Abstract

We present detailed experimental and numerical investigations of resonances in deep nanogroove gratings in metallic substrates. These plasmonic nanocavity gratings feature enhanced fields within the grooves that enable a large enhancement of linear and nonlinear optical processes. This enhancement relies on both localized and propagating surface plasmons on the nanopatterned surface. We show that the efficiency of optical processes such as Raman scattering and four-wave mixing is dramatically enhanced by plasmonic nanocavity gratings.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4, 83–91 (2010).
    [CrossRef]
  3. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
    [CrossRef] [PubMed]
  4. H-I Peng and B. L. Miller, “Recent advancements in optical DNA biosensors: exploiting the plasmonic effects of metal nanoparticles,” Analyst 136, 436–447 (2011).
    [CrossRef]
  5. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
    [CrossRef] [PubMed]
  6. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
    [CrossRef] [PubMed]
  7. M. Lippitz, M. A. van Dijk, and M. Orrit, “Third-harmonic generation from single gold nanoparticles,” Nano Lett. 5, 799–802 (2005).
    [CrossRef] [PubMed]
  8. M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104(2007).
    [CrossRef] [PubMed]
  9. S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
    [CrossRef] [PubMed]
  10. J. Renger, R. Quindant, N. Van Hulst, and L. Novotny, “Surface-enhanced nonlinear four-wave mixing,” Phys. Rev. Lett. 104, 046803 (2010).
    [CrossRef] [PubMed]
  11. P. Genevet, J. P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10, 4880–4883 (2010).
    [CrossRef]
  12. S. Coyle, M. C. Netti, J. J. Baumberg, M. A. Ghanem, P. R. Birkin, P. N. Bartlett, and D. M. Whittaker, “Confined plasmons in metallic nanocavities,” Phys. Rev. Lett. 87, 176801 (2001).
    [CrossRef] [PubMed]
  13. H. T. Miyazaki and Y. Kurokawa, “Controlled plasmon resonance in closed metal/insulator/metal nanocavities,” Appl. Phys. Lett. 89, 211126 (2006).
    [CrossRef]
  14. T. Takano and J. Hamasaki, “Propagating modes of a metal-clad-dielectric-slab waveguide for integrated optics,” IEEE J. Quantum Electron. QE-8, 206–212 (1972).
    [CrossRef]
  15. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  16. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
    [CrossRef] [PubMed]
  17. N. Yu, J. Fan, Q. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photon. 2, 564–570 (2008).
    [CrossRef]
  18. L. Feng, A. Mizrahi, S. Zamek, Z. Liu, V. Lomakin, and Y. Fainman, “Metamaterials for enhanced polarization conversion in plasmonic excitation,” ACS Nano 5, 5100–5106(2011).
    [CrossRef] [PubMed]
  19. E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “SERS enhancement factors: a comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
    [CrossRef]
  20. H. KO, S. Singamaneni, and V. V. Tsukruk, “Nanostructured surfaces and assemblies as SERS media,” Small 4, 1576–1599(2008).
    [CrossRef] [PubMed]
  21. A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual Rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121, 9932–9939(1999).
    [CrossRef]

2011 (2)

H-I Peng and B. L. Miller, “Recent advancements in optical DNA biosensors: exploiting the plasmonic effects of metal nanoparticles,” Analyst 136, 436–447 (2011).
[CrossRef]

L. Feng, A. Mizrahi, S. Zamek, Z. Liu, V. Lomakin, and Y. Fainman, “Metamaterials for enhanced polarization conversion in plasmonic excitation,” ACS Nano 5, 5100–5106(2011).
[CrossRef] [PubMed]

2010 (4)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4, 83–91 (2010).
[CrossRef]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef] [PubMed]

J. Renger, R. Quindant, N. Van Hulst, and L. Novotny, “Surface-enhanced nonlinear four-wave mixing,” Phys. Rev. Lett. 104, 046803 (2010).
[CrossRef] [PubMed]

P. Genevet, J. P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10, 4880–4883 (2010).
[CrossRef]

2008 (4)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

H. KO, S. Singamaneni, and V. V. Tsukruk, “Nanostructured surfaces and assemblies as SERS media,” Small 4, 1576–1599(2008).
[CrossRef] [PubMed]

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef] [PubMed]

N. Yu, J. Fan, Q. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photon. 2, 564–570 (2008).
[CrossRef]

2007 (2)

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “SERS enhancement factors: a comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
[CrossRef]

M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104(2007).
[CrossRef] [PubMed]

2006 (1)

H. T. Miyazaki and Y. Kurokawa, “Controlled plasmon resonance in closed metal/insulator/metal nanocavities,” Appl. Phys. Lett. 89, 211126 (2006).
[CrossRef]

2005 (1)

M. Lippitz, M. A. van Dijk, and M. Orrit, “Third-harmonic generation from single gold nanoparticles,” Nano Lett. 5, 799–802 (2005).
[CrossRef] [PubMed]

2003 (1)

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef] [PubMed]

2002 (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

2001 (1)

S. Coyle, M. C. Netti, J. J. Baumberg, M. A. Ghanem, P. R. Birkin, P. N. Bartlett, and D. M. Whittaker, “Confined plasmons in metallic nanocavities,” Phys. Rev. Lett. 87, 176801 (2001).
[CrossRef] [PubMed]

1999 (1)

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual Rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121, 9932–9939(1999).
[CrossRef]

1972 (1)

T. Takano and J. Hamasaki, “Propagating modes of a metal-clad-dielectric-slab waveguide for integrated optics,” IEEE J. Quantum Electron. QE-8, 206–212 (1972).
[CrossRef]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef] [PubMed]

Bartlett, P. N.

S. Coyle, M. C. Netti, J. J. Baumberg, M. A. Ghanem, P. R. Birkin, P. N. Bartlett, and D. M. Whittaker, “Confined plasmons in metallic nanocavities,” Phys. Rev. Lett. 87, 176801 (2001).
[CrossRef] [PubMed]

Baumberg, J. J.

S. Coyle, M. C. Netti, J. J. Baumberg, M. A. Ghanem, P. R. Birkin, P. N. Bartlett, and D. M. Whittaker, “Confined plasmons in metallic nanocavities,” Phys. Rev. Lett. 87, 176801 (2001).
[CrossRef] [PubMed]

Beversluis, M.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef] [PubMed]

Birkin, P. R.

S. Coyle, M. C. Netti, J. J. Baumberg, M. A. Ghanem, P. R. Birkin, P. N. Bartlett, and D. M. Whittaker, “Confined plasmons in metallic nanocavities,” Phys. Rev. Lett. 87, 176801 (2001).
[CrossRef] [PubMed]

Blackie, E.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “SERS enhancement factors: a comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
[CrossRef]

Blanchard, R.

P. Genevet, J. P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10, 4880–4883 (2010).
[CrossRef]

Bouhelier, A.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef] [PubMed]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4, 83–91 (2010).
[CrossRef]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef] [PubMed]

Brus, L. E.

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual Rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121, 9932–9939(1999).
[CrossRef]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef] [PubMed]

Capasso, F.

P. Genevet, J. P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10, 4880–4883 (2010).
[CrossRef]

N. Yu, J. Fan, Q. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photon. 2, 564–570 (2008).
[CrossRef]

Coyle, S.

S. Coyle, M. C. Netti, J. J. Baumberg, M. A. Ghanem, P. R. Birkin, P. N. Bartlett, and D. M. Whittaker, “Confined plasmons in metallic nanocavities,” Phys. Rev. Lett. 87, 176801 (2001).
[CrossRef] [PubMed]

Danckwerts, M.

M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104(2007).
[CrossRef] [PubMed]

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Diehl, L.

N. Yu, J. Fan, Q. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photon. 2, 564–570 (2008).
[CrossRef]

Ebbesen, T. W.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Edamura, T.

N. Yu, J. Fan, Q. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photon. 2, 564–570 (2008).
[CrossRef]

Etchegoin, P. G.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “SERS enhancement factors: a comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
[CrossRef]

Fainman, Y.

L. Feng, A. Mizrahi, S. Zamek, Z. Liu, V. Lomakin, and Y. Fainman, “Metamaterials for enhanced polarization conversion in plasmonic excitation,” ACS Nano 5, 5100–5106(2011).
[CrossRef] [PubMed]

Fan, J.

N. Yu, J. Fan, Q. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photon. 2, 564–570 (2008).
[CrossRef]

Feng, L.

L. Feng, A. Mizrahi, S. Zamek, Z. Liu, V. Lomakin, and Y. Fainman, “Metamaterials for enhanced polarization conversion in plasmonic excitation,” ACS Nano 5, 5100–5106(2011).
[CrossRef] [PubMed]

Garcia-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Gatzogiannis, E.

P. Genevet, J. P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10, 4880–4883 (2010).
[CrossRef]

Genevet, P.

P. Genevet, J. P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10, 4880–4883 (2010).
[CrossRef]

Ghanem, M. A.

S. Coyle, M. C. Netti, J. J. Baumberg, M. A. Ghanem, P. R. Birkin, P. N. Bartlett, and D. M. Whittaker, “Confined plasmons in metallic nanocavities,” Phys. Rev. Lett. 87, 176801 (2001).
[CrossRef] [PubMed]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4, 83–91 (2010).
[CrossRef]

Hamasaki, J.

T. Takano and J. Hamasaki, “Propagating modes of a metal-clad-dielectric-slab waveguide for integrated optics,” IEEE J. Quantum Electron. QE-8, 206–212 (1972).
[CrossRef]

Hartschuh, A.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef] [PubMed]

Jin, J.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef] [PubMed]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef] [PubMed]

Kan, H.

N. Yu, J. Fan, Q. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photon. 2, 564–570 (2008).
[CrossRef]

Kats, M. A.

P. Genevet, J. P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10, 4880–4883 (2010).
[CrossRef]

Kim, S.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef] [PubMed]

Kim, S. W.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef] [PubMed]

Kim, Y.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef] [PubMed]

Kim, Y. J.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef] [PubMed]

KO, H.

H. KO, S. Singamaneni, and V. V. Tsukruk, “Nanostructured surfaces and assemblies as SERS media,” Small 4, 1576–1599(2008).
[CrossRef] [PubMed]

Kurokawa, Y.

H. T. Miyazaki and Y. Kurokawa, “Controlled plasmon resonance in closed metal/insulator/metal nanocavities,” Appl. Phys. Lett. 89, 211126 (2006).
[CrossRef]

Le Ru, E. C.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “SERS enhancement factors: a comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
[CrossRef]

Lezec, H. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Lippitz, M.

M. Lippitz, M. A. van Dijk, and M. Orrit, “Third-harmonic generation from single gold nanoparticles,” Nano Lett. 5, 799–802 (2005).
[CrossRef] [PubMed]

Liu, Z.

L. Feng, A. Mizrahi, S. Zamek, Z. Liu, V. Lomakin, and Y. Fainman, “Metamaterials for enhanced polarization conversion in plasmonic excitation,” ACS Nano 5, 5100–5106(2011).
[CrossRef] [PubMed]

Lomakin, V.

L. Feng, A. Mizrahi, S. Zamek, Z. Liu, V. Lomakin, and Y. Fainman, “Metamaterials for enhanced polarization conversion in plasmonic excitation,” ACS Nano 5, 5100–5106(2011).
[CrossRef] [PubMed]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Martin-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Meyer, M.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “SERS enhancement factors: a comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
[CrossRef]

Michaels, A. M.

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual Rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121, 9932–9939(1999).
[CrossRef]

Miller, B. L.

H-I Peng and B. L. Miller, “Recent advancements in optical DNA biosensors: exploiting the plasmonic effects of metal nanoparticles,” Analyst 136, 436–447 (2011).
[CrossRef]

Miyazaki, H. T.

H. T. Miyazaki and Y. Kurokawa, “Controlled plasmon resonance in closed metal/insulator/metal nanocavities,” Appl. Phys. Lett. 89, 211126 (2006).
[CrossRef]

Mizrahi, A.

L. Feng, A. Mizrahi, S. Zamek, Z. Liu, V. Lomakin, and Y. Fainman, “Metamaterials for enhanced polarization conversion in plasmonic excitation,” ACS Nano 5, 5100–5106(2011).
[CrossRef] [PubMed]

Netti, M. C.

S. Coyle, M. C. Netti, J. J. Baumberg, M. A. Ghanem, P. R. Birkin, P. N. Bartlett, and D. M. Whittaker, “Confined plasmons in metallic nanocavities,” Phys. Rev. Lett. 87, 176801 (2001).
[CrossRef] [PubMed]

Nirmal, M.

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual Rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121, 9932–9939(1999).
[CrossRef]

Novotny, L.

J. Renger, R. Quindant, N. Van Hulst, and L. Novotny, “Surface-enhanced nonlinear four-wave mixing,” Phys. Rev. Lett. 104, 046803 (2010).
[CrossRef] [PubMed]

M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104(2007).
[CrossRef] [PubMed]

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef] [PubMed]

Orrit, M.

M. Lippitz, M. A. van Dijk, and M. Orrit, “Third-harmonic generation from single gold nanoparticles,” Nano Lett. 5, 799–802 (2005).
[CrossRef] [PubMed]

P. Hall, W.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

Park, I. Y.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef] [PubMed]

Peng, H-I

H-I Peng and B. L. Miller, “Recent advancements in optical DNA biosensors: exploiting the plasmonic effects of metal nanoparticles,” Analyst 136, 436–447 (2011).
[CrossRef]

Pflugl, C.

N. Yu, J. Fan, Q. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photon. 2, 564–570 (2008).
[CrossRef]

Quindant, R.

J. Renger, R. Quindant, N. Van Hulst, and L. Novotny, “Surface-enhanced nonlinear four-wave mixing,” Phys. Rev. Lett. 104, 046803 (2010).
[CrossRef] [PubMed]

Renger, J.

J. Renger, R. Quindant, N. Van Hulst, and L. Novotny, “Surface-enhanced nonlinear four-wave mixing,” Phys. Rev. Lett. 104, 046803 (2010).
[CrossRef] [PubMed]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef] [PubMed]

Scully, M. O.

P. Genevet, J. P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10, 4880–4883 (2010).
[CrossRef]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

Singamaneni, S.

H. KO, S. Singamaneni, and V. V. Tsukruk, “Nanostructured surfaces and assemblies as SERS media,” Small 4, 1576–1599(2008).
[CrossRef] [PubMed]

Takano, T.

T. Takano and J. Hamasaki, “Propagating modes of a metal-clad-dielectric-slab waveguide for integrated optics,” IEEE J. Quantum Electron. QE-8, 206–212 (1972).
[CrossRef]

Tetienne, J. P.

P. Genevet, J. P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10, 4880–4883 (2010).
[CrossRef]

Tsukruk, V. V.

H. KO, S. Singamaneni, and V. V. Tsukruk, “Nanostructured surfaces and assemblies as SERS media,” Small 4, 1576–1599(2008).
[CrossRef] [PubMed]

van Dijk, M. A.

M. Lippitz, M. A. van Dijk, and M. Orrit, “Third-harmonic generation from single gold nanoparticles,” Nano Lett. 5, 799–802 (2005).
[CrossRef] [PubMed]

van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

Van Hulst, N.

J. Renger, R. Quindant, N. Van Hulst, and L. Novotny, “Surface-enhanced nonlinear four-wave mixing,” Phys. Rev. Lett. 104, 046803 (2010).
[CrossRef] [PubMed]

Wang, Q.

N. Yu, J. Fan, Q. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photon. 2, 564–570 (2008).
[CrossRef]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef] [PubMed]

Whittaker, D. M.

S. Coyle, M. C. Netti, J. J. Baumberg, M. A. Ghanem, P. R. Birkin, P. N. Bartlett, and D. M. Whittaker, “Confined plasmons in metallic nanocavities,” Phys. Rev. Lett. 87, 176801 (2001).
[CrossRef] [PubMed]

Yamanishi, M.

N. Yu, J. Fan, Q. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photon. 2, 564–570 (2008).
[CrossRef]

Yu, N.

N. Yu, J. Fan, Q. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photon. 2, 564–570 (2008).
[CrossRef]

Zamek, S.

L. Feng, A. Mizrahi, S. Zamek, Z. Liu, V. Lomakin, and Y. Fainman, “Metamaterials for enhanced polarization conversion in plasmonic excitation,” ACS Nano 5, 5100–5106(2011).
[CrossRef] [PubMed]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

ACS Nano (1)

L. Feng, A. Mizrahi, S. Zamek, Z. Liu, V. Lomakin, and Y. Fainman, “Metamaterials for enhanced polarization conversion in plasmonic excitation,” ACS Nano 5, 5100–5106(2011).
[CrossRef] [PubMed]

Analyst (1)

H-I Peng and B. L. Miller, “Recent advancements in optical DNA biosensors: exploiting the plasmonic effects of metal nanoparticles,” Analyst 136, 436–447 (2011).
[CrossRef]

Appl. Phys. Lett. (1)

H. T. Miyazaki and Y. Kurokawa, “Controlled plasmon resonance in closed metal/insulator/metal nanocavities,” Appl. Phys. Lett. 89, 211126 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. Takano and J. Hamasaki, “Propagating modes of a metal-clad-dielectric-slab waveguide for integrated optics,” IEEE J. Quantum Electron. QE-8, 206–212 (1972).
[CrossRef]

J. Am. Chem. Soc. (1)

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual Rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121, 9932–9939(1999).
[CrossRef]

J. Phys. Chem. C (1)

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “SERS enhancement factors: a comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
[CrossRef]

Nano Lett. (2)

P. Genevet, J. P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10, 4880–4883 (2010).
[CrossRef]

M. Lippitz, M. A. van Dijk, and M. Orrit, “Third-harmonic generation from single gold nanoparticles,” Nano Lett. 5, 799–802 (2005).
[CrossRef] [PubMed]

Nat. Mater. (2)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef] [PubMed]

Nat. Photon. (2)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4, 83–91 (2010).
[CrossRef]

N. Yu, J. Fan, Q. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photon. 2, 564–570 (2008).
[CrossRef]

Nature (1)

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef] [PubMed]

Phys. Rev. Lett. (4)

J. Renger, R. Quindant, N. Van Hulst, and L. Novotny, “Surface-enhanced nonlinear four-wave mixing,” Phys. Rev. Lett. 104, 046803 (2010).
[CrossRef] [PubMed]

M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104(2007).
[CrossRef] [PubMed]

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef] [PubMed]

S. Coyle, M. C. Netti, J. J. Baumberg, M. A. Ghanem, P. R. Birkin, P. N. Bartlett, and D. M. Whittaker, “Confined plasmons in metallic nanocavities,” Phys. Rev. Lett. 87, 176801 (2001).
[CrossRef] [PubMed]

Science (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Small (1)

H. KO, S. Singamaneni, and V. V. Tsukruk, “Nanostructured surfaces and assemblies as SERS media,” Small 4, 1576–1599(2008).
[CrossRef] [PubMed]

Other (2)

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Schematic of a plasmonic nanocavity grating consisting of deep periodically arranged nanogrooves patterned in a metallic film, which couple incident free space light into surface waves. Surface waves subsequently funnel energy into the resonant modes of the nanocavities, considerably increasing the electromagnetic energy stored in the nanocavity modes. (b),(c) Scanning electron microscopy images of the fabricated structures.

Fig. 2
Fig. 2

(a) Simulation of the resonances of an isolated single nanocavity with depth d ranging from 60 to 90 nm . The resonance peak is controlled by the depth of the groove. (b) Calculation of the position of the resonance peak for plasmonic nanocavity gratings as a function of the grating period. Grating launches surface Plasmon waves at a wavelength ( λ g = λ inc = n eff ) that depends linearly on the grating period. (c) We extract from the resonance curves the maximum of the electric field enhancement and plot it as a function of the grating period Λ g . For each nanocavity depth, there is an optimal Λ g that maximizes the field enhancement produced by the structure. The position of the maximum enhancement occurs when λ inc = n eff Λ g = λ cav . By changing Λ g , the double resonance condition is lost, resulting in a decreased field enhancement in the grooves. For all simulations, a focused Gaussian beam with a 1 μm waist size and wavelength λ inc is impinging onto the structure at normal incidence. The electric field is measured at the center of the groove entrance (denoted by the x in the inset), and is normalized to that of the incident wave. n eff is the effective mode index of the surface waves propagating at the corrugated interface.

Fig. 3
Fig. 3

The local enhancement factor ( η in ) in the metal and in the gap of the nanocavity is calculated as follows: At the groove entrance at the location indicated by the yellow cross in (a), η in , air = | E / E 0 | , where the calculated field E is normalized to the incident field E 0 . In the metal, we must account for the finite penetration, i.e., the skin depth of the electromagnetic field. We therefore define η in , metal = | E / E flat , metal | where the field E calculated at the location indicated by the red cross in (a) is normalized to the field E flat , metal of the unpatterned structure [red cross in (b)]. Electric field distribution | E / E 0 | 2 for a nanogroove grating with a width w = 60 nm , a depth d = 90 nm and Λ g = 560 nm (c), and for a flat gold surface (d). The incident Gaussian beam has a maximum field amplitude | E 0 | and a free space wavelength λ inc = 820 nm .

Fig. 4
Fig. 4

The out-coupling enhancement factor η out = P rad / P rad / flat is calculated from the power P rad radiated by an electric dipole of moment p aligned along x in a patterned structure [red cross in (a)], normalized to the power P rad / flat radiated by the same dipole in an unpatterned structure [red cross in (b)]. Intensity distribution | E | 2 for a nanogroove grating with w = 60 nm , d = 90 nm , and Λ g = 300 nm (c), and for a flat gold surface (d). The electric dipole is oscillating at the frequency corresponding to the free space wavelength λ = 670 nm .

Fig. 5
Fig. 5

(a),(b) Calculated local enhancement factor η in , 1 at ω 1 and η in , 2 at ω 2 (b) as a function of d and Λ g for normally incident monochromatic laser beams focused on the nanocavity grating. The simulated groove width is w = 60 nm . In (a) and (b) the incident free space wavelength is 820 nm and 1064 nm , respectively.

Fig. 6
Fig. 6

Calculated local enhancement factor η out , 4 WM at ω 4 WM as a function of d and Λ g . The simulated groove width is w = 60 nm . In our experiment, we only considered the up-converted four wave mixing signal which results in light generation at 667 nm . The dipole used for this simulation is emitting at this wavelength noted λ dipole in the text.

Fig. 7
Fig. 7

Schematic of the experimental setup. It consists in a typical coherent anti-Stokes Raman scattering microscope. BS stands for beamsplitter, DBS for dichroic beam splitter, ND for neutral density. A computer (PC) controls the XY scanning while it records the signal from the photomultiplier (PMT) module.

Fig. 8
Fig. 8

(a) Measured 4 WM signal enhancement as a function of grating period Λ g . (b) Calculated local nonlinear polarization enhancement | η in , 1 | 4 | η in , 2 | 2 as a function of Λ g . (c) Out-coupling coefficient calculated as described in Fig. 4 as a function of Λ g . For both simulation and experiment, the nanocavity depth and width are fixed to d = 90 nm and w = 80 nm .

Fig. 9
Fig. 9

(a) Schematic of the SERS experiment in a silver plasmonic nanocavity gratings. An incident pump beam is focused on the structure via a 20 × microscope objective. The Raman scattered light, collected back via the same objective, is filtered and measured with a spectrometer. (b) Example of the intensity distribution of the pump beam ( 532 nm ) at the double resonance condition. (c) Simulation of the resonance for the same parameters as in (b). (d) Experimental measurements of the SERS signal from an adsorbed monolayer of benzenethiol on plasmonic nanocavity gratings for various Λ g .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

k 0 sin ( α ) + q β g = k g ,

Metrics