Abstract

Logic units are the building blocks of many important computational operations likes arithmetic, multiplexer-demultiplexer, radix conversion, parity checker cum generator, etc. Multifunctional logic operation is very much essential in this respect. Here a programmable Boolean logic unit is proposed that can perform 16 Boolean logical operations from a single optical input according to the programming input without changing the circuit design. This circuit has two outputs. One output is complementary to the other. Hence no loss of data can occur. The circuit is basically designed by a 2×2 polarization independent optical cross bar switch. Performance of the proposed circuit has been achieved by doing numerical simulations. The binary logical states (0,1) are represented by the absence of light (null) and presence of light, respectively.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photon. 4, 262–263 (2010).
    [CrossRef]
  2. R. P. Webb, R. J. Manning, G. D. Maxwell, and A. J. Poustie, “40 Gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer,” Electron. Lett. 39, 79–81(2003).
    [CrossRef]
  3. T. Houbavlis, K. E. Zoiros, G. Kanellos, and C. Tsekrekos, “Performance analysis of ultrafast all-optical Boolean XOR gate using semiconductor optical amplifier-based Mach-Zehnder interferometer,” Opt. Commun. 232, 179–199(2004).
    [CrossRef]
  4. J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “40 Gbit/s XOR and AND gates using polarization switching within 1 m-long bismuth oxide-based nonlinear fiber,” Electron. Lett. 41, 1074–1075 (2005).
    [CrossRef]
  5. M. Suzuki and H. Uenohara, “Investigation of all-optical error detection circuit using SOA-MZI based XOR gates at 10 Gbit/s,” Electron. Lett. 45, 224–225 (2009).
    [CrossRef]
  6. J. Wang, Q. Sun, and J. Sun, “Ultrafast all-optical logic AND gate for CSRZ signals using periodically poled lithium niobate,” J. Opt. Soc. Am. B 26, 951–958 (2009).
    [CrossRef]
  7. A. Bogoni, L. Poti, R. Proietti, G. Meloni, F. Ponzini, and P. Ghelfi, “Regenerative and reconfigurable all-optical logic gates for ultra-fast applications,” Electron. Lett. 41, 435–436(2005).
    [CrossRef]
  8. Z. Li and G. Li, “Ultrahigh-speed reconfigurable logic gates based on four wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18, 1341–1343(2006).
    [CrossRef]
  9. G. Berrettini, S. Simi, A. Malacarne, A. Bogoni, and L. Poti, “Ultra-fast integrable and reconfigurable XOR, AND, NOR and NOT photonic logic gate,” IEEE Photon. Technol. Lett. 18, 917–919 (2006).
    [CrossRef]
  10. J-Y. Kim, J-M. Kang, T-Y. Kim, and S-K. Han, “All-optical multiple logic gates with XOR, NOR, OR and NAND functions using parallel SOA-MZI structures: theory and experiment,” J. Lightwave Technol. 24, 3392–3399 (2006).
    [CrossRef]
  11. J. Hardy and J. Shamir, “Optics inspired logic architecture,” Opt. Express 15, 150–165 (2007).
    [CrossRef] [PubMed]
  12. D. M. F. Lai, C. H. Kwok, and K.K-Y. Wong, “All-optical picoseconds logic gates based on a fiber optical parametric amplifier,” Opt. Express 16, 18362–18370 (2008).
    [CrossRef] [PubMed]
  13. J. Dong, X. Zhang, and D. Huang, “A proposal for two-input arbitrary Boolean logic gates using single semiconductor optical amplifier by picosecond pulse injection,” Opt. Express 17, 7725–7730 (2009).
    [CrossRef] [PubMed]
  14. J. Xu, X. Zhang, Y. Zhang, J. Dong, D. Liu, and D. Huang, “Reconfigurable all-optical logic gates for multi-input differential phase-shift keying signals: design and experiments,” J. Lightwave Technol. 22, 5268–5275 (2009).
  15. M. R. Fetterman, “Design for high-speed optoelectronic Boolean logic,” IEEE Photon. Technol. Lett. 21, 1740–1742 (2009).
    [CrossRef]
  16. J.-M. Jeong and M. E. Marhic, “All-optical logic gates based on cross-phase modulation in a nonlinear fiber interferometer,” Opt. Commun. 85, 430–436 (1991).
    [CrossRef]
  17. H. J. Caulfield, R. A. Soref, and C. S. Vikram, “Universal reconfigurable optical logic with silicon-on-insulator resonant structures,” Photon. Nanostr. Fundam. Appl. 5, 14–20 (2007).
    [CrossRef]
  18. H. J. Caulfield, R. A. Soref, L. Qian, and A. Zavalin, “Generalized optical logic elements-GOLEs,” Opt. Commun. 271, 365–373 (2007).
    [CrossRef]
  19. Z. Y. Shen and L. L. Wu, “Reconfigurable optical logic unit with terahertz optical asymmetric demultiplexer and electro optic switches,” Appl. Opt. 47, 3737–3742 (2008).
    [CrossRef] [PubMed]
  20. Y. Miyoshi, R. Ikeda, H. Tobioka, T. Inoue, S. Namiki, and K. Kitayama, “Ultrafast all-optical logic gate using a nonlinear optical loop mirror based multi-periodic transfer function,” Opt. Express 16, 2570–2577 (2008).
    [CrossRef] [PubMed]
  21. H. J. Caulfield, “Zero-energy optical logic: can it be practical?” presented at the Optical Supercomputing, Second International Workshop, Bertinoro, Italy, November 2009.
  22. H. J. Caulfield, “Four barriers to understanding zero energy optical logic,” Phys. Expr. 1, 43–49 (2011).
  23. J. Yang, X. Li, J. Yang, J. Liu, and X. Su, “Polarization-independent bidirectional 4×4 optical switch in free-space,” Opt. Laser Technol. 42, 927–933 (2010).
    [CrossRef]
  24. R. Tomczuk and D. M. Miller, “Autocorrelation techniques for multi-bit decoder PLAs,” presented at the 22nd International Symposium on Multiple-Valued Logic, Sendai, Japan, 1992.
    [CrossRef]
  25. T. Sasao, “Multiple-valued decomposition of generalized Boolean functions and the complexity of programmable logic arrays,” IEEE Trans. Comput. C-30, 635–643 (1981).
    [CrossRef]
  26. T. Sasao, “Input variable assignment and output phase optimization of PLA’s,” IEEE Trans. Comput. C-33, 879–894 (1984).
    [CrossRef]
  27. G. P. Agrwal, Applications of Nonlinear Fibre Optics(Academic, 2001).
  28. T. Chattopadhyay, “All-optical cross-bar network architecture using TOAD based interferometric switch and using it to design reconfigurable logic unit,” Opt. Fiber Technol. (to be published).
    [CrossRef]
  29. A. A.-Mejia, K. A. Williams, T. de Vries, S. Smalbrugge, Y. S. Oei, M. K. Smit, and R. N. Nötzel, “Integrated 2×2 quantum dot optical crossbar switch in 1.55 μm wavelength range,” Electron. Lett. 45, 313–314 (2009).
    [CrossRef]
  30. G. Berrettini, G. Meloni, A. Bogoni, and L. Potì, “All-optical 2×2 switch based on kerr effect in highly nonlinear fiber for ultrafast applications,” IEEE Photon. Technol. Lett. 18, 2439–2441 (2006).
    [CrossRef]

2011 (1)

H. J. Caulfield, “Four barriers to understanding zero energy optical logic,” Phys. Expr. 1, 43–49 (2011).

2010 (2)

J. Yang, X. Li, J. Yang, J. Liu, and X. Su, “Polarization-independent bidirectional 4×4 optical switch in free-space,” Opt. Laser Technol. 42, 927–933 (2010).
[CrossRef]

H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photon. 4, 262–263 (2010).
[CrossRef]

2009 (6)

M. Suzuki and H. Uenohara, “Investigation of all-optical error detection circuit using SOA-MZI based XOR gates at 10 Gbit/s,” Electron. Lett. 45, 224–225 (2009).
[CrossRef]

A. A.-Mejia, K. A. Williams, T. de Vries, S. Smalbrugge, Y. S. Oei, M. K. Smit, and R. N. Nötzel, “Integrated 2×2 quantum dot optical crossbar switch in 1.55 μm wavelength range,” Electron. Lett. 45, 313–314 (2009).
[CrossRef]

J. Xu, X. Zhang, Y. Zhang, J. Dong, D. Liu, and D. Huang, “Reconfigurable all-optical logic gates for multi-input differential phase-shift keying signals: design and experiments,” J. Lightwave Technol. 22, 5268–5275 (2009).

M. R. Fetterman, “Design for high-speed optoelectronic Boolean logic,” IEEE Photon. Technol. Lett. 21, 1740–1742 (2009).
[CrossRef]

J. Wang, Q. Sun, and J. Sun, “Ultrafast all-optical logic AND gate for CSRZ signals using periodically poled lithium niobate,” J. Opt. Soc. Am. B 26, 951–958 (2009).
[CrossRef]

J. Dong, X. Zhang, and D. Huang, “A proposal for two-input arbitrary Boolean logic gates using single semiconductor optical amplifier by picosecond pulse injection,” Opt. Express 17, 7725–7730 (2009).
[CrossRef] [PubMed]

2008 (3)

2007 (3)

J. Hardy and J. Shamir, “Optics inspired logic architecture,” Opt. Express 15, 150–165 (2007).
[CrossRef] [PubMed]

H. J. Caulfield, R. A. Soref, and C. S. Vikram, “Universal reconfigurable optical logic with silicon-on-insulator resonant structures,” Photon. Nanostr. Fundam. Appl. 5, 14–20 (2007).
[CrossRef]

H. J. Caulfield, R. A. Soref, L. Qian, and A. Zavalin, “Generalized optical logic elements-GOLEs,” Opt. Commun. 271, 365–373 (2007).
[CrossRef]

2006 (4)

G. Berrettini, G. Meloni, A. Bogoni, and L. Potì, “All-optical 2×2 switch based on kerr effect in highly nonlinear fiber for ultrafast applications,” IEEE Photon. Technol. Lett. 18, 2439–2441 (2006).
[CrossRef]

J-Y. Kim, J-M. Kang, T-Y. Kim, and S-K. Han, “All-optical multiple logic gates with XOR, NOR, OR and NAND functions using parallel SOA-MZI structures: theory and experiment,” J. Lightwave Technol. 24, 3392–3399 (2006).
[CrossRef]

Z. Li and G. Li, “Ultrahigh-speed reconfigurable logic gates based on four wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18, 1341–1343(2006).
[CrossRef]

G. Berrettini, S. Simi, A. Malacarne, A. Bogoni, and L. Poti, “Ultra-fast integrable and reconfigurable XOR, AND, NOR and NOT photonic logic gate,” IEEE Photon. Technol. Lett. 18, 917–919 (2006).
[CrossRef]

2005 (2)

A. Bogoni, L. Poti, R. Proietti, G. Meloni, F. Ponzini, and P. Ghelfi, “Regenerative and reconfigurable all-optical logic gates for ultra-fast applications,” Electron. Lett. 41, 435–436(2005).
[CrossRef]

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “40 Gbit/s XOR and AND gates using polarization switching within 1 m-long bismuth oxide-based nonlinear fiber,” Electron. Lett. 41, 1074–1075 (2005).
[CrossRef]

2004 (1)

T. Houbavlis, K. E. Zoiros, G. Kanellos, and C. Tsekrekos, “Performance analysis of ultrafast all-optical Boolean XOR gate using semiconductor optical amplifier-based Mach-Zehnder interferometer,” Opt. Commun. 232, 179–199(2004).
[CrossRef]

2003 (1)

R. P. Webb, R. J. Manning, G. D. Maxwell, and A. J. Poustie, “40 Gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer,” Electron. Lett. 39, 79–81(2003).
[CrossRef]

1991 (1)

J.-M. Jeong and M. E. Marhic, “All-optical logic gates based on cross-phase modulation in a nonlinear fiber interferometer,” Opt. Commun. 85, 430–436 (1991).
[CrossRef]

1984 (1)

T. Sasao, “Input variable assignment and output phase optimization of PLA’s,” IEEE Trans. Comput. C-33, 879–894 (1984).
[CrossRef]

1981 (1)

T. Sasao, “Multiple-valued decomposition of generalized Boolean functions and the complexity of programmable logic arrays,” IEEE Trans. Comput. C-30, 635–643 (1981).
[CrossRef]

A.-Mejia, A.

A. A.-Mejia, K. A. Williams, T. de Vries, S. Smalbrugge, Y. S. Oei, M. K. Smit, and R. N. Nötzel, “Integrated 2×2 quantum dot optical crossbar switch in 1.55 μm wavelength range,” Electron. Lett. 45, 313–314 (2009).
[CrossRef]

Agrwal, G. P.

G. P. Agrwal, Applications of Nonlinear Fibre Optics(Academic, 2001).

Berrettini, G.

G. Berrettini, S. Simi, A. Malacarne, A. Bogoni, and L. Poti, “Ultra-fast integrable and reconfigurable XOR, AND, NOR and NOT photonic logic gate,” IEEE Photon. Technol. Lett. 18, 917–919 (2006).
[CrossRef]

G. Berrettini, G. Meloni, A. Bogoni, and L. Potì, “All-optical 2×2 switch based on kerr effect in highly nonlinear fiber for ultrafast applications,” IEEE Photon. Technol. Lett. 18, 2439–2441 (2006).
[CrossRef]

Bogoni, A.

G. Berrettini, G. Meloni, A. Bogoni, and L. Potì, “All-optical 2×2 switch based on kerr effect in highly nonlinear fiber for ultrafast applications,” IEEE Photon. Technol. Lett. 18, 2439–2441 (2006).
[CrossRef]

G. Berrettini, S. Simi, A. Malacarne, A. Bogoni, and L. Poti, “Ultra-fast integrable and reconfigurable XOR, AND, NOR and NOT photonic logic gate,” IEEE Photon. Technol. Lett. 18, 917–919 (2006).
[CrossRef]

A. Bogoni, L. Poti, R. Proietti, G. Meloni, F. Ponzini, and P. Ghelfi, “Regenerative and reconfigurable all-optical logic gates for ultra-fast applications,” Electron. Lett. 41, 435–436(2005).
[CrossRef]

Caulfield, H. J.

H. J. Caulfield, “Four barriers to understanding zero energy optical logic,” Phys. Expr. 1, 43–49 (2011).

H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photon. 4, 262–263 (2010).
[CrossRef]

H. J. Caulfield, R. A. Soref, L. Qian, and A. Zavalin, “Generalized optical logic elements-GOLEs,” Opt. Commun. 271, 365–373 (2007).
[CrossRef]

H. J. Caulfield, R. A. Soref, and C. S. Vikram, “Universal reconfigurable optical logic with silicon-on-insulator resonant structures,” Photon. Nanostr. Fundam. Appl. 5, 14–20 (2007).
[CrossRef]

H. J. Caulfield, “Zero-energy optical logic: can it be practical?” presented at the Optical Supercomputing, Second International Workshop, Bertinoro, Italy, November 2009.

Chattopadhyay, T.

T. Chattopadhyay, “All-optical cross-bar network architecture using TOAD based interferometric switch and using it to design reconfigurable logic unit,” Opt. Fiber Technol. (to be published).
[CrossRef]

de Vries, T.

A. A.-Mejia, K. A. Williams, T. de Vries, S. Smalbrugge, Y. S. Oei, M. K. Smit, and R. N. Nötzel, “Integrated 2×2 quantum dot optical crossbar switch in 1.55 μm wavelength range,” Electron. Lett. 45, 313–314 (2009).
[CrossRef]

Dolev, S.

H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photon. 4, 262–263 (2010).
[CrossRef]

Dong, J.

J. Dong, X. Zhang, and D. Huang, “A proposal for two-input arbitrary Boolean logic gates using single semiconductor optical amplifier by picosecond pulse injection,” Opt. Express 17, 7725–7730 (2009).
[CrossRef] [PubMed]

J. Xu, X. Zhang, Y. Zhang, J. Dong, D. Liu, and D. Huang, “Reconfigurable all-optical logic gates for multi-input differential phase-shift keying signals: design and experiments,” J. Lightwave Technol. 22, 5268–5275 (2009).

Fetterman, M. R.

M. R. Fetterman, “Design for high-speed optoelectronic Boolean logic,” IEEE Photon. Technol. Lett. 21, 1740–1742 (2009).
[CrossRef]

Ghelfi, P.

A. Bogoni, L. Poti, R. Proietti, G. Meloni, F. Ponzini, and P. Ghelfi, “Regenerative and reconfigurable all-optical logic gates for ultra-fast applications,” Electron. Lett. 41, 435–436(2005).
[CrossRef]

Han, S-K.

Hardy, J.

Hasegawa, T.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “40 Gbit/s XOR and AND gates using polarization switching within 1 m-long bismuth oxide-based nonlinear fiber,” Electron. Lett. 41, 1074–1075 (2005).
[CrossRef]

Houbavlis, T.

T. Houbavlis, K. E. Zoiros, G. Kanellos, and C. Tsekrekos, “Performance analysis of ultrafast all-optical Boolean XOR gate using semiconductor optical amplifier-based Mach-Zehnder interferometer,” Opt. Commun. 232, 179–199(2004).
[CrossRef]

Huang, D.

J. Dong, X. Zhang, and D. Huang, “A proposal for two-input arbitrary Boolean logic gates using single semiconductor optical amplifier by picosecond pulse injection,” Opt. Express 17, 7725–7730 (2009).
[CrossRef] [PubMed]

J. Xu, X. Zhang, Y. Zhang, J. Dong, D. Liu, and D. Huang, “Reconfigurable all-optical logic gates for multi-input differential phase-shift keying signals: design and experiments,” J. Lightwave Technol. 22, 5268–5275 (2009).

Ikeda, R.

Inoue, T.

Jeong, J.-M.

J.-M. Jeong and M. E. Marhic, “All-optical logic gates based on cross-phase modulation in a nonlinear fiber interferometer,” Opt. Commun. 85, 430–436 (1991).
[CrossRef]

Kanellos, G.

T. Houbavlis, K. E. Zoiros, G. Kanellos, and C. Tsekrekos, “Performance analysis of ultrafast all-optical Boolean XOR gate using semiconductor optical amplifier-based Mach-Zehnder interferometer,” Opt. Commun. 232, 179–199(2004).
[CrossRef]

Kang, J-M.

Kikuchi, K.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “40 Gbit/s XOR and AND gates using polarization switching within 1 m-long bismuth oxide-based nonlinear fiber,” Electron. Lett. 41, 1074–1075 (2005).
[CrossRef]

Kim, J-Y.

Kim, T-Y.

Kitayama, K.

Kwok, C. H.

Lai, D. M. F.

Lee, J. H.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “40 Gbit/s XOR and AND gates using polarization switching within 1 m-long bismuth oxide-based nonlinear fiber,” Electron. Lett. 41, 1074–1075 (2005).
[CrossRef]

Li, G.

Z. Li and G. Li, “Ultrahigh-speed reconfigurable logic gates based on four wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18, 1341–1343(2006).
[CrossRef]

Li, X.

J. Yang, X. Li, J. Yang, J. Liu, and X. Su, “Polarization-independent bidirectional 4×4 optical switch in free-space,” Opt. Laser Technol. 42, 927–933 (2010).
[CrossRef]

Li, Z.

Z. Li and G. Li, “Ultrahigh-speed reconfigurable logic gates based on four wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18, 1341–1343(2006).
[CrossRef]

Liu, D.

J. Xu, X. Zhang, Y. Zhang, J. Dong, D. Liu, and D. Huang, “Reconfigurable all-optical logic gates for multi-input differential phase-shift keying signals: design and experiments,” J. Lightwave Technol. 22, 5268–5275 (2009).

Liu, J.

J. Yang, X. Li, J. Yang, J. Liu, and X. Su, “Polarization-independent bidirectional 4×4 optical switch in free-space,” Opt. Laser Technol. 42, 927–933 (2010).
[CrossRef]

Malacarne, A.

G. Berrettini, S. Simi, A. Malacarne, A. Bogoni, and L. Poti, “Ultra-fast integrable and reconfigurable XOR, AND, NOR and NOT photonic logic gate,” IEEE Photon. Technol. Lett. 18, 917–919 (2006).
[CrossRef]

Manning, R. J.

R. P. Webb, R. J. Manning, G. D. Maxwell, and A. J. Poustie, “40 Gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer,” Electron. Lett. 39, 79–81(2003).
[CrossRef]

Marhic, M. E.

J.-M. Jeong and M. E. Marhic, “All-optical logic gates based on cross-phase modulation in a nonlinear fiber interferometer,” Opt. Commun. 85, 430–436 (1991).
[CrossRef]

Maxwell, G. D.

R. P. Webb, R. J. Manning, G. D. Maxwell, and A. J. Poustie, “40 Gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer,” Electron. Lett. 39, 79–81(2003).
[CrossRef]

Meloni, G.

G. Berrettini, G. Meloni, A. Bogoni, and L. Potì, “All-optical 2×2 switch based on kerr effect in highly nonlinear fiber for ultrafast applications,” IEEE Photon. Technol. Lett. 18, 2439–2441 (2006).
[CrossRef]

A. Bogoni, L. Poti, R. Proietti, G. Meloni, F. Ponzini, and P. Ghelfi, “Regenerative and reconfigurable all-optical logic gates for ultra-fast applications,” Electron. Lett. 41, 435–436(2005).
[CrossRef]

Miller, D. M.

R. Tomczuk and D. M. Miller, “Autocorrelation techniques for multi-bit decoder PLAs,” presented at the 22nd International Symposium on Multiple-Valued Logic, Sendai, Japan, 1992.
[CrossRef]

Miyoshi, Y.

Nagashima, T.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “40 Gbit/s XOR and AND gates using polarization switching within 1 m-long bismuth oxide-based nonlinear fiber,” Electron. Lett. 41, 1074–1075 (2005).
[CrossRef]

Namiki, S.

Nötzel, R. N.

A. A.-Mejia, K. A. Williams, T. de Vries, S. Smalbrugge, Y. S. Oei, M. K. Smit, and R. N. Nötzel, “Integrated 2×2 quantum dot optical crossbar switch in 1.55 μm wavelength range,” Electron. Lett. 45, 313–314 (2009).
[CrossRef]

Oei, Y. S.

A. A.-Mejia, K. A. Williams, T. de Vries, S. Smalbrugge, Y. S. Oei, M. K. Smit, and R. N. Nötzel, “Integrated 2×2 quantum dot optical crossbar switch in 1.55 μm wavelength range,” Electron. Lett. 45, 313–314 (2009).
[CrossRef]

Ohara, S.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “40 Gbit/s XOR and AND gates using polarization switching within 1 m-long bismuth oxide-based nonlinear fiber,” Electron. Lett. 41, 1074–1075 (2005).
[CrossRef]

Ponzini, F.

A. Bogoni, L. Poti, R. Proietti, G. Meloni, F. Ponzini, and P. Ghelfi, “Regenerative and reconfigurable all-optical logic gates for ultra-fast applications,” Electron. Lett. 41, 435–436(2005).
[CrossRef]

Poti, L.

G. Berrettini, S. Simi, A. Malacarne, A. Bogoni, and L. Poti, “Ultra-fast integrable and reconfigurable XOR, AND, NOR and NOT photonic logic gate,” IEEE Photon. Technol. Lett. 18, 917–919 (2006).
[CrossRef]

A. Bogoni, L. Poti, R. Proietti, G. Meloni, F. Ponzini, and P. Ghelfi, “Regenerative and reconfigurable all-optical logic gates for ultra-fast applications,” Electron. Lett. 41, 435–436(2005).
[CrossRef]

Potì, L.

G. Berrettini, G. Meloni, A. Bogoni, and L. Potì, “All-optical 2×2 switch based on kerr effect in highly nonlinear fiber for ultrafast applications,” IEEE Photon. Technol. Lett. 18, 2439–2441 (2006).
[CrossRef]

Poustie, A. J.

R. P. Webb, R. J. Manning, G. D. Maxwell, and A. J. Poustie, “40 Gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer,” Electron. Lett. 39, 79–81(2003).
[CrossRef]

Proietti, R.

A. Bogoni, L. Poti, R. Proietti, G. Meloni, F. Ponzini, and P. Ghelfi, “Regenerative and reconfigurable all-optical logic gates for ultra-fast applications,” Electron. Lett. 41, 435–436(2005).
[CrossRef]

Qian, L.

H. J. Caulfield, R. A. Soref, L. Qian, and A. Zavalin, “Generalized optical logic elements-GOLEs,” Opt. Commun. 271, 365–373 (2007).
[CrossRef]

Sasao, T.

T. Sasao, “Input variable assignment and output phase optimization of PLA’s,” IEEE Trans. Comput. C-33, 879–894 (1984).
[CrossRef]

T. Sasao, “Multiple-valued decomposition of generalized Boolean functions and the complexity of programmable logic arrays,” IEEE Trans. Comput. C-30, 635–643 (1981).
[CrossRef]

Shamir, J.

Shen, Z. Y.

Simi, S.

G. Berrettini, S. Simi, A. Malacarne, A. Bogoni, and L. Poti, “Ultra-fast integrable and reconfigurable XOR, AND, NOR and NOT photonic logic gate,” IEEE Photon. Technol. Lett. 18, 917–919 (2006).
[CrossRef]

Smalbrugge, S.

A. A.-Mejia, K. A. Williams, T. de Vries, S. Smalbrugge, Y. S. Oei, M. K. Smit, and R. N. Nötzel, “Integrated 2×2 quantum dot optical crossbar switch in 1.55 μm wavelength range,” Electron. Lett. 45, 313–314 (2009).
[CrossRef]

Smit, M. K.

A. A.-Mejia, K. A. Williams, T. de Vries, S. Smalbrugge, Y. S. Oei, M. K. Smit, and R. N. Nötzel, “Integrated 2×2 quantum dot optical crossbar switch in 1.55 μm wavelength range,” Electron. Lett. 45, 313–314 (2009).
[CrossRef]

Soref, R. A.

H. J. Caulfield, R. A. Soref, and C. S. Vikram, “Universal reconfigurable optical logic with silicon-on-insulator resonant structures,” Photon. Nanostr. Fundam. Appl. 5, 14–20 (2007).
[CrossRef]

H. J. Caulfield, R. A. Soref, L. Qian, and A. Zavalin, “Generalized optical logic elements-GOLEs,” Opt. Commun. 271, 365–373 (2007).
[CrossRef]

Su, X.

J. Yang, X. Li, J. Yang, J. Liu, and X. Su, “Polarization-independent bidirectional 4×4 optical switch in free-space,” Opt. Laser Technol. 42, 927–933 (2010).
[CrossRef]

Sugimoto, N.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “40 Gbit/s XOR and AND gates using polarization switching within 1 m-long bismuth oxide-based nonlinear fiber,” Electron. Lett. 41, 1074–1075 (2005).
[CrossRef]

Sun, J.

Sun, Q.

Suzuki, M.

M. Suzuki and H. Uenohara, “Investigation of all-optical error detection circuit using SOA-MZI based XOR gates at 10 Gbit/s,” Electron. Lett. 45, 224–225 (2009).
[CrossRef]

Tobioka, H.

Tomczuk, R.

R. Tomczuk and D. M. Miller, “Autocorrelation techniques for multi-bit decoder PLAs,” presented at the 22nd International Symposium on Multiple-Valued Logic, Sendai, Japan, 1992.
[CrossRef]

Tsekrekos, C.

T. Houbavlis, K. E. Zoiros, G. Kanellos, and C. Tsekrekos, “Performance analysis of ultrafast all-optical Boolean XOR gate using semiconductor optical amplifier-based Mach-Zehnder interferometer,” Opt. Commun. 232, 179–199(2004).
[CrossRef]

Uenohara, H.

M. Suzuki and H. Uenohara, “Investigation of all-optical error detection circuit using SOA-MZI based XOR gates at 10 Gbit/s,” Electron. Lett. 45, 224–225 (2009).
[CrossRef]

Vikram, C. S.

H. J. Caulfield, R. A. Soref, and C. S. Vikram, “Universal reconfigurable optical logic with silicon-on-insulator resonant structures,” Photon. Nanostr. Fundam. Appl. 5, 14–20 (2007).
[CrossRef]

Wang, J.

Webb, R. P.

R. P. Webb, R. J. Manning, G. D. Maxwell, and A. J. Poustie, “40 Gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer,” Electron. Lett. 39, 79–81(2003).
[CrossRef]

Williams, K. A.

A. A.-Mejia, K. A. Williams, T. de Vries, S. Smalbrugge, Y. S. Oei, M. K. Smit, and R. N. Nötzel, “Integrated 2×2 quantum dot optical crossbar switch in 1.55 μm wavelength range,” Electron. Lett. 45, 313–314 (2009).
[CrossRef]

Wong, K-Y.

Wu, L. L.

Xu, J.

J. Xu, X. Zhang, Y. Zhang, J. Dong, D. Liu, and D. Huang, “Reconfigurable all-optical logic gates for multi-input differential phase-shift keying signals: design and experiments,” J. Lightwave Technol. 22, 5268–5275 (2009).

Yang, J.

J. Yang, X. Li, J. Yang, J. Liu, and X. Su, “Polarization-independent bidirectional 4×4 optical switch in free-space,” Opt. Laser Technol. 42, 927–933 (2010).
[CrossRef]

J. Yang, X. Li, J. Yang, J. Liu, and X. Su, “Polarization-independent bidirectional 4×4 optical switch in free-space,” Opt. Laser Technol. 42, 927–933 (2010).
[CrossRef]

Zavalin, A.

H. J. Caulfield, R. A. Soref, L. Qian, and A. Zavalin, “Generalized optical logic elements-GOLEs,” Opt. Commun. 271, 365–373 (2007).
[CrossRef]

Zhang, X.

J. Dong, X. Zhang, and D. Huang, “A proposal for two-input arbitrary Boolean logic gates using single semiconductor optical amplifier by picosecond pulse injection,” Opt. Express 17, 7725–7730 (2009).
[CrossRef] [PubMed]

J. Xu, X. Zhang, Y. Zhang, J. Dong, D. Liu, and D. Huang, “Reconfigurable all-optical logic gates for multi-input differential phase-shift keying signals: design and experiments,” J. Lightwave Technol. 22, 5268–5275 (2009).

Zhang, Y.

J. Xu, X. Zhang, Y. Zhang, J. Dong, D. Liu, and D. Huang, “Reconfigurable all-optical logic gates for multi-input differential phase-shift keying signals: design and experiments,” J. Lightwave Technol. 22, 5268–5275 (2009).

Zoiros, K. E.

T. Houbavlis, K. E. Zoiros, G. Kanellos, and C. Tsekrekos, “Performance analysis of ultrafast all-optical Boolean XOR gate using semiconductor optical amplifier-based Mach-Zehnder interferometer,” Opt. Commun. 232, 179–199(2004).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (5)

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “40 Gbit/s XOR and AND gates using polarization switching within 1 m-long bismuth oxide-based nonlinear fiber,” Electron. Lett. 41, 1074–1075 (2005).
[CrossRef]

M. Suzuki and H. Uenohara, “Investigation of all-optical error detection circuit using SOA-MZI based XOR gates at 10 Gbit/s,” Electron. Lett. 45, 224–225 (2009).
[CrossRef]

A. Bogoni, L. Poti, R. Proietti, G. Meloni, F. Ponzini, and P. Ghelfi, “Regenerative and reconfigurable all-optical logic gates for ultra-fast applications,” Electron. Lett. 41, 435–436(2005).
[CrossRef]

R. P. Webb, R. J. Manning, G. D. Maxwell, and A. J. Poustie, “40 Gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer,” Electron. Lett. 39, 79–81(2003).
[CrossRef]

A. A.-Mejia, K. A. Williams, T. de Vries, S. Smalbrugge, Y. S. Oei, M. K. Smit, and R. N. Nötzel, “Integrated 2×2 quantum dot optical crossbar switch in 1.55 μm wavelength range,” Electron. Lett. 45, 313–314 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

G. Berrettini, G. Meloni, A. Bogoni, and L. Potì, “All-optical 2×2 switch based on kerr effect in highly nonlinear fiber for ultrafast applications,” IEEE Photon. Technol. Lett. 18, 2439–2441 (2006).
[CrossRef]

M. R. Fetterman, “Design for high-speed optoelectronic Boolean logic,” IEEE Photon. Technol. Lett. 21, 1740–1742 (2009).
[CrossRef]

Z. Li and G. Li, “Ultrahigh-speed reconfigurable logic gates based on four wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18, 1341–1343(2006).
[CrossRef]

G. Berrettini, S. Simi, A. Malacarne, A. Bogoni, and L. Poti, “Ultra-fast integrable and reconfigurable XOR, AND, NOR and NOT photonic logic gate,” IEEE Photon. Technol. Lett. 18, 917–919 (2006).
[CrossRef]

IEEE Trans. Comput. (2)

T. Sasao, “Multiple-valued decomposition of generalized Boolean functions and the complexity of programmable logic arrays,” IEEE Trans. Comput. C-30, 635–643 (1981).
[CrossRef]

T. Sasao, “Input variable assignment and output phase optimization of PLA’s,” IEEE Trans. Comput. C-33, 879–894 (1984).
[CrossRef]

J. Lightwave Technol. (2)

J. Xu, X. Zhang, Y. Zhang, J. Dong, D. Liu, and D. Huang, “Reconfigurable all-optical logic gates for multi-input differential phase-shift keying signals: design and experiments,” J. Lightwave Technol. 22, 5268–5275 (2009).

J-Y. Kim, J-M. Kang, T-Y. Kim, and S-K. Han, “All-optical multiple logic gates with XOR, NOR, OR and NAND functions using parallel SOA-MZI structures: theory and experiment,” J. Lightwave Technol. 24, 3392–3399 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Photon. (1)

H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photon. 4, 262–263 (2010).
[CrossRef]

Opt. Commun. (3)

T. Houbavlis, K. E. Zoiros, G. Kanellos, and C. Tsekrekos, “Performance analysis of ultrafast all-optical Boolean XOR gate using semiconductor optical amplifier-based Mach-Zehnder interferometer,” Opt. Commun. 232, 179–199(2004).
[CrossRef]

J.-M. Jeong and M. E. Marhic, “All-optical logic gates based on cross-phase modulation in a nonlinear fiber interferometer,” Opt. Commun. 85, 430–436 (1991).
[CrossRef]

H. J. Caulfield, R. A. Soref, L. Qian, and A. Zavalin, “Generalized optical logic elements-GOLEs,” Opt. Commun. 271, 365–373 (2007).
[CrossRef]

Opt. Express (4)

Opt. Fiber Technol. (1)

T. Chattopadhyay, “All-optical cross-bar network architecture using TOAD based interferometric switch and using it to design reconfigurable logic unit,” Opt. Fiber Technol. (to be published).
[CrossRef]

Opt. Laser Technol. (1)

J. Yang, X. Li, J. Yang, J. Liu, and X. Su, “Polarization-independent bidirectional 4×4 optical switch in free-space,” Opt. Laser Technol. 42, 927–933 (2010).
[CrossRef]

Photon. Nanostr. Fundam. Appl. (1)

H. J. Caulfield, R. A. Soref, and C. S. Vikram, “Universal reconfigurable optical logic with silicon-on-insulator resonant structures,” Photon. Nanostr. Fundam. Appl. 5, 14–20 (2007).
[CrossRef]

Phys. Expr. (1)

H. J. Caulfield, “Four barriers to understanding zero energy optical logic,” Phys. Expr. 1, 43–49 (2011).

Other (3)

H. J. Caulfield, “Zero-energy optical logic: can it be practical?” presented at the Optical Supercomputing, Second International Workshop, Bertinoro, Italy, November 2009.

R. Tomczuk and D. M. Miller, “Autocorrelation techniques for multi-bit decoder PLAs,” presented at the 22nd International Symposium on Multiple-Valued Logic, Sendai, Japan, 1992.
[CrossRef]

G. P. Agrwal, Applications of Nonlinear Fibre Optics(Academic, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

An idea for designing PBLU. CPLS: constant pulsed light source, O 2 = O 1 ¯ .

Fig. 2
Fig. 2

(a)  2 × 2 optical cross-bar switching proposed by Yang et al. PBS: polarizing beam splitter, PSLM: liquid crystal-phase spatial light modulators. (b) Schematic diagram of 2 × 2 cross-bar switching element.

Fig. 3
Fig. 3

Optical programmable logic unit (PBLU). CPLS: constant pulsed light source, comblike symbol: Mirror, /: Beam combiner.

Fig. 4
Fig. 4

Simulated waveform of the output “O1” of PBLU with the corresponding input A and B (in volts) according to the programming input (P, Q, R, S). Y axis denotes the output power (mW). X axis denotes the time (in μs ).

Fig. 5
Fig. 5

(a) Output (O1) insertion loss ( IL ) of PBLU with the corresponding programming input (P, Q, R, S) for different logical states of A and B. (a)  A = 0 , B = 0 ; (b)  A = 0 , B = 1 ; (c)  A = 1 , B = 0 ; (d)  A = 1 , B = 1 .

Fig. 6
Fig. 6

Output (O1) IL of PBLU for different logic operation.

Fig. 7
Fig. 7

n-variable complex logic operation by PBLU.

Tables (2)

Tables Icon

Table 1 Truth Table of 2 × 2 Optoelectronic Cross-Bar Switching Element

Tables Icon

Table 2 16 Boolean Logical Operations According to the Programming Input (P, Q, R, S) of Fig. 2 a

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

X = ( X · Z ¯ + Y · Z ) ,
Y = ( Y · Z ¯ + X · Z ) .
XT = 10 log ( P n t P t ) .
I . L . = 10 log ( P out P in ) .
P A ¯ ( t , a 1 , a 0 ) = 0.596 · P CPLS ( t ) · a 0 + 1.205 × 10 4 · P CPLS ( t ) · a 1 ,
P A ( t , a 1 , a 0 ) = 0.581 · P CPLS ( t ) · a 1 + 4.458 × 10 5 · P CPLS ( t ) · a 0 ,
P A ¯ B ( t , a 1 , a 0 , b 1 , b 0 ) = 0.543 · P A ¯ ( t , a 1 , a 0 ) · b 1 + 1.192 × 10 4 · P A ¯ ( t , a 1 , a 0 ) · b 0 ,
P A ¯ B ¯ ( t , a 1 , a 0 , b 1 , b 0 ) = 0.5596 · P A ¯ ( t , a 1 , a 0 ) · b 0 + 1.667 × 10 4 · P A ¯ ( t , a 1 , a 0 ) · b 1 ,
P A B ¯ ( t , a 1 , a 0 , b 1 , b 0 ) = 0.596 · P A ( t , a 1 , a 0 ) · b 0 + 1.205 × 10 4 · P A ( t , a 1 , a 0 ) · b 1 ,
P A B ( t , a 1 , a 0 , b 1 , b 0 ) = 0.581 · P A ( t , a 1 , a 0 ) · b 1 + 4.458 × 10 5 · P A ( t , a 1 , a 0 ) · b 0 ,
P W ( t , a 1 , a 0 , b 1 , b 0 , p 1 , p 0 ) = 0.581 · P A ¯ B ( t , a 1 , a 0 , b 1 , b 0 ) · p 1 + 4.458 × 10 5 · P A ¯ B ( t , a 1 , a 0 , b 1 , b 1 ) · p 0 ,
P X ( t , a 1 , a 0 , b 1 , b 0 , q 1 , q 0 ) = 0.581 · P A ¯ B ¯ ( t , a 1 , a 0 , b 1 , b 0 ) · q 1 + 4.458 × 10 5 · P A ¯ B ¯ ( t , a 1 , a 0 , b 1 , b 1 ) · q 0 ,
P Y ( t , a 1 , a 0 , b 1 , b 0 , r 1 , r 0 ) = 0.581 · P A B ¯ ( t , a 1 , a 0 , b 1 , b 0 ) · r 1 + 4.458 × 10 5 · P A B ¯ ( t , a 1 , a 0 , b 1 , b 1 ) · r 0 ,
P Z ( t , a 1 , a 0 , b 1 , b 0 , s 1 , s 0 ) = 0.581 · P A B ( t , a 1 , a 0 , b 1 , b 0 ) · s 1 + 4.458 × 10 5 · P A B ( t , a 1 , a 0 , b 1 , b 1 ) · s 0 .
P O 1 = P W + P X + P Y + P Z .
SNR = 20 log ( P mean 1 σ 1 ) ,

Metrics