Abstract

Optical detection, ranging, and imaging of targets in turbid water is complicated by absorption and scattering. It has been shown that using a pulsed laser source with a range-gated receiver or an intensity modulated source with a coherent RF receiver can improve target contrast in turbid water. A blended approach using a modulated-pulse waveform has been previously suggested as a way to further improve target contrast. However only recently has a rugged and reliable laser source been developed that is capable of synthesizing such a waveform so that the effect of the underwater environment on the propagation of a modulated pulse can be studied. In this paper, we outline the motivation for the modulated-pulse (MP) concept, and experimentally evaluate different MP waveforms: single-tone MP and pseudorandom coded MP sequences.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Duntley, Underwater Lighting by Submerged Lasers and Incandescent Sources (Scripps Institution of Oceanography Visibility Laboratory, 1971).
  2. G. W. Kattawar and G. N. Plass, “Time of flight measurements as an ocean probe,” Appl. Opt. 11, 662–666 (1972).
    [CrossRef] [PubMed]
  3. G. R. Fournier, D. Bonnier, J. L. Forand, and P. W. Pace, “Rage-gated underwater laser imaging system,” Opt. Eng. 32, 2185–2190 (1993).
    [CrossRef]
  4. K. D. Moore and J. S. Jaffe, “Time-evolution of high-resolution topographic measurements of the sea floor using a 3-D laser line scan mapping system,” IEEE J. Oceanic Eng. 27, 525–545 (2002).
    [CrossRef]
  5. F. M. Caimi, F. R. Dalgleish, T. E. Giddings, J. J. Shirron, C. Mazel, and K. Chiang, “Pulse versus CW laser line scan imaging detection methods: simulation results,” in IEEE/MTS Proceedings Oceans Europe (IEEE, 2007), pp. 1–4.
    [CrossRef]
  6. F. R. Dalgleish, F. M. Caimi, W. B. Britton, and C. F. Andren, “Improved LLS imaging performance in scattering-dominant waters,” Proc. SPIE 7317, 73170E (2009).
    [CrossRef]
  7. L. Mullen, A. Laux, B. Concannon, E. P. Zege, I. L. Katsev, and A. S. Prikhach, “Amplitude modulated laser imager,” Appl. Opt. 43, 3874–3892 (2004).
    [CrossRef] [PubMed]
  8. L. Mullen, A. Laux, B. Cochenour, E. P. Zege, I. L. Katsev, and A. S. Prikhach, “Demodulation techniques for the amplitude modulated laser imager,” Appl. Opt. 46, 7374–7383 (2007).
    [CrossRef] [PubMed]
  9. L. Bartolini, L. De Dominicis, M. F. de Collibus, G. Fornetti, M. Guarneri, E. Paglia, C. Poggi, and R. Ricci, “Underwater three-dimensional imaging with an amplitude-modulated laser radar at a 405 nm wavelength,” Appl. Opt. 44, 7130–7135 (2005).
    [CrossRef] [PubMed]
  10. L. Mullen, A. Laux, and B. Cochenour, “Propagation of modulated light in water: implications for imaging and communication systems,” Appl. Opt. 48, 2607–2612 (2009).
    [CrossRef] [PubMed]
  11. L. Mullen, D. Alley, and B. Cochenour, “Investigation of the effect of scattering agent and scattering albedo on modulated light propagation in water,” Appl. Opt. 50, 1396–1404 (2011).
    [CrossRef] [PubMed]
  12. F. Pellen, X. Intes, P. Olivard, Y. Guern, J. Cariou, and J. Lotrian, “Determination of sea-water cut-off frequency by backscattering transfer function measurement,” J. Phys. D: Appl. Phys. 33, 349–354 (2000).
    [CrossRef]
  13. J. L. Machol, “Comparison of the pseudorandom noise code and pulsed direct-detection lidars for atmospheric probing,” Appl. Opt. 36, 6021–6023 (1997).
    [CrossRef] [PubMed]
  14. L. J. Mullen, A. J. C. Vieira, P. R. Herczfeld, and V. M. Contarino, “Application of RADAR technology to aerial LIDAR systems for enhancement of shallow underwater target detection,” IEEE Trans. Microwave Theory Tech. 43, 2370–2377 (1995).
    [CrossRef]
  15. L. J. Mullen and V. M. Contarino, “Hybrid lidar-radar: seeing through the scatter,” IEEE Microw. Mag. 1, 42–48 (2000).
    [CrossRef]
  16. M. Bashkansky, H. R. Burris, E. E. Funk, R. Mahon, and C. I. Moore, “RF phase-coded random-modulation LIDAR,” Opt. Commun. 231, 93–98 (2004).
    [CrossRef]
  17. N. Takeuchi, M. Sugimoto, H. Baba, and K. Sakurai, “Random modulation cw lidar,” Appl. Opt. 22, 1382–1386 (1983).
    [CrossRef] [PubMed]
  18. N. Takeuchi, H. Baba, K. Sakurai, and T. Ueno, “Diode-laser random-modulation cw lidar,” Appl. Opt. 25, 63–67 (1986).
    [CrossRef] [PubMed]
  19. C. Nagasawa, M. Abo, H. Yamamoto, and O. Uchino, “Random modulation cw lidar using new random sequence,” Appl. Opt. 29, 1466–1470 (1990).
    [CrossRef] [PubMed]
  20. Y. Emery and C. Flesia, “Use of the A1- and A2- sequences to modulate continuous-wave pseudorandom noise lidar,” Appl. Opt. 37, 2238–2241 (1998).
    [CrossRef]
  21. J. Lindner, “Binary sequences up to length 40 with best possible autocorrelation function,” Electron. Lett. 11, 507 (1975).
    [CrossRef]
  22. M. N. Cohen, M. R. Fox, and J. M. Baden, “Minimum peak sidelobes pulse compression codes,” in IEEE Proceedings of the International Radar Conference (IEEE, 1990), pp. 633–638.
    [CrossRef]
  23. T. J. Petzold, “Volume scattering functions for selected ocean waters,” SIO Ref. 72-78, Scripps Institution of Oceanography Visibility Laboratory, 1972.
  24. J. Liang, K. Yang, M. Xia, X. Zhang, X. Lei, Y. Zheng, and D. Tan, “Monte Carlo simulation for modulated pulse bathymetric light detecting and ranging systems,” J. Opt. A 8, 415–422 (2006).
    [CrossRef]

2011 (1)

2009 (2)

F. R. Dalgleish, F. M. Caimi, W. B. Britton, and C. F. Andren, “Improved LLS imaging performance in scattering-dominant waters,” Proc. SPIE 7317, 73170E (2009).
[CrossRef]

L. Mullen, A. Laux, and B. Cochenour, “Propagation of modulated light in water: implications for imaging and communication systems,” Appl. Opt. 48, 2607–2612 (2009).
[CrossRef] [PubMed]

2007 (1)

2006 (1)

J. Liang, K. Yang, M. Xia, X. Zhang, X. Lei, Y. Zheng, and D. Tan, “Monte Carlo simulation for modulated pulse bathymetric light detecting and ranging systems,” J. Opt. A 8, 415–422 (2006).
[CrossRef]

2005 (1)

2004 (2)

L. Mullen, A. Laux, B. Concannon, E. P. Zege, I. L. Katsev, and A. S. Prikhach, “Amplitude modulated laser imager,” Appl. Opt. 43, 3874–3892 (2004).
[CrossRef] [PubMed]

M. Bashkansky, H. R. Burris, E. E. Funk, R. Mahon, and C. I. Moore, “RF phase-coded random-modulation LIDAR,” Opt. Commun. 231, 93–98 (2004).
[CrossRef]

2002 (1)

K. D. Moore and J. S. Jaffe, “Time-evolution of high-resolution topographic measurements of the sea floor using a 3-D laser line scan mapping system,” IEEE J. Oceanic Eng. 27, 525–545 (2002).
[CrossRef]

2000 (2)

L. J. Mullen and V. M. Contarino, “Hybrid lidar-radar: seeing through the scatter,” IEEE Microw. Mag. 1, 42–48 (2000).
[CrossRef]

F. Pellen, X. Intes, P. Olivard, Y. Guern, J. Cariou, and J. Lotrian, “Determination of sea-water cut-off frequency by backscattering transfer function measurement,” J. Phys. D: Appl. Phys. 33, 349–354 (2000).
[CrossRef]

1998 (1)

1997 (1)

1995 (1)

L. J. Mullen, A. J. C. Vieira, P. R. Herczfeld, and V. M. Contarino, “Application of RADAR technology to aerial LIDAR systems for enhancement of shallow underwater target detection,” IEEE Trans. Microwave Theory Tech. 43, 2370–2377 (1995).
[CrossRef]

1993 (1)

G. R. Fournier, D. Bonnier, J. L. Forand, and P. W. Pace, “Rage-gated underwater laser imaging system,” Opt. Eng. 32, 2185–2190 (1993).
[CrossRef]

1990 (1)

1986 (1)

1983 (1)

1975 (1)

J. Lindner, “Binary sequences up to length 40 with best possible autocorrelation function,” Electron. Lett. 11, 507 (1975).
[CrossRef]

1972 (1)

Abo, M.

Alley, D.

Andren, C. F.

F. R. Dalgleish, F. M. Caimi, W. B. Britton, and C. F. Andren, “Improved LLS imaging performance in scattering-dominant waters,” Proc. SPIE 7317, 73170E (2009).
[CrossRef]

Baba, H.

Baden, J. M.

M. N. Cohen, M. R. Fox, and J. M. Baden, “Minimum peak sidelobes pulse compression codes,” in IEEE Proceedings of the International Radar Conference (IEEE, 1990), pp. 633–638.
[CrossRef]

Bartolini, L.

Bashkansky, M.

M. Bashkansky, H. R. Burris, E. E. Funk, R. Mahon, and C. I. Moore, “RF phase-coded random-modulation LIDAR,” Opt. Commun. 231, 93–98 (2004).
[CrossRef]

Bonnier, D.

G. R. Fournier, D. Bonnier, J. L. Forand, and P. W. Pace, “Rage-gated underwater laser imaging system,” Opt. Eng. 32, 2185–2190 (1993).
[CrossRef]

Britton, W. B.

F. R. Dalgleish, F. M. Caimi, W. B. Britton, and C. F. Andren, “Improved LLS imaging performance in scattering-dominant waters,” Proc. SPIE 7317, 73170E (2009).
[CrossRef]

Burris, H. R.

M. Bashkansky, H. R. Burris, E. E. Funk, R. Mahon, and C. I. Moore, “RF phase-coded random-modulation LIDAR,” Opt. Commun. 231, 93–98 (2004).
[CrossRef]

Caimi, F. M.

F. R. Dalgleish, F. M. Caimi, W. B. Britton, and C. F. Andren, “Improved LLS imaging performance in scattering-dominant waters,” Proc. SPIE 7317, 73170E (2009).
[CrossRef]

F. M. Caimi, F. R. Dalgleish, T. E. Giddings, J. J. Shirron, C. Mazel, and K. Chiang, “Pulse versus CW laser line scan imaging detection methods: simulation results,” in IEEE/MTS Proceedings Oceans Europe (IEEE, 2007), pp. 1–4.
[CrossRef]

Cariou, J.

F. Pellen, X. Intes, P. Olivard, Y. Guern, J. Cariou, and J. Lotrian, “Determination of sea-water cut-off frequency by backscattering transfer function measurement,” J. Phys. D: Appl. Phys. 33, 349–354 (2000).
[CrossRef]

Chiang, K.

F. M. Caimi, F. R. Dalgleish, T. E. Giddings, J. J. Shirron, C. Mazel, and K. Chiang, “Pulse versus CW laser line scan imaging detection methods: simulation results,” in IEEE/MTS Proceedings Oceans Europe (IEEE, 2007), pp. 1–4.
[CrossRef]

Cochenour, B.

Cohen, M. N.

M. N. Cohen, M. R. Fox, and J. M. Baden, “Minimum peak sidelobes pulse compression codes,” in IEEE Proceedings of the International Radar Conference (IEEE, 1990), pp. 633–638.
[CrossRef]

Concannon, B.

Contarino, V. M.

L. J. Mullen and V. M. Contarino, “Hybrid lidar-radar: seeing through the scatter,” IEEE Microw. Mag. 1, 42–48 (2000).
[CrossRef]

L. J. Mullen, A. J. C. Vieira, P. R. Herczfeld, and V. M. Contarino, “Application of RADAR technology to aerial LIDAR systems for enhancement of shallow underwater target detection,” IEEE Trans. Microwave Theory Tech. 43, 2370–2377 (1995).
[CrossRef]

Dalgleish, F. R.

F. R. Dalgleish, F. M. Caimi, W. B. Britton, and C. F. Andren, “Improved LLS imaging performance in scattering-dominant waters,” Proc. SPIE 7317, 73170E (2009).
[CrossRef]

F. M. Caimi, F. R. Dalgleish, T. E. Giddings, J. J. Shirron, C. Mazel, and K. Chiang, “Pulse versus CW laser line scan imaging detection methods: simulation results,” in IEEE/MTS Proceedings Oceans Europe (IEEE, 2007), pp. 1–4.
[CrossRef]

de Collibus, M. F.

De Dominicis, L.

Duntley, S.

S. Duntley, Underwater Lighting by Submerged Lasers and Incandescent Sources (Scripps Institution of Oceanography Visibility Laboratory, 1971).

Emery, Y.

Flesia, C.

Forand, J. L.

G. R. Fournier, D. Bonnier, J. L. Forand, and P. W. Pace, “Rage-gated underwater laser imaging system,” Opt. Eng. 32, 2185–2190 (1993).
[CrossRef]

Fornetti, G.

Fournier, G. R.

G. R. Fournier, D. Bonnier, J. L. Forand, and P. W. Pace, “Rage-gated underwater laser imaging system,” Opt. Eng. 32, 2185–2190 (1993).
[CrossRef]

Fox, M. R.

M. N. Cohen, M. R. Fox, and J. M. Baden, “Minimum peak sidelobes pulse compression codes,” in IEEE Proceedings of the International Radar Conference (IEEE, 1990), pp. 633–638.
[CrossRef]

Funk, E. E.

M. Bashkansky, H. R. Burris, E. E. Funk, R. Mahon, and C. I. Moore, “RF phase-coded random-modulation LIDAR,” Opt. Commun. 231, 93–98 (2004).
[CrossRef]

Giddings, T. E.

F. M. Caimi, F. R. Dalgleish, T. E. Giddings, J. J. Shirron, C. Mazel, and K. Chiang, “Pulse versus CW laser line scan imaging detection methods: simulation results,” in IEEE/MTS Proceedings Oceans Europe (IEEE, 2007), pp. 1–4.
[CrossRef]

Guarneri, M.

Guern, Y.

F. Pellen, X. Intes, P. Olivard, Y. Guern, J. Cariou, and J. Lotrian, “Determination of sea-water cut-off frequency by backscattering transfer function measurement,” J. Phys. D: Appl. Phys. 33, 349–354 (2000).
[CrossRef]

Herczfeld, P. R.

L. J. Mullen, A. J. C. Vieira, P. R. Herczfeld, and V. M. Contarino, “Application of RADAR technology to aerial LIDAR systems for enhancement of shallow underwater target detection,” IEEE Trans. Microwave Theory Tech. 43, 2370–2377 (1995).
[CrossRef]

Intes, X.

F. Pellen, X. Intes, P. Olivard, Y. Guern, J. Cariou, and J. Lotrian, “Determination of sea-water cut-off frequency by backscattering transfer function measurement,” J. Phys. D: Appl. Phys. 33, 349–354 (2000).
[CrossRef]

Jaffe, J. S.

K. D. Moore and J. S. Jaffe, “Time-evolution of high-resolution topographic measurements of the sea floor using a 3-D laser line scan mapping system,” IEEE J. Oceanic Eng. 27, 525–545 (2002).
[CrossRef]

Katsev, I. L.

Kattawar, G. W.

Laux, A.

Lei, X.

J. Liang, K. Yang, M. Xia, X. Zhang, X. Lei, Y. Zheng, and D. Tan, “Monte Carlo simulation for modulated pulse bathymetric light detecting and ranging systems,” J. Opt. A 8, 415–422 (2006).
[CrossRef]

Liang, J.

J. Liang, K. Yang, M. Xia, X. Zhang, X. Lei, Y. Zheng, and D. Tan, “Monte Carlo simulation for modulated pulse bathymetric light detecting and ranging systems,” J. Opt. A 8, 415–422 (2006).
[CrossRef]

Lindner, J.

J. Lindner, “Binary sequences up to length 40 with best possible autocorrelation function,” Electron. Lett. 11, 507 (1975).
[CrossRef]

Lotrian, J.

F. Pellen, X. Intes, P. Olivard, Y. Guern, J. Cariou, and J. Lotrian, “Determination of sea-water cut-off frequency by backscattering transfer function measurement,” J. Phys. D: Appl. Phys. 33, 349–354 (2000).
[CrossRef]

Machol, J. L.

Mahon, R.

M. Bashkansky, H. R. Burris, E. E. Funk, R. Mahon, and C. I. Moore, “RF phase-coded random-modulation LIDAR,” Opt. Commun. 231, 93–98 (2004).
[CrossRef]

Mazel, C.

F. M. Caimi, F. R. Dalgleish, T. E. Giddings, J. J. Shirron, C. Mazel, and K. Chiang, “Pulse versus CW laser line scan imaging detection methods: simulation results,” in IEEE/MTS Proceedings Oceans Europe (IEEE, 2007), pp. 1–4.
[CrossRef]

Moore, C. I.

M. Bashkansky, H. R. Burris, E. E. Funk, R. Mahon, and C. I. Moore, “RF phase-coded random-modulation LIDAR,” Opt. Commun. 231, 93–98 (2004).
[CrossRef]

Moore, K. D.

K. D. Moore and J. S. Jaffe, “Time-evolution of high-resolution topographic measurements of the sea floor using a 3-D laser line scan mapping system,” IEEE J. Oceanic Eng. 27, 525–545 (2002).
[CrossRef]

Mullen, L.

Mullen, L. J.

L. J. Mullen and V. M. Contarino, “Hybrid lidar-radar: seeing through the scatter,” IEEE Microw. Mag. 1, 42–48 (2000).
[CrossRef]

L. J. Mullen, A. J. C. Vieira, P. R. Herczfeld, and V. M. Contarino, “Application of RADAR technology to aerial LIDAR systems for enhancement of shallow underwater target detection,” IEEE Trans. Microwave Theory Tech. 43, 2370–2377 (1995).
[CrossRef]

Nagasawa, C.

Olivard, P.

F. Pellen, X. Intes, P. Olivard, Y. Guern, J. Cariou, and J. Lotrian, “Determination of sea-water cut-off frequency by backscattering transfer function measurement,” J. Phys. D: Appl. Phys. 33, 349–354 (2000).
[CrossRef]

Pace, P. W.

G. R. Fournier, D. Bonnier, J. L. Forand, and P. W. Pace, “Rage-gated underwater laser imaging system,” Opt. Eng. 32, 2185–2190 (1993).
[CrossRef]

Paglia, E.

Pellen, F.

F. Pellen, X. Intes, P. Olivard, Y. Guern, J. Cariou, and J. Lotrian, “Determination of sea-water cut-off frequency by backscattering transfer function measurement,” J. Phys. D: Appl. Phys. 33, 349–354 (2000).
[CrossRef]

Petzold, T. J.

T. J. Petzold, “Volume scattering functions for selected ocean waters,” SIO Ref. 72-78, Scripps Institution of Oceanography Visibility Laboratory, 1972.

Plass, G. N.

Poggi, C.

Prikhach, A. S.

Ricci, R.

Sakurai, K.

Shirron, J. J.

F. M. Caimi, F. R. Dalgleish, T. E. Giddings, J. J. Shirron, C. Mazel, and K. Chiang, “Pulse versus CW laser line scan imaging detection methods: simulation results,” in IEEE/MTS Proceedings Oceans Europe (IEEE, 2007), pp. 1–4.
[CrossRef]

Sugimoto, M.

Takeuchi, N.

Tan, D.

J. Liang, K. Yang, M. Xia, X. Zhang, X. Lei, Y. Zheng, and D. Tan, “Monte Carlo simulation for modulated pulse bathymetric light detecting and ranging systems,” J. Opt. A 8, 415–422 (2006).
[CrossRef]

Uchino, O.

Ueno, T.

Vieira, A. J. C.

L. J. Mullen, A. J. C. Vieira, P. R. Herczfeld, and V. M. Contarino, “Application of RADAR technology to aerial LIDAR systems for enhancement of shallow underwater target detection,” IEEE Trans. Microwave Theory Tech. 43, 2370–2377 (1995).
[CrossRef]

Xia, M.

J. Liang, K. Yang, M. Xia, X. Zhang, X. Lei, Y. Zheng, and D. Tan, “Monte Carlo simulation for modulated pulse bathymetric light detecting and ranging systems,” J. Opt. A 8, 415–422 (2006).
[CrossRef]

Yamamoto, H.

Yang, K.

J. Liang, K. Yang, M. Xia, X. Zhang, X. Lei, Y. Zheng, and D. Tan, “Monte Carlo simulation for modulated pulse bathymetric light detecting and ranging systems,” J. Opt. A 8, 415–422 (2006).
[CrossRef]

Zege, E. P.

Zhang, X.

J. Liang, K. Yang, M. Xia, X. Zhang, X. Lei, Y. Zheng, and D. Tan, “Monte Carlo simulation for modulated pulse bathymetric light detecting and ranging systems,” J. Opt. A 8, 415–422 (2006).
[CrossRef]

Zheng, Y.

J. Liang, K. Yang, M. Xia, X. Zhang, X. Lei, Y. Zheng, and D. Tan, “Monte Carlo simulation for modulated pulse bathymetric light detecting and ranging systems,” J. Opt. A 8, 415–422 (2006).
[CrossRef]

Appl. Opt. (11)

G. W. Kattawar and G. N. Plass, “Time of flight measurements as an ocean probe,” Appl. Opt. 11, 662–666 (1972).
[CrossRef] [PubMed]

L. Mullen, A. Laux, B. Concannon, E. P. Zege, I. L. Katsev, and A. S. Prikhach, “Amplitude modulated laser imager,” Appl. Opt. 43, 3874–3892 (2004).
[CrossRef] [PubMed]

L. Mullen, A. Laux, B. Cochenour, E. P. Zege, I. L. Katsev, and A. S. Prikhach, “Demodulation techniques for the amplitude modulated laser imager,” Appl. Opt. 46, 7374–7383 (2007).
[CrossRef] [PubMed]

L. Bartolini, L. De Dominicis, M. F. de Collibus, G. Fornetti, M. Guarneri, E. Paglia, C. Poggi, and R. Ricci, “Underwater three-dimensional imaging with an amplitude-modulated laser radar at a 405 nm wavelength,” Appl. Opt. 44, 7130–7135 (2005).
[CrossRef] [PubMed]

L. Mullen, A. Laux, and B. Cochenour, “Propagation of modulated light in water: implications for imaging and communication systems,” Appl. Opt. 48, 2607–2612 (2009).
[CrossRef] [PubMed]

L. Mullen, D. Alley, and B. Cochenour, “Investigation of the effect of scattering agent and scattering albedo on modulated light propagation in water,” Appl. Opt. 50, 1396–1404 (2011).
[CrossRef] [PubMed]

J. L. Machol, “Comparison of the pseudorandom noise code and pulsed direct-detection lidars for atmospheric probing,” Appl. Opt. 36, 6021–6023 (1997).
[CrossRef] [PubMed]

N. Takeuchi, M. Sugimoto, H. Baba, and K. Sakurai, “Random modulation cw lidar,” Appl. Opt. 22, 1382–1386 (1983).
[CrossRef] [PubMed]

N. Takeuchi, H. Baba, K. Sakurai, and T. Ueno, “Diode-laser random-modulation cw lidar,” Appl. Opt. 25, 63–67 (1986).
[CrossRef] [PubMed]

C. Nagasawa, M. Abo, H. Yamamoto, and O. Uchino, “Random modulation cw lidar using new random sequence,” Appl. Opt. 29, 1466–1470 (1990).
[CrossRef] [PubMed]

Y. Emery and C. Flesia, “Use of the A1- and A2- sequences to modulate continuous-wave pseudorandom noise lidar,” Appl. Opt. 37, 2238–2241 (1998).
[CrossRef]

Electron. Lett. (1)

J. Lindner, “Binary sequences up to length 40 with best possible autocorrelation function,” Electron. Lett. 11, 507 (1975).
[CrossRef]

IEEE J. Oceanic Eng. (1)

K. D. Moore and J. S. Jaffe, “Time-evolution of high-resolution topographic measurements of the sea floor using a 3-D laser line scan mapping system,” IEEE J. Oceanic Eng. 27, 525–545 (2002).
[CrossRef]

IEEE Microw. Mag. (1)

L. J. Mullen and V. M. Contarino, “Hybrid lidar-radar: seeing through the scatter,” IEEE Microw. Mag. 1, 42–48 (2000).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

L. J. Mullen, A. J. C. Vieira, P. R. Herczfeld, and V. M. Contarino, “Application of RADAR technology to aerial LIDAR systems for enhancement of shallow underwater target detection,” IEEE Trans. Microwave Theory Tech. 43, 2370–2377 (1995).
[CrossRef]

J. Opt. A (1)

J. Liang, K. Yang, M. Xia, X. Zhang, X. Lei, Y. Zheng, and D. Tan, “Monte Carlo simulation for modulated pulse bathymetric light detecting and ranging systems,” J. Opt. A 8, 415–422 (2006).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

F. Pellen, X. Intes, P. Olivard, Y. Guern, J. Cariou, and J. Lotrian, “Determination of sea-water cut-off frequency by backscattering transfer function measurement,” J. Phys. D: Appl. Phys. 33, 349–354 (2000).
[CrossRef]

Opt. Commun. (1)

M. Bashkansky, H. R. Burris, E. E. Funk, R. Mahon, and C. I. Moore, “RF phase-coded random-modulation LIDAR,” Opt. Commun. 231, 93–98 (2004).
[CrossRef]

Opt. Eng. (1)

G. R. Fournier, D. Bonnier, J. L. Forand, and P. W. Pace, “Rage-gated underwater laser imaging system,” Opt. Eng. 32, 2185–2190 (1993).
[CrossRef]

Proc. SPIE (1)

F. R. Dalgleish, F. M. Caimi, W. B. Britton, and C. F. Andren, “Improved LLS imaging performance in scattering-dominant waters,” Proc. SPIE 7317, 73170E (2009).
[CrossRef]

Other (4)

S. Duntley, Underwater Lighting by Submerged Lasers and Incandescent Sources (Scripps Institution of Oceanography Visibility Laboratory, 1971).

M. N. Cohen, M. R. Fox, and J. M. Baden, “Minimum peak sidelobes pulse compression codes,” in IEEE Proceedings of the International Radar Conference (IEEE, 1990), pp. 633–638.
[CrossRef]

T. J. Petzold, “Volume scattering functions for selected ocean waters,” SIO Ref. 72-78, Scripps Institution of Oceanography Visibility Laboratory, 1972.

F. M. Caimi, F. R. Dalgleish, T. E. Giddings, J. J. Shirron, C. Mazel, and K. Chiang, “Pulse versus CW laser line scan imaging detection methods: simulation results,” in IEEE/MTS Proceedings Oceans Europe (IEEE, 2007), pp. 1–4.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Conceptual sketch of the modulated-pulse laser output, shown here as PN-MPs.

Fig. 2
Fig. 2

Experimental setup. MPL: modulated-pulse laser ( 530 nm ), RD: reference detector.

Fig. 3
Fig. 3

Results in clear water, c = 0.05 / m , c d = 0.35 . On the left, figures (a), (b), and (c) show the PMT returns for the ST-MP, the M-sequence PN-MP, and the MPS PN-MP, respectively. On the right, figures (d), (e), and (f) show the cross correlations for each corresponding waveform on the left.

Fig. 4
Fig. 4

Results for c = 0.35 / m , c d = 2.45 . On the left, figure parts (a), (b), and (c) show the PMT returns for the ST-MP, the M-sequence PN-MP, and the MPS PN-MP, respectively. On the right, figure parts (d), (e), and (f) show the cross correlations for each corresponding waveform on the left.

Fig. 5
Fig. 5

Results for c = 0.54 / m , c d = 3.78 . On the left, figure parts (a), (b), and (c) show the PMT returns for the ST-MP, the M-sequence PN-MP, and the MPS PN-MP, respectively. On the right, figure parts (d), (e), and (f) show the cross correlations for each corresponding waveform on the left.

Fig. 6
Fig. 6

Results for c = 0.66 / m , c d = 4.62 . On the left, figure parts (a), (b), and (c) show the PMT returns for the ST-MP, the M-sequence PN-MP, and the MPS PN-MP, respectively. On the right, figure parts (d), (e), and (f) show the cross correlations for each corresponding waveform on the left.

Fig. 7
Fig. 7

Results for c = 0.66 / m ( c d = 4.62 ), but with N = 31 . On the left, figure parts (a), (b), and (c) show the PMT returns for the ST-MP, the M-sequence PN-MP, and the MPS PN-MP, respectively. On the right, figure parts (d), (e), and (f) show the cross correlations for each corresponding waveform on the left.

Fig. 8
Fig. 8

Unfiltered cross correlations for N = 15 and c = 0.66 / m ( c d = 4.62 ) of the (a) ST-MP, (b) M-sequence PN-MP, and (c) MPS PN-MP waveforms. Also, the cross correlations of the high-pass filtered versions of the (d) ST-MP, (e) M-sequence PN-MP, and (f) MPS PN-MP waveforms.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

p ( t ) = { 1 ( 0 t < t b ) 0 otherwise .
x ( t ) = i = 0 N 1 a i p ( t i t b ) ,
m ( t ) = { 1 ( 0 t < t macro ) 0 otherwise .
s ( t ) = j = 0 x ( t ) m ( t j t rep ) ,
z ( t ) = R x x ( τ ) = 0 t rep x ( t ) x ( t τ ) d t ,
R x x ( τ ) = 0 t rep x ( t ) x ( t τ ) d t ,
x ( t ) = i = 0 N 1 a i p ( t i t b ) .
h ( t ) = h obj ( t ) + h env ( t ) = h obj ( t ) + h bks ( t ) + h fwd ( t ) ,
R x x ( τ ) clear = 0 t rep x ( t t tgt ) x ( t τ ) d t .
z ( t ) = R x x ( τ ) clear + R x x ( τ ) * h bks ( t ) + R x x ( τ ) * h fwd ( t ) .

Metrics