δ y ) ,
P i P i + 1 ( x , y ) ¯ = ( Δ x , Δ y ) = p i + 1 ( x + Δ x , y + Δ y ) p i ( x , y ) ,
H ( u , v ) = H * ( u , v ) | H ( u , v ) | 2 + k ; k = p n ( u , v ) p f ( u , v ) ,
O ( u , v ) = | S ( u , v ) | 2 | R ( u , v ) | 2 | T ( u , v ) | 2 = R ( u , v ) T * ( u , v ) exp [ 2 i π u Δ x 2 i π v ( 2 a + Δ y ) ] + T ( u , v ) R * ( u , v ) exp [ 2 i π u Δ x + 2 i π v ( 2 a + Δ y ) ] .
W F A F ( u , v ) = B ( u , v ) A ( u , v ) + | R ( u , v ) | 2 ,
Q ( u , v ) = W F A F ( u , v ) × O ( u , v ) .
G M G = i = 1 M 1 j = 1 N 1 [ g ( i + 1 , j ) g ( i , j ) ] 2 + [ g ( i , j + 1 ) g ( i , j ) ] 2 2 ( M 1 ) ( N 1 ) ,

Metrics