Abstract

Through this paper we experimentally demonstrate the fabrication of a fiber Bragg grating (FBG) chemical sensor to detect and determine the manganese concentration in water and compare our results with sophisticated spectroscopic methods, such as atomic absorption spectrometry and the inductively coupled plasma method. Here we propose a simple method to develop a thin layer of gold nanoparticles above the etched grating region to enhance the sensitivity of the reflected spectrum of the FBG. By doing so, we achieve a sensitivity of 1.26nm/parts per million in determining the trace level of Mn in water. Proper reagents are used to detect manganese in water.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. APEC Water Systems, “FreeDrinkingWater.com,” http://www.freedrinkingwater.com/water_quality/chemical/water-problems-manganese.htm.
  2. M. M. Canavan, S. Cobb, and C. Srinker, “Chronic manganese poisoning,” Arch. Neurol. Psychiatry 32, 501–512 (1934).
  3. D. G. Cook, S. Fahn, and K. A. Brait, “Chronic manganese intoxication,” Arch. Neurol. 30, 59–64 (1974).
    [CrossRef] [PubMed]
  4. P. He, D. H. Liu, and G. Q. Zhang, “Effects of high-level manganese sewage irrigation on children’s neurobehavior,” Chin. J. Prev. Med. 28, 216–218 (1994).
  5. G. Zhang, D. Liu, and P. He, “Effects of manganese on learning abilities in school children,” Chin. J. Prev. Med. 29, 156–158(1995).
  6. X. Kondakis, N. Makris, M. Leotsinidis, M. Prinou, and T. Papapetroplous, “Possible health effects of high manganese concentration in drinking water,” Arch. Environ. Health 44, 175–178 (1989).
    [CrossRef] [PubMed]
  7. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
    [CrossRef]
  8. T. A. Berkoff and A. D. Kersey, “Experimental demonstration of fiber Bragg grating accelerometer,” IEEE Photon. Technol. Lett. 8, 1677–1679 (1996).
    [CrossRef]
  9. X. Dong, Y. Liu, Z. Liu, and X. Dong, “Simultaneous displacement and temperature measurement with cantilever based fiber Bragg grating sensor,” Opt. Commun. 192, 213–217 (2001).
    [CrossRef]
  10. M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, “Optical in fiber grating high pressure sensor,” Electron. Lett. 29, 398–399 (1993).
    [CrossRef]
  11. N. Takahashi, A. Hirose, and S. Takahashi, “Underwater acoustic sensor with fiber Bragg grating,” Opt. Rev. 4, 691–694(1997).
    [CrossRef]
  12. B. Zhou, A. P. Zhang, D. B. Gu, and S. He, “Cladding-mode-recoupling-based tilted fiber Bragg grating sensor with a core-diameter-mismatched fiber section,” IEEE Photon. J. 2, 152–157 (2010).
    [CrossRef]
  13. K. Zhou, X. Chen, L. Zhang, and I. Bennion, “High-sensitivity optical chemosensor based on etched D-fiber Bragg gratings,” Electron. Lett. 40, 232–233 (2004).
    [CrossRef]
  14. A. Ladicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5, 1288–1294 (2005).
    [CrossRef]
  15. D. A. Pereira, O. Frazzo, J. L. Santos, and I. P. Uose, “Fiber Bragg grating sensing system for simultaneous measurement of salinity and temperature,” Opt. Eng. 43, 299–304 (2004).
    [CrossRef]
  16. Y. Lin, W. Tsai, Y. Tsao, and J. Tai, “An enhanced optical multimode fiber sensor based on surface plasmon resonance with cascaded structure,” IEEE Photon. Technol. Lett. 20, 1287–1289 (2008).
    [CrossRef]
  17. J.-L. Tang and J.-N. Wang, “Chemical sensing sensitivity of long-period grating enhanced by colloidal gold nanoparticles,” Sensors 8, 171–184 (2008).
    [CrossRef]
  18. G. Nemova and R. Kashyap, “Novel fiber Bragg grating assisted plasmon-polariton for bio-medical refractive index sensors,” J. Mater. Sci. Mater. Electron. 18, 327–330(2007).
    [CrossRef]
  19. A. W. Snyder and J. D. Love, Optical Waveguide Theory(Chapman & Hall, 1983).
  20. H. Gua and S. Thao, “Silver nanoparticles doped silica nanocomposites coated on optical fiber for ammonia sensing,” Sens. Actuators B 123, 578–582 (2007).
    [CrossRef]
  21. I. Del Vellar, M. Achaerandio, I. R. Matias, and F. J. Arregui, “Deposition of overlays by electrostatic self-assembly in long-period fiber gratings,” Opt. Lett. 30, 720–722(2005).
    [CrossRef]
  22. A. Iadicicco, A. Cusano, G. V. Persiano, A. Cutolo, R. Bernini, and M. Fiordano, “Refractive index measurements by fiber Bragg grating sensor,” in Proceedings of IEEE Conference on Sensors (IEEE, 2003), pp. 101–105.

2010

B. Zhou, A. P. Zhang, D. B. Gu, and S. He, “Cladding-mode-recoupling-based tilted fiber Bragg grating sensor with a core-diameter-mismatched fiber section,” IEEE Photon. J. 2, 152–157 (2010).
[CrossRef]

2008

Y. Lin, W. Tsai, Y. Tsao, and J. Tai, “An enhanced optical multimode fiber sensor based on surface plasmon resonance with cascaded structure,” IEEE Photon. Technol. Lett. 20, 1287–1289 (2008).
[CrossRef]

J.-L. Tang and J.-N. Wang, “Chemical sensing sensitivity of long-period grating enhanced by colloidal gold nanoparticles,” Sensors 8, 171–184 (2008).
[CrossRef]

2007

G. Nemova and R. Kashyap, “Novel fiber Bragg grating assisted plasmon-polariton for bio-medical refractive index sensors,” J. Mater. Sci. Mater. Electron. 18, 327–330(2007).
[CrossRef]

H. Gua and S. Thao, “Silver nanoparticles doped silica nanocomposites coated on optical fiber for ammonia sensing,” Sens. Actuators B 123, 578–582 (2007).
[CrossRef]

2005

I. Del Vellar, M. Achaerandio, I. R. Matias, and F. J. Arregui, “Deposition of overlays by electrostatic self-assembly in long-period fiber gratings,” Opt. Lett. 30, 720–722(2005).
[CrossRef]

A. Ladicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5, 1288–1294 (2005).
[CrossRef]

2004

D. A. Pereira, O. Frazzo, J. L. Santos, and I. P. Uose, “Fiber Bragg grating sensing system for simultaneous measurement of salinity and temperature,” Opt. Eng. 43, 299–304 (2004).
[CrossRef]

K. Zhou, X. Chen, L. Zhang, and I. Bennion, “High-sensitivity optical chemosensor based on etched D-fiber Bragg gratings,” Electron. Lett. 40, 232–233 (2004).
[CrossRef]

2001

X. Dong, Y. Liu, Z. Liu, and X. Dong, “Simultaneous displacement and temperature measurement with cantilever based fiber Bragg grating sensor,” Opt. Commun. 192, 213–217 (2001).
[CrossRef]

1997

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[CrossRef]

N. Takahashi, A. Hirose, and S. Takahashi, “Underwater acoustic sensor with fiber Bragg grating,” Opt. Rev. 4, 691–694(1997).
[CrossRef]

1996

T. A. Berkoff and A. D. Kersey, “Experimental demonstration of fiber Bragg grating accelerometer,” IEEE Photon. Technol. Lett. 8, 1677–1679 (1996).
[CrossRef]

1995

G. Zhang, D. Liu, and P. He, “Effects of manganese on learning abilities in school children,” Chin. J. Prev. Med. 29, 156–158(1995).

1994

P. He, D. H. Liu, and G. Q. Zhang, “Effects of high-level manganese sewage irrigation on children’s neurobehavior,” Chin. J. Prev. Med. 28, 216–218 (1994).

1993

M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, “Optical in fiber grating high pressure sensor,” Electron. Lett. 29, 398–399 (1993).
[CrossRef]

1989

X. Kondakis, N. Makris, M. Leotsinidis, M. Prinou, and T. Papapetroplous, “Possible health effects of high manganese concentration in drinking water,” Arch. Environ. Health 44, 175–178 (1989).
[CrossRef] [PubMed]

1974

D. G. Cook, S. Fahn, and K. A. Brait, “Chronic manganese intoxication,” Arch. Neurol. 30, 59–64 (1974).
[CrossRef] [PubMed]

1934

M. M. Canavan, S. Cobb, and C. Srinker, “Chronic manganese poisoning,” Arch. Neurol. Psychiatry 32, 501–512 (1934).

Achaerandio, M.

Arregui, F. J.

Bennion, I.

K. Zhou, X. Chen, L. Zhang, and I. Bennion, “High-sensitivity optical chemosensor based on etched D-fiber Bragg gratings,” Electron. Lett. 40, 232–233 (2004).
[CrossRef]

Berkoff, T. A.

T. A. Berkoff and A. D. Kersey, “Experimental demonstration of fiber Bragg grating accelerometer,” IEEE Photon. Technol. Lett. 8, 1677–1679 (1996).
[CrossRef]

Bernini, R.

A. Iadicicco, A. Cusano, G. V. Persiano, A. Cutolo, R. Bernini, and M. Fiordano, “Refractive index measurements by fiber Bragg grating sensor,” in Proceedings of IEEE Conference on Sensors (IEEE, 2003), pp. 101–105.

Brait, K. A.

D. G. Cook, S. Fahn, and K. A. Brait, “Chronic manganese intoxication,” Arch. Neurol. 30, 59–64 (1974).
[CrossRef] [PubMed]

Campopiano, S.

A. Ladicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5, 1288–1294 (2005).
[CrossRef]

Canavan, M. M.

M. M. Canavan, S. Cobb, and C. Srinker, “Chronic manganese poisoning,” Arch. Neurol. Psychiatry 32, 501–512 (1934).

Chen, X.

K. Zhou, X. Chen, L. Zhang, and I. Bennion, “High-sensitivity optical chemosensor based on etched D-fiber Bragg gratings,” Electron. Lett. 40, 232–233 (2004).
[CrossRef]

Chow, Y. T.

M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, “Optical in fiber grating high pressure sensor,” Electron. Lett. 29, 398–399 (1993).
[CrossRef]

Cobb, S.

M. M. Canavan, S. Cobb, and C. Srinker, “Chronic manganese poisoning,” Arch. Neurol. Psychiatry 32, 501–512 (1934).

Cook, D. G.

D. G. Cook, S. Fahn, and K. A. Brait, “Chronic manganese intoxication,” Arch. Neurol. 30, 59–64 (1974).
[CrossRef] [PubMed]

Cusano, A.

A. Ladicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5, 1288–1294 (2005).
[CrossRef]

A. Iadicicco, A. Cusano, G. V. Persiano, A. Cutolo, R. Bernini, and M. Fiordano, “Refractive index measurements by fiber Bragg grating sensor,” in Proceedings of IEEE Conference on Sensors (IEEE, 2003), pp. 101–105.

Cutolo, A.

A. Ladicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5, 1288–1294 (2005).
[CrossRef]

A. Iadicicco, A. Cusano, G. V. Persiano, A. Cutolo, R. Bernini, and M. Fiordano, “Refractive index measurements by fiber Bragg grating sensor,” in Proceedings of IEEE Conference on Sensors (IEEE, 2003), pp. 101–105.

Dakin, J. P.

M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, “Optical in fiber grating high pressure sensor,” Electron. Lett. 29, 398–399 (1993).
[CrossRef]

Del Vellar, I.

Dong, X.

X. Dong, Y. Liu, Z. Liu, and X. Dong, “Simultaneous displacement and temperature measurement with cantilever based fiber Bragg grating sensor,” Opt. Commun. 192, 213–217 (2001).
[CrossRef]

X. Dong, Y. Liu, Z. Liu, and X. Dong, “Simultaneous displacement and temperature measurement with cantilever based fiber Bragg grating sensor,” Opt. Commun. 192, 213–217 (2001).
[CrossRef]

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[CrossRef]

Fahn, S.

D. G. Cook, S. Fahn, and K. A. Brait, “Chronic manganese intoxication,” Arch. Neurol. 30, 59–64 (1974).
[CrossRef] [PubMed]

Fiordano, M.

A. Iadicicco, A. Cusano, G. V. Persiano, A. Cutolo, R. Bernini, and M. Fiordano, “Refractive index measurements by fiber Bragg grating sensor,” in Proceedings of IEEE Conference on Sensors (IEEE, 2003), pp. 101–105.

Frazzo, O.

D. A. Pereira, O. Frazzo, J. L. Santos, and I. P. Uose, “Fiber Bragg grating sensing system for simultaneous measurement of salinity and temperature,” Opt. Eng. 43, 299–304 (2004).
[CrossRef]

Giordano, M.

A. Ladicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5, 1288–1294 (2005).
[CrossRef]

Gu, D. B.

B. Zhou, A. P. Zhang, D. B. Gu, and S. He, “Cladding-mode-recoupling-based tilted fiber Bragg grating sensor with a core-diameter-mismatched fiber section,” IEEE Photon. J. 2, 152–157 (2010).
[CrossRef]

Gua, H.

H. Gua and S. Thao, “Silver nanoparticles doped silica nanocomposites coated on optical fiber for ammonia sensing,” Sens. Actuators B 123, 578–582 (2007).
[CrossRef]

He, P.

G. Zhang, D. Liu, and P. He, “Effects of manganese on learning abilities in school children,” Chin. J. Prev. Med. 29, 156–158(1995).

P. He, D. H. Liu, and G. Q. Zhang, “Effects of high-level manganese sewage irrigation on children’s neurobehavior,” Chin. J. Prev. Med. 28, 216–218 (1994).

He, S.

B. Zhou, A. P. Zhang, D. B. Gu, and S. He, “Cladding-mode-recoupling-based tilted fiber Bragg grating sensor with a core-diameter-mismatched fiber section,” IEEE Photon. J. 2, 152–157 (2010).
[CrossRef]

Hirose, A.

N. Takahashi, A. Hirose, and S. Takahashi, “Underwater acoustic sensor with fiber Bragg grating,” Opt. Rev. 4, 691–694(1997).
[CrossRef]

Iadicicco, A.

A. Iadicicco, A. Cusano, G. V. Persiano, A. Cutolo, R. Bernini, and M. Fiordano, “Refractive index measurements by fiber Bragg grating sensor,” in Proceedings of IEEE Conference on Sensors (IEEE, 2003), pp. 101–105.

Kashyap, R.

G. Nemova and R. Kashyap, “Novel fiber Bragg grating assisted plasmon-polariton for bio-medical refractive index sensors,” J. Mater. Sci. Mater. Electron. 18, 327–330(2007).
[CrossRef]

Kersey, A. D.

T. A. Berkoff and A. D. Kersey, “Experimental demonstration of fiber Bragg grating accelerometer,” IEEE Photon. Technol. Lett. 8, 1677–1679 (1996).
[CrossRef]

Kondakis, X.

X. Kondakis, N. Makris, M. Leotsinidis, M. Prinou, and T. Papapetroplous, “Possible health effects of high manganese concentration in drinking water,” Arch. Environ. Health 44, 175–178 (1989).
[CrossRef] [PubMed]

Ladicicco, A.

A. Ladicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5, 1288–1294 (2005).
[CrossRef]

Leotsinidis, M.

X. Kondakis, N. Makris, M. Leotsinidis, M. Prinou, and T. Papapetroplous, “Possible health effects of high manganese concentration in drinking water,” Arch. Environ. Health 44, 175–178 (1989).
[CrossRef] [PubMed]

Lin, Y.

Y. Lin, W. Tsai, Y. Tsao, and J. Tai, “An enhanced optical multimode fiber sensor based on surface plasmon resonance with cascaded structure,” IEEE Photon. Technol. Lett. 20, 1287–1289 (2008).
[CrossRef]

Liu, D.

G. Zhang, D. Liu, and P. He, “Effects of manganese on learning abilities in school children,” Chin. J. Prev. Med. 29, 156–158(1995).

Liu, D. H.

P. He, D. H. Liu, and G. Q. Zhang, “Effects of high-level manganese sewage irrigation on children’s neurobehavior,” Chin. J. Prev. Med. 28, 216–218 (1994).

Liu, Y.

X. Dong, Y. Liu, Z. Liu, and X. Dong, “Simultaneous displacement and temperature measurement with cantilever based fiber Bragg grating sensor,” Opt. Commun. 192, 213–217 (2001).
[CrossRef]

Liu, Z.

X. Dong, Y. Liu, Z. Liu, and X. Dong, “Simultaneous displacement and temperature measurement with cantilever based fiber Bragg grating sensor,” Opt. Commun. 192, 213–217 (2001).
[CrossRef]

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory(Chapman & Hall, 1983).

Makris, N.

X. Kondakis, N. Makris, M. Leotsinidis, M. Prinou, and T. Papapetroplous, “Possible health effects of high manganese concentration in drinking water,” Arch. Environ. Health 44, 175–178 (1989).
[CrossRef] [PubMed]

Matias, I. R.

Nemova, G.

G. Nemova and R. Kashyap, “Novel fiber Bragg grating assisted plasmon-polariton for bio-medical refractive index sensors,” J. Mater. Sci. Mater. Electron. 18, 327–330(2007).
[CrossRef]

Papapetroplous, T.

X. Kondakis, N. Makris, M. Leotsinidis, M. Prinou, and T. Papapetroplous, “Possible health effects of high manganese concentration in drinking water,” Arch. Environ. Health 44, 175–178 (1989).
[CrossRef] [PubMed]

Pereira, D. A.

D. A. Pereira, O. Frazzo, J. L. Santos, and I. P. Uose, “Fiber Bragg grating sensing system for simultaneous measurement of salinity and temperature,” Opt. Eng. 43, 299–304 (2004).
[CrossRef]

Persiano, G. V.

A. Iadicicco, A. Cusano, G. V. Persiano, A. Cutolo, R. Bernini, and M. Fiordano, “Refractive index measurements by fiber Bragg grating sensor,” in Proceedings of IEEE Conference on Sensors (IEEE, 2003), pp. 101–105.

Prinou, M.

X. Kondakis, N. Makris, M. Leotsinidis, M. Prinou, and T. Papapetroplous, “Possible health effects of high manganese concentration in drinking water,” Arch. Environ. Health 44, 175–178 (1989).
[CrossRef] [PubMed]

Reekie, L.

M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, “Optical in fiber grating high pressure sensor,” Electron. Lett. 29, 398–399 (1993).
[CrossRef]

Santos, J. L.

D. A. Pereira, O. Frazzo, J. L. Santos, and I. P. Uose, “Fiber Bragg grating sensing system for simultaneous measurement of salinity and temperature,” Opt. Eng. 43, 299–304 (2004).
[CrossRef]

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory(Chapman & Hall, 1983).

Srinker, C.

M. M. Canavan, S. Cobb, and C. Srinker, “Chronic manganese poisoning,” Arch. Neurol. Psychiatry 32, 501–512 (1934).

Tai, J.

Y. Lin, W. Tsai, Y. Tsao, and J. Tai, “An enhanced optical multimode fiber sensor based on surface plasmon resonance with cascaded structure,” IEEE Photon. Technol. Lett. 20, 1287–1289 (2008).
[CrossRef]

Takahashi, N.

N. Takahashi, A. Hirose, and S. Takahashi, “Underwater acoustic sensor with fiber Bragg grating,” Opt. Rev. 4, 691–694(1997).
[CrossRef]

Takahashi, S.

N. Takahashi, A. Hirose, and S. Takahashi, “Underwater acoustic sensor with fiber Bragg grating,” Opt. Rev. 4, 691–694(1997).
[CrossRef]

Tang, J.-L.

J.-L. Tang and J.-N. Wang, “Chemical sensing sensitivity of long-period grating enhanced by colloidal gold nanoparticles,” Sensors 8, 171–184 (2008).
[CrossRef]

Thao, S.

H. Gua and S. Thao, “Silver nanoparticles doped silica nanocomposites coated on optical fiber for ammonia sensing,” Sens. Actuators B 123, 578–582 (2007).
[CrossRef]

Tsai, W.

Y. Lin, W. Tsai, Y. Tsao, and J. Tai, “An enhanced optical multimode fiber sensor based on surface plasmon resonance with cascaded structure,” IEEE Photon. Technol. Lett. 20, 1287–1289 (2008).
[CrossRef]

Tsao, Y.

Y. Lin, W. Tsai, Y. Tsao, and J. Tai, “An enhanced optical multimode fiber sensor based on surface plasmon resonance with cascaded structure,” IEEE Photon. Technol. Lett. 20, 1287–1289 (2008).
[CrossRef]

Uose, I. P.

D. A. Pereira, O. Frazzo, J. L. Santos, and I. P. Uose, “Fiber Bragg grating sensing system for simultaneous measurement of salinity and temperature,” Opt. Eng. 43, 299–304 (2004).
[CrossRef]

Wang, J.-N.

J.-L. Tang and J.-N. Wang, “Chemical sensing sensitivity of long-period grating enhanced by colloidal gold nanoparticles,” Sensors 8, 171–184 (2008).
[CrossRef]

Xu, M. G.

M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, “Optical in fiber grating high pressure sensor,” Electron. Lett. 29, 398–399 (1993).
[CrossRef]

Zhang, A. P.

B. Zhou, A. P. Zhang, D. B. Gu, and S. He, “Cladding-mode-recoupling-based tilted fiber Bragg grating sensor with a core-diameter-mismatched fiber section,” IEEE Photon. J. 2, 152–157 (2010).
[CrossRef]

Zhang, G.

G. Zhang, D. Liu, and P. He, “Effects of manganese on learning abilities in school children,” Chin. J. Prev. Med. 29, 156–158(1995).

Zhang, G. Q.

P. He, D. H. Liu, and G. Q. Zhang, “Effects of high-level manganese sewage irrigation on children’s neurobehavior,” Chin. J. Prev. Med. 28, 216–218 (1994).

Zhang, L.

K. Zhou, X. Chen, L. Zhang, and I. Bennion, “High-sensitivity optical chemosensor based on etched D-fiber Bragg gratings,” Electron. Lett. 40, 232–233 (2004).
[CrossRef]

Zhou, B.

B. Zhou, A. P. Zhang, D. B. Gu, and S. He, “Cladding-mode-recoupling-based tilted fiber Bragg grating sensor with a core-diameter-mismatched fiber section,” IEEE Photon. J. 2, 152–157 (2010).
[CrossRef]

Zhou, K.

K. Zhou, X. Chen, L. Zhang, and I. Bennion, “High-sensitivity optical chemosensor based on etched D-fiber Bragg gratings,” Electron. Lett. 40, 232–233 (2004).
[CrossRef]

Arch. Environ. Health

X. Kondakis, N. Makris, M. Leotsinidis, M. Prinou, and T. Papapetroplous, “Possible health effects of high manganese concentration in drinking water,” Arch. Environ. Health 44, 175–178 (1989).
[CrossRef] [PubMed]

Arch. Neurol.

D. G. Cook, S. Fahn, and K. A. Brait, “Chronic manganese intoxication,” Arch. Neurol. 30, 59–64 (1974).
[CrossRef] [PubMed]

Arch. Neurol. Psychiatry

M. M. Canavan, S. Cobb, and C. Srinker, “Chronic manganese poisoning,” Arch. Neurol. Psychiatry 32, 501–512 (1934).

Chin. J. Prev. Med.

P. He, D. H. Liu, and G. Q. Zhang, “Effects of high-level manganese sewage irrigation on children’s neurobehavior,” Chin. J. Prev. Med. 28, 216–218 (1994).

G. Zhang, D. Liu, and P. He, “Effects of manganese on learning abilities in school children,” Chin. J. Prev. Med. 29, 156–158(1995).

Electron. Lett.

M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, “Optical in fiber grating high pressure sensor,” Electron. Lett. 29, 398–399 (1993).
[CrossRef]

K. Zhou, X. Chen, L. Zhang, and I. Bennion, “High-sensitivity optical chemosensor based on etched D-fiber Bragg gratings,” Electron. Lett. 40, 232–233 (2004).
[CrossRef]

IEEE Photon. J.

B. Zhou, A. P. Zhang, D. B. Gu, and S. He, “Cladding-mode-recoupling-based tilted fiber Bragg grating sensor with a core-diameter-mismatched fiber section,” IEEE Photon. J. 2, 152–157 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. Lin, W. Tsai, Y. Tsao, and J. Tai, “An enhanced optical multimode fiber sensor based on surface plasmon resonance with cascaded structure,” IEEE Photon. Technol. Lett. 20, 1287–1289 (2008).
[CrossRef]

T. A. Berkoff and A. D. Kersey, “Experimental demonstration of fiber Bragg grating accelerometer,” IEEE Photon. Technol. Lett. 8, 1677–1679 (1996).
[CrossRef]

IEEE Sens. J.

A. Ladicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5, 1288–1294 (2005).
[CrossRef]

J. Lightwave Technol.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[CrossRef]

J. Mater. Sci. Mater. Electron.

G. Nemova and R. Kashyap, “Novel fiber Bragg grating assisted plasmon-polariton for bio-medical refractive index sensors,” J. Mater. Sci. Mater. Electron. 18, 327–330(2007).
[CrossRef]

Opt. Commun.

X. Dong, Y. Liu, Z. Liu, and X. Dong, “Simultaneous displacement and temperature measurement with cantilever based fiber Bragg grating sensor,” Opt. Commun. 192, 213–217 (2001).
[CrossRef]

Opt. Eng.

D. A. Pereira, O. Frazzo, J. L. Santos, and I. P. Uose, “Fiber Bragg grating sensing system for simultaneous measurement of salinity and temperature,” Opt. Eng. 43, 299–304 (2004).
[CrossRef]

Opt. Lett.

Opt. Rev.

N. Takahashi, A. Hirose, and S. Takahashi, “Underwater acoustic sensor with fiber Bragg grating,” Opt. Rev. 4, 691–694(1997).
[CrossRef]

Sens. Actuators B

H. Gua and S. Thao, “Silver nanoparticles doped silica nanocomposites coated on optical fiber for ammonia sensing,” Sens. Actuators B 123, 578–582 (2007).
[CrossRef]

Sensors

J.-L. Tang and J.-N. Wang, “Chemical sensing sensitivity of long-period grating enhanced by colloidal gold nanoparticles,” Sensors 8, 171–184 (2008).
[CrossRef]

Other

A. W. Snyder and J. D. Love, Optical Waveguide Theory(Chapman & Hall, 1983).

APEC Water Systems, “FreeDrinkingWater.com,” http://www.freedrinkingwater.com/water_quality/chemical/water-problems-manganese.htm.

A. Iadicicco, A. Cusano, G. V. Persiano, A. Cutolo, R. Bernini, and M. Fiordano, “Refractive index measurements by fiber Bragg grating sensor,” in Proceedings of IEEE Conference on Sensors (IEEE, 2003), pp. 101–105.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Phase mask setup for formation of grating.

Fig. 2
Fig. 2

Reflected spectrum of FBG.

Fig. 3
Fig. 3

Shift of Bragg wavelength during etching.

Fig. 4
Fig. 4

Schematic of cladding etched above the grating region.

Fig. 5
Fig. 5

(a) TEM image of Au nanoparticles. (b) SEM image of Au nanoparticles.

Fig. 6
Fig. 6

Experimental setup.

Fig. 7
Fig. 7

FBG reflected spectra for concentrations of Mn solution.

Fig. 8
Fig. 8

Wavelength shift versus concentration of Mn solution.

Fig. 9
Fig. 9

Wavelength difference versus concentration.

Tables (2)

Tables Icon

Table 1 Characterization of the FBG

Tables Icon

Table 2 Concentration of Mn in Test Sample as Measured Using Different Techniques

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

λ B = 2 n eff Λ ,
β = β 0 + k η p ( n sur n cld ) ,
η p = A p ψ 2 d A A ψ 2 d A .
β 2 β 1 = k ( η p 1 η p 2 ) ( n sur n cld ) .
n eff = n η ,
λ B = 2 Λ n eff = 2 Λ n η .
λ B = 2 Λ n eff .
λ B = 2 Λ η po ( n sur n cl ) .

Metrics