Abstract

We report a hemispherical-shaped hyperlens with subwavelength resolution less than 100nm. Simulations with the finite-element method show that with a 365nm illumination, the hemispherical hyperlens isotropically magnifies the image along the radial direction. Under linearly polarized light, portions of an object can be resolved. A complete image of the object can be generated by superposing sufficient number of images obtained with incident light in different polarization directions. Such a hyperlens has great potential for realization of nanoscale imaging.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Abbe, “Beiträge zur Theorie des Mikroskops und der Mikroskopischen Wahrnehmung,” Archiv f. Mikrosk. Anatomie 9, 413–418 (1873).
    [CrossRef]
  2. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier—optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
    [CrossRef] [PubMed]
  3. J. B. Pendry and S. A. Ramakrishna, “Focusing light using negative refraction,” J. Phys. 15, 6345–6364 (2003).
    [CrossRef]
  4. V. Podolskiy and E. E. Narimanov, “Near-sighted superlens,” Opt. Lett. 30, 75–77 (2005).
    [CrossRef] [PubMed]
  5. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006).
    [CrossRef] [PubMed]
  6. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74, 075103 (2006).
    [CrossRef]
  7. I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315, 1699–1701(2007).
    [CrossRef] [PubMed]
  8. C. C. Yan, D. H. Zhang, and D. D. Li, “Spherical metallic nanoparticle arrays for super-resolution imaging,” J. Appl. Phys. 109, 063105 (2011).
    [CrossRef]
  9. C. C. Yan, D. H. Zhang, Y. Zhang, D. D. Li, and M. A. Fiddy, “Metal–dielectric composite metamaterials for beam splitting and deep sub-wavelength resolution in the far field for visible wavelengths,” Opt. Express 18, 14794–14801 (2010).
    [CrossRef] [PubMed]
  10. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
    [CrossRef] [PubMed]
  11. J. T. Shen and P. M. Platzman, “Near-field imaging with negative dielectric constant lenses,” Appl. Phys. Lett. 80, 3286–3288 (2002).
    [CrossRef]
  12. N. Lagarkov and V. N. Kissel, “Near-perfect imaging in a focusing system based on a left-handed-material plate,” Phys. Rev. Lett. 92, 077401 (2004).
    [CrossRef] [PubMed]
  13. S. A. Ramakrishna, J. B. Pendry, D. Schurig, D. R. Smith, and S. Schultz, “The asymmetric lossy near-perfect lens,” J. Mod. Opt. 49, 1747–1762 (2002).
    [CrossRef]
  14. S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photon. 3, 388–394(2009).
    [CrossRef]
  15. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub–diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
    [CrossRef] [PubMed]
  16. X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7, 435–441 (2008).
    [CrossRef] [PubMed]
  17. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Semiclassical theory of the hyperlens,” J. Opt. Soc. Am. A 24, A52–A59(2007).
    [CrossRef]
  18. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686–1687 (2007).
    [CrossRef] [PubMed]
  19. H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, “Development of optical hyperlens for imaging below the diffraction limit,” Opt. Express 15, 15886–15891 (2007).
    [CrossRef] [PubMed]
  20. J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
    [CrossRef]
  21. D. R. Lide, Handbook of Chemistry and Physics (CRC Press, 2002).
  22. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  23. M. J. Weber, Handbook of Optical Materials (CRC Press, 2003).
  24. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).

2011 (1)

C. C. Yan, D. H. Zhang, and D. D. Li, “Spherical metallic nanoparticle arrays for super-resolution imaging,” J. Appl. Phys. 109, 063105 (2011).
[CrossRef]

2010 (2)

C. C. Yan, D. H. Zhang, Y. Zhang, D. D. Li, and M. A. Fiddy, “Metal–dielectric composite metamaterials for beam splitting and deep sub-wavelength resolution in the far field for visible wavelengths,” Opt. Express 18, 14794–14801 (2010).
[CrossRef] [PubMed]

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
[CrossRef]

2009 (1)

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photon. 3, 388–394(2009).
[CrossRef]

2008 (1)

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7, 435–441 (2008).
[CrossRef] [PubMed]

2007 (4)

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Semiclassical theory of the hyperlens,” J. Opt. Soc. Am. A 24, A52–A59(2007).
[CrossRef]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686–1687 (2007).
[CrossRef] [PubMed]

H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, “Development of optical hyperlens for imaging below the diffraction limit,” Opt. Express 15, 15886–15891 (2007).
[CrossRef] [PubMed]

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315, 1699–1701(2007).
[CrossRef] [PubMed]

2006 (2)

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006).
[CrossRef] [PubMed]

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74, 075103 (2006).
[CrossRef]

2005 (2)

V. Podolskiy and E. E. Narimanov, “Near-sighted superlens,” Opt. Lett. 30, 75–77 (2005).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub–diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef] [PubMed]

2004 (1)

N. Lagarkov and V. N. Kissel, “Near-perfect imaging in a focusing system based on a left-handed-material plate,” Phys. Rev. Lett. 92, 077401 (2004).
[CrossRef] [PubMed]

2003 (1)

J. B. Pendry and S. A. Ramakrishna, “Focusing light using negative refraction,” J. Phys. 15, 6345–6364 (2003).
[CrossRef]

2002 (2)

S. A. Ramakrishna, J. B. Pendry, D. Schurig, D. R. Smith, and S. Schultz, “The asymmetric lossy near-perfect lens,” J. Mod. Opt. 49, 1747–1762 (2002).
[CrossRef]

J. T. Shen and P. M. Platzman, “Near-field imaging with negative dielectric constant lenses,” Appl. Phys. Lett. 80, 3286–3288 (2002).
[CrossRef]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef] [PubMed]

1991 (1)

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier—optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

1873 (1)

E. Abbe, “Beiträge zur Theorie des Mikroskops und der Mikroskopischen Wahrnehmung,” Archiv f. Mikrosk. Anatomie 9, 413–418 (1873).
[CrossRef]

Abbe, E.

E. Abbe, “Beiträge zur Theorie des Mikroskops und der Mikroskopischen Wahrnehmung,” Archiv f. Mikrosk. Anatomie 9, 413–418 (1873).
[CrossRef]

Alekseyev, L. V.

Bartal, G.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
[CrossRef]

Betzig, E.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier—optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Choi, H.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Davis, C. C.

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315, 1699–1701(2007).
[CrossRef] [PubMed]

Engheta, N.

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74, 075103 (2006).
[CrossRef]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub–diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef] [PubMed]

Fiddy, M. A.

Harris, T. D.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier—optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Hung, Y. J.

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315, 1699–1701(2007).
[CrossRef] [PubMed]

Inouye, Y.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photon. 3, 388–394(2009).
[CrossRef]

Jacob, Z.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Kawata, S.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photon. 3, 388–394(2009).
[CrossRef]

Kissel, V. N.

N. Lagarkov and V. N. Kissel, “Near-perfect imaging in a focusing system based on a left-handed-material plate,” Phys. Rev. Lett. 92, 077401 (2004).
[CrossRef] [PubMed]

Kostelak, R. L.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier—optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Lagarkov, N.

N. Lagarkov and V. N. Kissel, “Near-perfect imaging in a focusing system based on a left-handed-material plate,” Phys. Rev. Lett. 92, 077401 (2004).
[CrossRef] [PubMed]

Lee, H.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686–1687 (2007).
[CrossRef] [PubMed]

H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, “Development of optical hyperlens for imaging below the diffraction limit,” Opt. Express 15, 15886–15891 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub–diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef] [PubMed]

Li, D. D.

Lide, D. R.

D. R. Lide, Handbook of Chemistry and Physics (CRC Press, 2002).

Liu, Z.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
[CrossRef]

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7, 435–441 (2008).
[CrossRef] [PubMed]

H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, “Development of optical hyperlens for imaging below the diffraction limit,” Opt. Express 15, 15886–15891 (2007).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686–1687 (2007).
[CrossRef] [PubMed]

Narimanov, E.

Narimanov, E. E.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).

Pendry, J. B.

J. B. Pendry and S. A. Ramakrishna, “Focusing light using negative refraction,” J. Phys. 15, 6345–6364 (2003).
[CrossRef]

S. A. Ramakrishna, J. B. Pendry, D. Schurig, D. R. Smith, and S. Schultz, “The asymmetric lossy near-perfect lens,” J. Mod. Opt. 49, 1747–1762 (2002).
[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef] [PubMed]

Platzman, P. M.

J. T. Shen and P. M. Platzman, “Near-field imaging with negative dielectric constant lenses,” Appl. Phys. Lett. 80, 3286–3288 (2002).
[CrossRef]

Podolskiy, V.

Ramakrishna, S. A.

J. B. Pendry and S. A. Ramakrishna, “Focusing light using negative refraction,” J. Phys. 15, 6345–6364 (2003).
[CrossRef]

S. A. Ramakrishna, J. B. Pendry, D. Schurig, D. R. Smith, and S. Schultz, “The asymmetric lossy near-perfect lens,” J. Mod. Opt. 49, 1747–1762 (2002).
[CrossRef]

Rho, J.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
[CrossRef]

Salandrino, A.

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74, 075103 (2006).
[CrossRef]

Schultz, S.

S. A. Ramakrishna, J. B. Pendry, D. Schurig, D. R. Smith, and S. Schultz, “The asymmetric lossy near-perfect lens,” J. Mod. Opt. 49, 1747–1762 (2002).
[CrossRef]

Schurig, D.

S. A. Ramakrishna, J. B. Pendry, D. Schurig, D. R. Smith, and S. Schultz, “The asymmetric lossy near-perfect lens,” J. Mod. Opt. 49, 1747–1762 (2002).
[CrossRef]

Shen, J. T.

J. T. Shen and P. M. Platzman, “Near-field imaging with negative dielectric constant lenses,” Appl. Phys. Lett. 80, 3286–3288 (2002).
[CrossRef]

Smith, D. R.

S. A. Ramakrishna, J. B. Pendry, D. Schurig, D. R. Smith, and S. Schultz, “The asymmetric lossy near-perfect lens,” J. Mod. Opt. 49, 1747–1762 (2002).
[CrossRef]

Smolyaninov, I. I.

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315, 1699–1701(2007).
[CrossRef] [PubMed]

Sun, C.

H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, “Development of optical hyperlens for imaging below the diffraction limit,” Opt. Express 15, 15886–15891 (2007).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686–1687 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub–diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef] [PubMed]

Trautman, J. K.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier—optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Verma, P.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photon. 3, 388–394(2009).
[CrossRef]

Weber, M. J.

M. J. Weber, Handbook of Optical Materials (CRC Press, 2003).

Weiner, J. S.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier—optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Xiong, Y.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
[CrossRef]

H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, “Development of optical hyperlens for imaging below the diffraction limit,” Opt. Express 15, 15886–15891 (2007).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686–1687 (2007).
[CrossRef] [PubMed]

Yan, C. C.

Ye, Z.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
[CrossRef]

Yin, X.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
[CrossRef]

Zhang, D. H.

Zhang, X.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
[CrossRef]

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7, 435–441 (2008).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686–1687 (2007).
[CrossRef] [PubMed]

H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, “Development of optical hyperlens for imaging below the diffraction limit,” Opt. Express 15, 15886–15891 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub–diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef] [PubMed]

Zhang, Y.

Appl. Phys. Lett. (1)

J. T. Shen and P. M. Platzman, “Near-field imaging with negative dielectric constant lenses,” Appl. Phys. Lett. 80, 3286–3288 (2002).
[CrossRef]

Archiv f. Mikrosk. Anatomie (1)

E. Abbe, “Beiträge zur Theorie des Mikroskops und der Mikroskopischen Wahrnehmung,” Archiv f. Mikrosk. Anatomie 9, 413–418 (1873).
[CrossRef]

J. Appl. Phys. (1)

C. C. Yan, D. H. Zhang, and D. D. Li, “Spherical metallic nanoparticle arrays for super-resolution imaging,” J. Appl. Phys. 109, 063105 (2011).
[CrossRef]

J. Mod. Opt. (1)

S. A. Ramakrishna, J. B. Pendry, D. Schurig, D. R. Smith, and S. Schultz, “The asymmetric lossy near-perfect lens,” J. Mod. Opt. 49, 1747–1762 (2002).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. (1)

J. B. Pendry and S. A. Ramakrishna, “Focusing light using negative refraction,” J. Phys. 15, 6345–6364 (2003).
[CrossRef]

Nat. Commun. (1)

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
[CrossRef]

Nat. Mater. (1)

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7, 435–441 (2008).
[CrossRef] [PubMed]

Nat. Photon. (1)

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photon. 3, 388–394(2009).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (2)

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74, 075103 (2006).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett. (2)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef] [PubMed]

N. Lagarkov and V. N. Kissel, “Near-perfect imaging in a focusing system based on a left-handed-material plate,” Phys. Rev. Lett. 92, 077401 (2004).
[CrossRef] [PubMed]

Science (4)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub–diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686–1687 (2007).
[CrossRef] [PubMed]

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315, 1699–1701(2007).
[CrossRef] [PubMed]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier—optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Other (3)

M. J. Weber, Handbook of Optical Materials (CRC Press, 2003).

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).

D. R. Lide, Handbook of Chemistry and Physics (CRC Press, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Geometry of the hemispherical hyperlens embedded in a quartz substrate. The illustrated hemispherical hyperlens consists of six Ag - Al 2 O 3 layers embedded in a quartz substrate. The top and the inner shell are covered with a mask layer made up of Cr, and an annular slit is opened at the inner shell.

Fig. 2
Fig. 2

Image of an annular slit formed at z = 440 nm under 365 nm light illumination: (a) with the electric field along the positive x-axis direction from the three-dimensional view; (b) image in Fig. 2a from the two-dimensional view; (c) with the electric field 22.5 ° from the positive x-axis direction; (d) with the electric field 45 ° from the positive x-axis direction; (e) with the electric field along the y-axis direction; and (f) with the electric field 135 ° from the positive x-axis direction.

Fig. 3
Fig. 3

Superposition of images (a) obtained with the electric field along the x axis and y axis; (b) obtained with the electric field along the x axis, 45 ° from the positive x axis, y axis; (c) obtained with the electric field along the x axis, 45 ° from the positive x axis, y axis, and 135 ° from the positive x axis; and (d) obtained with the electric field along the x axis, 22.5 ° from the positive x axis, 45 ° from the positive x axis, 67.5 ° from the positive x axis, y axis, 112.5 ° from the positive x axis, 135 ° from the positive x axis and 157.5 ° from the positive x axis.

Fig. 4
Fig. 4

Normalized energy flow at z = 440 nm image plane along the x axis (the intensities are normalized to the highest energy flow of each curves). Red dashed curve, normalized energy flow with a hemispherical hyperlens; black solid curve, normalized energy flow without a hemispherical hyperlens.

Fig. 5
Fig. 5

Superposition of the images obtained with the electric field along the x axis, 45 ° from the positive x axis, y axis and 135 ° from the positive x axis. (a) Image generated by the superposition method. (b) Improved image by the proposed image processing method.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

k r 2 ε p k p 2 | ε r | = ω 2 c 2 ,
ε p = ε θ = ε φ = p ε m + ( 1 p ) ε d ,
ε r = ε m ε d p ε d + ( 1 p ) ε m ,

Metrics